Transverse－momentum－dependent distributions

Charlotte Van Hulse

University of Alcalá

AdT

大丈心

Comunidad de Madrid

International School of Nuclear Physics
From quarks and gluons to hadrons and nuclei
Erice，Sicily
September 18－24， 2023

The various dimensions of the nucleon structure

Wigner distributions $W\left(x, \vec{k}_{T}, \vec{b}_{\perp}\right)$

The various dimensions of the nucleon structure

The various dimensions of the nucleon structure

Semi-inclusive production

The various dimensions of the nucleon structure

Exclusive production

The various dimensions of the nucleon structure

The various dimensions of the nucleon structure

The various dimensions of the nucleon structure

Single-hadron production in semi-inclusive DIS

$$
\begin{aligned}
& Q^{2}=-q^{2} \\
& x_{B}=\frac{Q^{2}}{2 P \cdot q}
\end{aligned}
$$

$$
\mathrm{d}_{\bar{u}}^{\pi}
$$

Single-hadron production in semi-inclusive DIS

$$
\begin{aligned}
& Q^{2}=-q^{2} \\
& x_{B}=\frac{Q^{2}}{2 P \cdot q}
\end{aligned}
$$

parton distribution function $P D F\left(x_{B}\right)$

Single-hadron production in semi-inclusive DIS

$$
\begin{gathered}
Q^{2}=-q^{2} \\
x_{B}=\frac{Q^{2}}{2 P \cdot q} \\
z=\frac{\operatorname{lab}}{=} \frac{E_{h}}{E_{\gamma *}}
\end{gathered}
$$

Single-hadron production in semi-inclusive DIS

$$
\begin{aligned}
& Q^{2}=-q^{2} \\
& x_{B}=\frac{Q^{2}}{2 P \cdot q} \\
& z=\frac{\operatorname{lab}}{=} \frac{E_{h}}{E_{\gamma^{*}}}
\end{aligned}
$$

Single-hadron production in semi-inclusive DIS

$$
\begin{gathered}
Q^{2}=-q^{2} \\
x_{B}=\frac{Q^{2}}{2 P \cdot q} \\
z \stackrel{\operatorname{lab}}{=} \frac{E_{h}}{E_{\gamma *}}
\end{gathered}
$$

TMD evolution

Single-hadron production in semi-inclusive DIS

$$
\begin{gathered}
Q^{2}=-q^{2} \\
x_{B}=\frac{Q^{2}}{2 P \cdot q} \\
z \stackrel{\operatorname{lab}}{=} \frac{E_{h}}{E_{\gamma *}}
\end{gathered}
$$

Single-hadron production in semi-inclusive DIS

Transverse-momentum-dependent (TMD)

Semi-inclusive DIS cross section

$$
\begin{aligned}
\sigma^{h}\left(\phi, \phi_{S}\right) & =\sigma_{U U}^{h}\left\{1+2\langle\cos (\phi)\rangle_{U U}^{h} \cos (\phi)+2\langle\cos (2 \phi)\rangle_{U U}^{h} \cos (2 \phi)\right. \\
& +\lambda_{l} 2\langle\sin (\phi)\rangle_{L U}^{h} \sin (\phi) \\
& +S_{L}\left[2\langle\sin (\phi)\rangle_{U L}^{h} \sin (\phi)+2\langle\sin (2 \phi)\rangle_{U L}^{h} \sin (2 \phi)\right. \\
& \left.+\lambda_{l}\left(2\langle\cos (0 \phi)\rangle_{L L}^{h} \cos (0 \phi)+2\langle\cos (\phi)\rangle_{L L}^{h} \cos (\phi)\right)\right] \\
& +S_{T}\left[2\left\langle\sin \left(\phi-\phi_{S}\right)\right\rangle_{U T}^{h} \sin \left(\phi-\phi_{S}\right)+2\left\langle\sin \left(\phi+\phi_{S}\right)\right\rangle_{U T}^{h} \sin \left(\phi+\phi_{S}\right)\right. \\
& +2\left\langle\sin \left(3 \phi-\phi_{S}\right)\right\rangle_{U T}^{h} \sin \left(3 \phi-\phi_{S}\right)+2\left\langle\sin \left(\phi_{S}\right)\right\rangle_{U T}^{h} \sin \left(\phi_{S}\right) \\
& +2\left\langle\sin \left(2 \phi-\phi_{S}\right)\right\rangle_{U T}^{h} \sin \left(2 \phi-\phi_{S}\right) \\
& +\lambda_{l}\left(2\left\langle\cos \left(\phi-\phi_{S}\right)\right\rangle_{L T}^{h} \cos \left(\phi-\phi_{S}\right)\right. \\
& \left.\left.\left.+2\left\langle\cos \left(\phi_{S}\right)\right\rangle_{L T}^{h} \cos \left(\phi_{S}\right)+2\left\langle\cos \left(2 \phi-\phi_{S}\right)\right\rangle_{L T}^{h} \cos \left(2 \phi-\phi_{S}\right)\right)\right]\right\}
\end{aligned}
$$

