Transverse-momentum-dependent distributions

Charlotte Van Hulse University of Alcalá

Comunidad de Madrid

International School of Nuclear Physics From quarks and gluons to hadrons and nuclei Erice, Sicily September 18-24, 2023

Wigner distributions $W(x, \vec{k}_T, \vec{b}_\perp)$

F	3.0
L	2.5
F	2.0
F	1.5
-	1.0
	05

2

_	3.0
_	2.5
_	2.0
F	1.5
L	1.0
L	0.5

2

2

$$Q^2 = -q^2$$
$$x_B = \frac{Q^2}{2P \cdot q}$$

$$Q^2 = -q^2$$
$$x_B = \frac{Q^2}{2P \cdot q}$$

parton distribution function $PDF(x_B)$

$$Q^{2} = -q^{2}$$
$$x_{B} = \frac{Q^{2}}{2P \cdot q}$$
$$z \stackrel{\text{lab}}{=} \frac{E_{h}}{E_{\gamma *}}$$

parton distribution function $PDF(x_B)$

fragmentation function FF(z)

$$Q^{2} = -q^{2}$$
$$x_{B} = \frac{Q^{2}}{2P \cdot q}$$
$$z \stackrel{\text{lab}}{=} \frac{E_{h}}{E_{\gamma *}}$$

Transverse-momentum-dependent (TMD) parton distribution function $PDF(x_B, k_{\perp})$

Transverse-momentum-dependent (TMD)

fragmentation function $FF(z, p_{\perp})$

$$Q^{2} = -q^{2}$$
$$x_{B} = \frac{Q^{2}}{2P \cdot q}$$
$$z \stackrel{\text{lab}}{=} \frac{E_{h}}{E_{\gamma *}}$$

Transverse-momentum-dependent (TMD) parton distribution function $PDF(x_B, k_{\perp}, Q^2)$

Transverse-momentum-dependent (TMD)

fragmentation function $FF(z, p_{\perp}, Q^2)$

TMD evolution

$$Q^{2} = -q^{2}$$
$$x_{B} = \frac{Q^{2}}{2P \cdot q}$$
$$z \stackrel{\text{lab}}{=} \frac{E_{h}}{E_{\gamma *}}$$

Transverse-momentum-dependent (TMD) parton distribution function $PDF(x_B, k_{\perp}, Q^2)$

Transverse-momentum-dependent (TMD)

fragmentation function $FF(z, p_{\perp}, Q^2)$

TMD evolution

$$Q^{2} = -q^{2}$$
$$x_{B} = \frac{Q^{2}}{2P \cdot q}$$
$$z \stackrel{\text{lab}}{=} \frac{E_{h}}{E_{\gamma *}}$$

Transverse-momentum-dependent (TMD) parton distribution function $PDF(x_B, k_{\perp}, Q^2)$

Transverse-momentum-dependent (TMD)

fragmentation function $FF(z, p_{\perp}, Q^2)$

TMD evolution

Semi-inclusive DIS cross section

- $\sigma^h(\phi, \phi_S) = \sigma^h_{UU} \left\{ 1 + 2 \langle \cos(\phi) \rangle \right\}$
 - + $\lambda_l 2 \langle \sin(\phi) \rangle_{LU}^h \sin(\phi) \rangle_{LU}^h$
 - + $S_L \left[2 \langle \sin(\phi) \rangle_{UL}^h \right]$
 - + $\lambda_l \left(2 \langle \cos(0\phi) \rangle_{LL}^h \right)$
 - + $S_T \left[2 \left(\sin(\phi \phi_S) \right) \right]$
 - + $2\langle \sin(3\phi \phi_S) \rangle_{U_s}^h$
 - + $2\langle \sin(2\phi \phi_S) \rangle_{U_s}^h$
 - + $\lambda_l \left(2 \langle \cos(\phi \phi_S) \rangle \right)$
 - + $2\langle \cos(\phi_S) \rangle_{LT}^h \cos(\phi_S) \rangle_{LT}^h$

 \vec{S}

 φ_S

 \vec{k}'

Semi-inclusive DIS cross section

$$\begin{aligned} & \phi \\ \phi \\ & \phi \\ & \phi \\ & \phi \\ & \sin(\phi) + 2\langle \sin(2\phi) \rangle_{UL}^{h} \sin(2\phi) \\ & \cos(0\phi) + 2\langle \cos(\phi) \rangle_{LL}^{h} \cos(\phi) \\ & \phi \\ &$$

target polarisation

 \vec{S}

 φ_S

 \vec{k}'

 \rightarrow

~ ^

 $2\langle \sin(\phi + \phi_S) \rangle_{UT}^h = \epsilon F_{UT}^{\sin(\phi + \phi_S)}$

 $2\langle \sin(\phi + \phi_S) \rangle_{UT}^h = \epsilon F_{UT}^{\sin(\phi + \phi_S)}$