Semi-inclusive DIS cross section

TMD PDFs and fragmentation functions (FFs)

Azimuthal amplitudes related to structure functions $F_{X Y}$:

$$
2\left\langle\sin \left(\phi+\phi_{S}\right)\right\rangle_{U T}^{h}=\epsilon F_{U T}^{\sin \left(\phi+\phi_{S}\right)}
$$

TMD PDFs and fragmentation functions (FFs)

Azimuthal amplitudes related to structure functions $F_{X Y}$:

$$
2\left\langle\sin \left(\phi+\phi_{S}\right)\right\rangle_{U T}^{h}=\epsilon F_{U T}^{\sin \left(\phi+\phi_{S}\right)}
$$

TMD PDFs and fragmentation functions (FFs)

Azimuthal amplitudes related to structure functions $F_{X Y}$:

TMD PDFs and fragmentation functions (FFs)

Azimuthal amplitudes related to structure functions $F_{X Y}$:

$$
2\left\langle\sin \left(\phi+\phi_{S}\right)\right\rangle_{U T}^{h}=\epsilon F_{U T}^{\sin \left(\phi+\phi_{S}\right)}
$$

TMD PDFs and fragmentation functions (FFs)

Azimuthal amplitudes related to structure functions $F_{X Y}$:

$$
2\left\langle\sin \left(\phi+\phi_{S}\right)\right\rangle_{U T}^{h}=\epsilon F_{U T}^{\sin \left(\phi+\phi_{S}\right)}
$$

TMD PDFs and fragmentation functions (FFs)

Azimuthal amplitudes related to structure functions $F_{X Y}$:

$$
2\left\langle\sin \left(\phi+\phi_{S}\right)\right\rangle_{U T}^{h}=\epsilon F_{U T}^{\sin \left(\phi+\phi_{S}\right)}
$$

TMD PDFs and fragmentation functions (FFs)

Azimuthal amplitudes related to structure functions $F_{X Y}$:

$$
2\left\langle\sin \left(\phi+\phi_{S}\right)\right\rangle_{U T}^{h}=\epsilon F_{U T}^{\sin \left(\phi+\phi_{S}\right)}
$$

TMD PDFs and fragmentation functions (FFs)

Azimuthal amplitudes related to structure functions $F_{X Y}$:

$$
2\left\langle\sin \left(\phi+\phi_{S}\right)\right\rangle_{U T}^{h}=\epsilon F_{U T}^{\sin \left(\phi+\phi_{S}\right)}
$$

TMD PDFs and fragmentation functions (FFs)

Azimuthal amplitudes related to structure functions $F_{X Y}$:

$$
2\left\langle\sin \left(\phi+\phi_{S}\right)\right\rangle_{U T}^{h}=\epsilon F_{U T}^{\sin \left(\phi+\phi_{S}\right)}
$$

TMD PDFs and fragmentation functions (FFs)

Azimuthal amplitudes related to structure functions $F_{X Y}$:

$$
2\left\langle\sin \left(\phi+\phi_{S}\right)\right\rangle_{U T}^{h}=\epsilon F_{U T}^{\sin \left(\phi+\phi_{S}\right)}
$$

Semi-inclusive DIS cross section

Semi-inclusive DIS cross section

Presented amplitudes

$$
\begin{aligned}
\sigma^{h}\left(\phi, \phi_{S}\right) & =\sigma_{U U}^{h}\left\{1+2\langle\cos (\phi)\rangle_{U U}^{h} \cos (\phi)+2\langle\cos (2 \phi)\rangle_{U U}^{h} \cos (2 \phi)\right. \\
& +\lambda_{l} 2\langle\sin (\phi)\rangle_{L U}^{h} \sin (\phi) \\
& +S_{L}\left[2\langle\sin (\phi)\rangle_{U L}^{h} \sin (\phi)+2\langle\sin (2 \phi)\rangle_{U L}^{h} \sin (2 \phi)\right. \\
& \left.+\lambda_{l}\left(2\langle\cos (0 \phi)\rangle_{L L}^{h} \cos (0 \phi)+2\langle\cos (\phi)\rangle_{L L}^{h} \cos (\phi)\right)\right] \\
& +S_{T}\left[2\left\langle\sin \left(\phi-\phi_{S}\right)\right\rangle_{U T}^{h} \sin \left(\phi-\phi_{S}\right)+2\left\langle\sin \left(\phi+\phi_{S}\right)\right\rangle_{U T}^{h} \sin \left(\phi+\phi_{S}\right)\right. \\
& +2\left\langle\sin \left(3 \phi-\phi_{S}\right)\right\rangle_{U T}^{h} \sin \left(3 \phi-\phi_{S}\right)+2\left\langle\sin \left(\phi_{S}\right)\right\rangle_{U T}^{h} \sin \left(\phi_{S}\right) \\
& +2\left\langle\sin \left(2 \phi-\phi_{S}\right)\right\rangle_{U T}^{h} \sin \left(2 \phi-\phi_{S}\right) \\
& +\lambda_{l}\left(2\left\langle\cos \left(\phi-\phi_{S}\right)\right\rangle_{L T}^{h} \cos \left(\phi-\phi_{S}\right)\right. \\
& \left.\left.\left.+2\left\langle\cos \left(\phi_{S}\right)\right\rangle_{L T}^{h} \cos \left(\phi_{S}\right)+2\left\langle\cos \left(2 \phi-\phi_{S}\right)\right\rangle_{L T}^{h} \cos \left(2 \phi-\phi_{S}\right)\right)\right]\right\}
\end{aligned}
$$

Presented here

Factorisation and universality

semi-inclusive DIS

Factorisation and universality

semi-inclusive DIS

Drell-Yan

Factorisation and universality

semi-inclusive DIS

Drell-Yan

$\mathrm{e}^{+} \mathrm{e}^{-}$annihilation

Factorisation and universality

semi-inclusive DIS

$\mathrm{e}^{+} \mathrm{e}^{-}$annihilation

Drell-Yan

inclusive hadron production in pp collisions

Factorisation and universality

semi-inclusive DIS

$\mathrm{e}^{+} \mathrm{e}^{-}$annihilation

Drell-Yan

Validity of TMD description

Experiments investigating TMD PDFs and TMD FFs

Spin-independent TMD PDFs: global analysis

Experiment	Reaction	ref.	Kinematics	N_{pt} after cuts
HERMES	$p \rightarrow \pi^{+}$	[67]	$\begin{gathered} 0.023<x<0.6(6 \mathrm{bins}) \\ 0.2<z<0.8(6 \mathrm{bins}) \\ 1.0<Q<\sqrt{20} \mathrm{GeV} \\ \\ W^{2}>10 \mathrm{GeV}^{2} \\ 0.1<y<0.85 \end{gathered}$	24
	$p \rightarrow \pi^{-}$			24
	$p \rightarrow K^{+}$			24
	$p \rightarrow K^{-}$			24
	$D \rightarrow \pi^{+}$			24
	$D \rightarrow \pi^{-}$			24
	$D \rightarrow K^{+}$			24
	$D \rightarrow K^{-}$			24
COMPASS	$d \rightarrow h^{+}$	[68]	$\begin{gathered} 0.003<x<0.4(8 \mathrm{bins}) \\ 0.2<z<0.8(4 \mathrm{bins}) \\ 1.0<Q \simeq 9 \mathrm{GeV}(5 \mathrm{bins}) \end{gathered}$	195
	$d \rightarrow h^{-}$			195
Total				582