Azimuthal amplitudes related to structure functions F_{XY} :

quark polarisation

	U	L	т
U	f_1		
L		g_{1L}	
т			h_{1T}
	U L T		U f_1 L g_{1L}

survive integration of parton transverse momentum

Azimuthal amplitudes related to structure functions F_{XY} :

quark polarisation

anol		U	L	т
ar is	U	f_1		h_1^\perp
	L		g_{1L}	h_{1L}^{\perp}
CIEO	т	f_{1T}^{\perp}	g_{1T}^{\perp}	$h_{1T}h_{1T}^{\perp}$
"ב		1		

Azimuthal amplitudes related to structure functions F_{XY} :

quark polarisation

auor		U	L	т
a la	U	f_1		h_1^\perp
	L		g_{1L}	h_{1L}^{\perp}
CIEO	т	f_{1T}^{\perp}	g_{1T}^{\perp}	$h_{1T}h_{1T}^{\perp}$
				1

polarisation hadron

Azimuthal amplitudes related to structure functions F_{XY} :

quark polarisation

auol		U	L	т
	U	f_1		h_1^\perp
	L		g_{1L}	h_{1L}^{\perp}
CIEC	т	f_{1T}^{\perp}	g_{1T}^{\perp}	$h_{1T}h_{1T}^{\perp}$
		1		

Ē

polarisation hadron

Azimuthal amplitudes related to structure functions F_{XY} :

quark polarisation

		• •		
auor		U	L	Т
	U	f_1		h_1^\perp
	L		g_{1L}	h_{1L}^{\perp}
CIEC	т	f_{1T}^{\perp}	g_{1T}^{\perp}	$h_{1T}h_{1T}^{\perp}$

polarisation hadron

Azimuthal amplitudes related to structure functions F_{XY} :

quark polarisation

		• •		
nucleon polarisation		U	L	Т
laris	U	f_1		h_1^\perp
n po	L		g_{1L}	h_{1L}^{\perp}
cleo	т	f_{1T}^{\perp}	g_{1T}^{\perp}	$h_{1T}h_{1T}^{\perp}$
nu				