Experiment	ref.	$\sqrt{s}[\mathrm{GeV}]$	$Q[\mathrm{GeV}]$	$y^{i} \times$,	fiducin wrgion	$N_{p t}$ niftrer cuts
F288 (200)	73	19.4	$\begin{gathered} 4-9 \text { in } \\ 1 \mathrm{GeV} \text { bins" } \end{gathered}$	$0.1<x_{P}<0.7$		43
E288 (300)	[73]	23.8	$\begin{gathered} 4-12 \text { in } \\ 1 \mathrm{GeV} \text { bins } \end{gathered}$	$-0.09<x_{F}<0.51$	-	53
E288 (400)	[73]	27.4	$\begin{gathered} 514 \mathrm{in} \\ 1 \mathrm{GrV} \mathrm{bins}^{*} \end{gathered}$	$-0.27<x_{1}<0.33$	-	76
Elios	[71]	38.8	$\begin{aligned} & 7-18 \text { in } \\ & 5 \text { bins* } \end{aligned}$	$-0.1<x_{F}<0.2$	-	53
E772	[75]	38.3	$\begin{aligned} & 515 \mathrm{in} \\ & 8 \text { bins } \end{aligned}$	$0.1<x_{F}<0.3$	-	35
PHENLX	[76]	210	4.8-8.2	$1.2<y<2.2$	-	3
CDF (run1)	[77]	1800	66-116	-	-	33
CDF (run2)	[78]	1960	66-116	-	-	39
Do (run1)	[79]	1800	75105			16
D0 (run2)	[80]	1960	70-110	-	-	8
D0 (zun2) ${ }_{\text {L }}$	[81]	1960	65-115	$\|y\|<1.7$	$\begin{gathered} p_{T}>15 \mathrm{GcV} \\ \|\eta\|<1.7 \end{gathered}$	3
Atlas ($\mathrm{r}_{\text {TeV) }}$	[47]	7000	66-116	$\begin{gathered} \|y\|<1 \\ 1<y \mid<2 \\ 2<\|y\|<24 \end{gathered}$	$\begin{gathered} p_{T} \geqslant 20 \mathrm{GeV} \\ \|\eta\|<2.4 \end{gathered}$	15
ATLAS (87eV)	[18]	8000	66-116	$\begin{aligned} & \|y\|<2.4 \\ & \text { in } 6 \text { bins } \end{aligned}$	$\begin{gathered} p_{1}>20 \mathrm{GeV} \\ \|\eta\|<2.4 \end{gathered}$	30
ATLAS (8 TeV)	[48]	8000	46-66	$\|y\|<2.4$	$\begin{gathered} p_{T}>20 \mathrm{GcV} \\ \|\eta\|<2.4 \end{gathered}$	3
ATIAS (8 TeV)	[48]	8000	116150	$\|y\|<2.4$	$\begin{gathered} p_{\mathrm{T}}>20 \mathrm{GeV} \\ \|\gamma\|<2.1 \end{gathered}$	7
CMS (7 TeV)	[49]	7000	60-120	$\|y\|<2.1$	$\begin{gathered} p_{1}>20 \mathrm{GeV} \\ \|\eta\|<2.1 \end{gathered}$	8
CMS (3 TeV)	[50]	8000	60-120	$\|y\|<2.1$	$\begin{gathered} \mid p_{\mathrm{T}}>20 \mathrm{GcV} \\ \|\eta\|<2.1 \end{gathered}$	8
T.HCb (7TCV)	[82]	7000	60120	$2<y<4.5$	$\begin{aligned} p_{1} & >20 \mathrm{GeV} \\ 2 & <\eta<4 \end{aligned}$	8
LIICb (3 TeV)	[83]	8000	60-120	$2<3<4.5$	$\begin{gathered} n_{T}>20 \mathrm{GcV} \\ 2<\eta<4.5 \end{gathered}$	7
LHCb (13 TeV)	[84]	13000	60120	$2<3<4.5$	$\begin{gathered} p_{\mathrm{T}}>20 \mathrm{GeV} \\ 2<\eta<4.5 \end{gathered}$	9
Total						457

Spin-independent TMD PDFs: global analysis

I. Scimemi, A. Vladimirov JHEP 06 (2020)137

Description of the data

Spin-independent TMD PDFs: global analysis

Collins amplitudes

- Oppositely signed amplitudes for π^{+}and π^{\top} :

$$
H_{1}^{\perp, u \rightarrow \pi^{+}} \approx-H_{1}^{\perp, u \rightarrow \pi^{-}}
$$

- Amplitudes for K^{+}larger than for π^{+}:

$$
H_{1}^{\perp, u \rightarrow K^{+}}>H_{1}^{\perp, u \rightarrow \pi^{+}}
$$

Collins amplitudes

HERMES, JHEP 12(2020)010

- Oppositely signed amplitudes for π^{+}and π^{+}:

$$
H_{1}^{\perp, u \rightarrow \pi^{+}} \approx-H_{1}^{\perp, u \rightarrow \pi^{-}}
$$

- Amplitudes for K^{+}larger than for π^{+}:

Kang et al., PRD 93 (2016) 014009
Anselmino et al. PRD 87 (2013) 094019 $H_{1}^{\perp, u \rightarrow K^{+}}>H_{1}^{\perp, u \rightarrow \pi^{+}}$

data from Belle, Babar, COMPASS, HERMES, Jefferson Lab Hall A

Artru model

polarisation component in lepton scattering plane reversed by photoabsorption:

string break, quark-antiquark pair with vacuum numbers:

$$
L=1
$$

\because-nnmonor
orbital angular momentum creates transverse momentum:

Collins amplitudes: QCD evolution

COMPASS, Phys. Lett. B 744 (2015) 250

Collins amplitudes: QCD evolution

COMPASS, Phys. Lett. B 744 (2015) 250

Sivers amplitudes

- Sivers function:
- requires non-zero orbital angular momentum
- final-state interactions \rightarrow azimuthal asymmetries

Sivers amplitudes

HERMES, JHEP 12(2020)010

- Sivers function:
- requires non-zero orbital angular momentum
- final-state interactions \rightarrow azimuthal asymmetries

Sivers amplitudes

HERMES, JHEP 12(2020)010

- Sivers function:
- requires non-zero orbital angular momentum
- final-state interactions \rightarrow azimuthal asymmetries

- π^{+}:
- positive -> non-zero orbital angular momentum
- π^{-}:
- consistent with zero $\rightarrow u$ and d quark cancelation

Sivers function

Predicted Sivers sign change for SIDIS and Drell-Yan

$$
\Phi_{i j}(p, P, S)=\frac{1}{(2 \pi)^{4}} \int d^{4} \xi e^{i p \cdot \xi}\langle P, S| \bar{\psi}_{j}(0) U_{[0, \xi]} \psi_{i}(\xi)|P, S\rangle
$$

r monn $(q b)$

SIDIS
Drell-Yan

Experimental access to Sivers in Drell-Yan

Experimental access to Sivers in Drell-Yan

Experimental access to Sivers in Drell-Yan

Experimental access to Sivers in Drell-Yan

Investigation of the Sivers sign change in $p^{\dagger} \pi^{-}$collisions

Investigation of the Sivers sign change in $p^{\dagger} \pi^{-}$collisions

Investigation of the Sivers sign change in $p^{\uparrow} p$ collisions

Investigation of the Sivers sign change in $p^{\uparrow} p$ collisions

Boer-Mulders asymmetries

Spin-dependence with unpolarised hadrons!

Boer-Mulders asymmetries

Spin-dependence with unpolarised hadrons!

Boer-Mulders asymmetries

Spin-dependence with unpolarised hadrons!
Measurement in ep: $\left\langle\cos \left(2 \phi_{h}\right)\right\rangle_{B o r n}(j)$

$$
\left\langle\cos \left(2 \phi_{h}\right)\right\rangle_{\text {meas }}(i)
$$

- QED radiate effects

Boer-Mulders asymmetries

Spin-dependence with unpolarised hadrons!
Measurement in ep: $\left\langle\cos \left(2 \phi_{h}\right)\right\rangle_{\text {Born }}(j)$

$$
\left\langle\cos \left(2 \phi_{h}\right)\right\rangle_{\text {meas }}(i)
$$

- QED radiate effects

- limited geometric and kinematic acceptance of detector

Boer-Mulders asymmetries

Spin-dependence with unpolarised hadrons!
Measurement in ep: $\left\langle\cos \left(2 \phi_{h}\right)\right\rangle_{\text {Born }}(j)$

$$
\left\langle\cos \left(2 \phi_{h}\right)\right\rangle_{\text {meas }}(i)
$$

- QED radiate effects

- limited geometric and kinematic acceptance of detector
- limited detector resolution

Boer-Mulders asymmetries

Spin-dependence with unpolarised hadrons!
Measurement in ep: $\left\langle\cos \left(2 \phi_{h}\right)\right\rangle_{B o r n}(j)$

$$
\left\langle\cos \left(2 \phi_{h}\right)\right\rangle_{\text {meas }}(i)
$$

- QED radiate effects

- limited geometric and kinematic acceptance of detector
- limited detector resolution

$\rightleftarrows \quad\llcorner\quad$ generated in 4π
느는 inside acceptance

Boer-Mulders asymmetries

Spin-dependence with unpolarised hadrons!
$\mathscr{C}\left[h_{1}^{\perp, q} \times H_{1}^{\perp, q}\right]$

Boer-Mulders asymmetries

H-D comparison: $h_{1}^{\perp, u} \approx h_{1}^{\perp, d}$
Negative for π^{+}; positive for $\pi^{-} \rightarrow H_{1}^{\perp, f a v} \approx-H_{1}^{\perp, \text { disfav }}$

Boer-Mulders asymmetries

H-D comparison: $h_{1}^{\perp, u} \approx h_{1}^{\perp, d}$
Measurement also
possible in Drell Yan.
Negative for π^{+}; positive for $\pi^{-} \rightarrow H_{1}^{\perp, f a v} \approx-H_{1}^{\perp, \text { disfav }}$

Twist-3: $\langle\sin (\phi)\rangle_{L U}^{h}$

$$
\langle\sin (\phi)\rangle_{L U}^{h} \propto \mathcal{C}\left[h_{1}^{\perp} \times \tilde{E}, e \times H_{1}^{\perp}, g^{\perp} \times D_{1}, f_{1} \times \tilde{G}^{\perp}\right]
$$

Twist-3: $\langle\sin (\phi)\rangle_{L U}^{h}$

Boer-Mulders PDF

Twist-3: $\langle\sin (\phi)\rangle_{L U}^{h}$

$$
\begin{aligned}
\langle\sin (\phi)\rangle_{L U}^{h} & \propto \mathcal{C}\left[h_{1}^{\perp} \times \tilde{E}, e \times H_{1}^{\perp}, g^{\perp} \times D_{1}, f_{1} \times \tilde{G}^{\perp}\right] \\
\begin{array}{l}
\text { Chiral-odd T-even } \\
\text { twist-3 PDF }
\end{array} & \text { Collins FF }
\end{aligned}
$$

Twist-3: $\langle\sin (\phi)\rangle_{L U}^{h}$

$$
e(x)=e^{\mathrm{WW}}(x)+\bar{e}(x)
$$

Twist-3: $\langle\sin (\phi)\rangle_{L U}^{h}$

$$
e(x)=e^{\mathrm{WW}}(x)+\bar{e}(x)
$$

$$
e_{2} \equiv \int_{0}^{1} d x x^{2} \bar{e}(x)
$$

\longrightarrow force on struck quark at $t=0$
M. Burkardt, arXiv:0810.3589

Boer-Mulders PDF

Twist-3: $\langle\sin (\phi)\rangle_{L U}^{h}$

$$
\langle\sin (\phi)\rangle_{L U}^{h} \propto \mathcal{C}\left[h_{1}^{\perp} \times \tilde{E}, e \times H_{1}^{\perp}, g^{\perp} \times D_{1}, f_{1} \times \tilde{G}^{\perp}\right]
$$

Twist-3: $\langle\sin (\phi)\rangle_{L U}^{h}$

$$
\begin{array}{r}
\langle\sin (\phi)\rangle_{L U}^{h} \propto \mathcal{C}\left[h_{1}^{\perp} \times \tilde{E}, e \times H_{1}^{\perp}, g^{\perp} \times D_{1}, f_{1} \times \tilde{G}^{\perp}\right] \\
\begin{array}{c}
\text { Chiral-even T-odd } \\
\text { twist-3 PDF }
\end{array} \\
\begin{array}{c}
\text { Only term to survive in TMD single-jet inclusive DIS } \\
e+p \rightarrow e^{\prime} \\
e \text { jet }+X
\end{array} \\
\hline \text { jetentent }
\end{array}
$$

Twist-3: $\langle\sin (\phi)\rangle_{L U}^{h}$

$$
\langle\sin (\phi)\rangle_{L U}^{h} \propto \mathcal{C}\left[h_{1}^{\perp} \times \tilde{E}, e \times H_{1}^{\perp}, g^{\perp} \times D_{1}, f_{1} \times \tilde{G}^{\perp}\right]
$$

Twist-3: $\langle\sin (\phi)\rangle_{L U}^{h}$

- Opposite behaviour for $\pi^{-} z$ projection due to different x range probed
- CLAS probes higher x region: more sensitive to $e \times H_{1}^{\perp}$?

$$
\langle\sin (\phi)\rangle_{L U}^{h} \propto \mathcal{C}\left[h_{1}^{\perp} \times \tilde{E}, \underset{27}{x e \times H_{1}^{\perp},} x g^{\perp} \times D_{1}, f_{1} \times \tilde{G}^{\perp}\right]
$$

Twist-3: $\langle\sin (\phi)\rangle_{L U}^{h}$

CLAS12, Phys. Rev. Lett. 128 (2022) 062005

- Opposite behaviour for π^{-}z projection due to different x range probed
- CLAS probes higher x region: more sensitive to $e \times H_{1}^{\perp}$?

$$
\langle\sin (\phi)\rangle_{L U}^{h} \propto \mathcal{C}\left[h_{1}^{\perp} \times \tilde{E}, x e \times H_{1}^{\perp}, x g_{27}^{\perp} \times D_{1}, f_{1} \times \tilde{G}^{\perp}\right]
$$

Gluons

GLUONS	unpolarized	circular	linear
U	f_{1}^{g}		$h_{1}^{\perp g}$
L		$g_{1 L}^{g}$	$h_{1 L}^{\perp g}$
T	$f_{1 T}^{\perp g}$	$g_{1 T}^{g}$	$h_{1 T}^{g}, h_{1 T}^{\perp g}$

- In contrast to quark TMDs, gluon TMDs are almost unknown
- Accessible through production of dijets, high- P_{T} hadron pairs, quarkonia

Gluons

GLUONS	unpolarized	circular	linear
U	f_{1}^{g}		$h_{1}^{\perp g}$
L		$g_{1 L}^{g}$	$h_{1 L}^{\perp g}$
T	$f_{1 T}^{\perp g}$	$g_{1 T}^{g}$	$h_{1 T}^{g}, h_{1 T}^{\perp g}$

- In contrast to quark TMDs, gluon TMDs are almost unknown
- Accessible through production of dijets, high- P_{T} hadron pairs, quarkonia

Drell-Yan with lepton pair in J / ψ mass region: $q \bar{q}$ annihilation or gluon-gluon fusion

Boer-Mulders \otimes Transversity

Gluons

GLUONS	unpolarized	circular	linear
U	f_{1}^{g}		$h_{1}^{\perp g}$
L		$g_{1 L}^{g}$	$h_{1 L}^{\perp g}$
T	$f_{1 T}^{\perp g}$	$g_{1 T}^{g}$	$h_{1 T}^{g}, h_{1 T}^{\perp g}$

- In contrast to quark TMDs, gluon TMDs are almost unknown
- Accessible through production of dijets, high- P_{T} hadron pairs, quarkonia

Drell-Yan with lepton pair in J / ψ mass region: $q \bar{q}$ annihilation or gluon-gluon fusion

Boer-Mulders \otimes Transversity

Predictions for di- J / ψ production at LHCb

$$
\boldsymbol{V} \begin{array}{r}
M_{\psi \psi}-12 \mathrm{GeV}-\begin{array}{r}
21 \mathrm{GeV} \\
30 \mathrm{GeV}
\end{array}
\end{array} \begin{array}{r}
b_{T_{\mathrm{LIm}}-}-2 \mathrm{GeV}^{-1} \\
4 \mathrm{GeV}^{-1} \\
8 \mathrm{GeV}^{-1}
\end{array}
$$

$$
\Psi \quad \begin{aligned}
& 40 \mathrm{GeV}-\quad 0.25<\left|\cos \left(\theta_{\mathrm{CS}}\right)\right|<0.5
\end{aligned}
$$

F. Scarpa et al.,

Eur. Phys. J. C 80 (2020) 87

Upcoming

AOOOBER

Apparatus for Meson and Baryon Experimental Research

Meson structure

Upcoming

FOOOBER
Apparatus for Meson and Baryon Experimental Research

Meson structure

SpinQuest \longrightarrow Sivers function

Upcoming

A000BER
Apparatus for Meson and Baryon Experimental Research

Meson structure

SpinQuest \longrightarrow Sivers function

Jefferson Lab

Future

Spin-independent TMD PDFs at EIC

Fit:
A. Bacchetta et al., JHEP 06 (2017) 081, JHEP 06 (2019) 051 (erratum)

EIC uncertainties dominated
by assumed
3\% point-to-point uncorrelated uncertainty 3% scale uncertainty

Theory uncertainties dominated by TMD evolution.

Spin-independent TMD PDFs at EIC

Fit:
A. Bacchetta et al., JHEP 06 (2017) 081, JHEP 06 (2019) 051 (erratum)

EIC uncertainties dominated
by assumed
3\% point-to-point uncorrelated uncertainty 3\% scale uncertainty

Theory uncertainties dominated by TMD evolution.

Spin-independent TMD PDF: impact of EIC

Sivers TMD PDF: TMD evolution

Sivers asymmetry

ECCE
Parametrisation: M. Bury et al., JHEP, 05:151, 2021

Decrease of asymmetry with increasing $\mathrm{Q}^{2} \rightarrow$ need high precision ($<1 \%$) to measure asymmetry at high Q^{2}

Uncertainties Sivers asymmetry at EIC

Sivers asymmetry

Beam polarisations assumed to be 70\%.
systematic uncertainty= |generated - reconstructed|

Additionally: 3\% scale uncertainty

- Low x and Q^{2} : small statistical uncertainty. High precision is needed since asymmetry at low x and Q^{2} well below 1%.
- For not too large z and P_{T}, statistical uncertainty well below 1%.
- Systematic uncertainties increase with z and P_{T} : likely because of higher smearing effects.

Q2 dependence of the Sivers asymmetry at EIC

Intermediate and high x : good coverage in Q^{2}, with complementarity in coverage at different COM energies.

Sivers TMD PDF: impact of EIC

DIS variables via scattered lepton

$$
\begin{aligned}
Q^{2} & >1 \mathrm{GeV}^{2} \\
0.01 & <y<0.95 \\
W^{2} & >10 \mathrm{GeV}^{2}
\end{aligned}
$$

$5 \times 41 \mathrm{GeV}^{2}$
$10 \times 100 \mathrm{GeV}^{2}$
$18 \times 100 \mathrm{GeV}^{2}$
$18 \times 275 \mathrm{GeV}^{2}$
$\mathcal{L}=10 \mathrm{fb}^{-1}$ for each collision energy

Summary

- Transverse momentum dependent hadron structure and hadron formation: rich field of physics, with sensitivity to correlations between quark and hadron spin and transverse momentum.
- Pioneering fixed-target experiments at HERMES, COMPASS, JLab 6 GeV: quark distributions
- Entering era of precision measurements:
- JLab 12 GeV : unique precision in the valence region
- EIC: extending down to $x=10^{-4}$
- LHC measurements can provide additional, invaluable high energy input
- need to extend measurements with sensitivity to gluons