polarisation **5** had

Semi-inclusive DIS cross section

$$\begin{aligned} b)_{UU}^{h} \cos(\phi) + 2\langle \cos(2\phi) \rangle_{UU}^{h} \cos(2\phi) \\ n(\phi) \\ \sin(\phi) + 2\langle \sin(2\phi) \rangle_{UL}^{h} \sin(2\phi) \\ \cos(0\phi) + 2\langle \cos(\phi) \rangle_{LL}^{h} \cos(\phi) \rangle] \\ (\cos(0\phi) + 2\langle \cos(\phi) \rangle_{LL}^{h} \cos(\phi) \rangle] \\ b)_{UT}^{h} \sin(\phi - \phi_{S}) + 2\langle \sin(\phi + \phi_{S}) \rangle_{UT}^{h} \sin(\phi + \phi_{S}) \\ T \sin(3\phi - \phi_{S}) + 2\langle \sin(\phi_{S}) \rangle_{UT}^{h} \sin(\phi_{S}) \\ T \sin(2\phi - \phi_{S}) \\ s(\phi_{S}) + 2\langle \cos(2\phi - \phi_{S}) \rangle_{LT}^{h} \cos(2\phi - \phi_{S}))] \\ s(\phi_{S}) + 2\langle \cos(2\phi - \phi_{S}) \rangle_{LT}^{h} \cos(2\phi - \phi_{S}))] \\ s(\phi_{S}) + 2\langle \cos(2\phi - \phi_{S}) \rangle_{LT}^{h} \cos(2\phi - \phi_{S}))] \\ s(\phi_{S}) + 2\langle \cos(2\phi - \phi_{S}) \rangle_{LT}^{h} \cos(2\phi - \phi_{S}))] \\ s(\phi_{S}) + 2\langle \cos(2\phi - \phi_{S}) \rangle_{LT}^{h} \cos(2\phi - \phi_{S}))] \\ s(\phi_{S}) + 2\langle \cos(2\phi - \phi_{S}) \rangle_{LT}^{h} \cos(2\phi - \phi_{S}))] \\ s(\phi_{S}) + 2\langle \cos(2\phi - \phi_{S}) \rangle_{LT}^{h} \cos(2\phi - \phi_{S}))] \\ s(\phi_{S}) + 2\langle \cos(2\phi - \phi_{S}) \rangle_{LT}^{h} \cos(2\phi - \phi_{S}))] \\ s(\phi_{S}) + 2\langle \cos(2\phi - \phi_{S}) \rangle_{LT}^{h} \cos(2\phi - \phi_{S}))] \\ s(\phi_{S}) + 2\langle \cos(2\phi - \phi_{S}) \rangle_{LT}^{h} \cos(2\phi - \phi_{S}))] \\ s(\phi_{S}) + 2\langle \cos(2\phi - \phi_{S}) \rangle_{LT}^{h} \cos(2\phi - \phi_{S}))] \\ s(\phi_{S}) + 2\langle \cos(2\phi - \phi_{S}) \rangle_{LT}^{h} \cos(2\phi - \phi_{S}))] \\ s(\phi_{S}) + 2\langle \cos(2\phi - \phi_{S}) \rangle_{LT}^{h} \cos(2\phi - \phi_{S}))] \\ s(\phi_{S}) + 2\langle \cos(2\phi - \phi_{S}) \rangle_{LT}^{h} \cos(2\phi - \phi_{S}))] \\ s(\phi_{S}) + 2\langle \cos(2\phi - \phi_{S}) \rangle_{LT}^{h} \cos(2\phi - \phi_{S}))] \\ s(\phi_{S}) + 2\langle \cos(2\phi - \phi_{S}) \rangle_{LT}^{h} \cos(2\phi - \phi_{S}))] \\ s(\phi_{S}) + 2\langle \cos(2\phi - \phi_{S}) \rangle_{LT}^{h} \cos(2\phi - \phi_{S}))] \\ s(\phi_{S}) + 2\langle \cos(2\phi - \phi_{S}) \rangle_{LT}^{h} \cos(2\phi - \phi_{S}))] \\ s(\phi_{S}) + 2\langle \cos(2\phi - \phi_{S}) \rangle_{LT}^{h} \cos(2\phi - \phi_{S}))] \\ s(\phi_{S}) + 2\langle \cos(2\phi - \phi_{S}) \rangle_{LT}^{h} \cos(2\phi - \phi_{S}))] \\ s(\phi_{S}) + 2\langle \cos(2\phi - \phi_{S}) \rangle_{LT}^{h} \cos(2\phi - \phi_{S}))] \\ s(\phi_{S}) + 2\langle \cos(2\phi - \phi_{S}) \rangle_{LT}^{h} \cos(2\phi - \phi_{S}))] \\ s(\phi_{S}) + 2\langle \cos(2\phi - \phi_{S}) \rangle_{LT}^{h} \cos(2\phi - \phi_{S}))] \\ s(\phi_{S}) + 2\langle \cos(2\phi - \phi_{S}) \rangle_{LT}^{h} \cos(2\phi - \phi_{S}))] \\ s(\phi_{S}) + 2\langle \cos(2\phi - \phi_{S}) \rangle_{LT}^{h} \cos(2\phi - \phi_{S}))] \\ s(\phi_{S}) + 2\langle \cos(2\phi - \phi_{S}) \rangle_{LT}^{h} \cos(2\phi - \phi_{S}))] \\ s(\phi_{S}) + 2\langle \cos(2\phi - \phi_{S}) \rangle_{LT}^{h} \cos(2\phi - \phi_{S}))] \\ s(\phi_{S}) + 2\langle \cos(2\phi - \phi_{S}) \rangle_{LT}^{h} \cos(2\phi - \phi_{S}))] \\ s(\phi_{S}) + 2\langle \cos(2\phi - \phi_{S}) \rangle_{LT}^{h} \cos(2\phi - \phi_{S}))] \\ s(\phi_{S}) + 2\langle \cos(2\phi - \phi_{S}$$

Semi-inclusive DIS cross section

$$\begin{aligned} \frac{\partial}{\partial UU} \cos(\phi) + 2\langle \cos(2\phi) \rangle_{UU}^{h} \cos(2\phi) \\ n(\phi) \\ \sin(\phi) + 2\langle \sin(2\phi) \rangle_{UL}^{h} \sin(2\phi) \\ \cos(0\phi) + 2\langle \cos(\phi) \rangle_{LL}^{h} \cos(\phi) \rangle \\ (\cos(0\phi) + 2\langle \cos(\phi) \rangle_{LL}^{h} \cos(\phi) \rangle \\ (\cos(0\phi) + 2\langle \cos(\phi) \rangle_{LL}^{h} \cos(\phi) \rangle \\ (\cos(0\phi) + 2\langle \cos(\phi) \rangle_{LL}^{h} \cos(\phi) \rangle_{UT}^{h} \sin(\phi + \phi_{S}) \\ (\cos(1\phi - \phi_{S}) + 2\langle \sin(\phi_{S}) \rangle_{UT}^{h} \sin(\phi_{S}) \\ (\cos(1\phi - \phi_{S}) + 2\langle \cos(2\phi - \phi_{S}) \rangle_{LT}^{h} \cos(2\phi - \phi_{S})) \\ (\sin(1\phi) + 2\langle \cos(2\phi - \phi_{S}) \rangle_{LT}^{h} \cos(2\phi - \phi_{S})) \\ (\cos(1\phi) + 2\langle \cos(2\phi - \phi_{S}) \rangle_{LT}^{h} \cos(2\phi - \phi_{S})) \\ (\cos(1\phi) + 2\langle \cos(2\phi - \phi_{S}) \rangle_{LT}^{h} \cos(2\phi - \phi_{S})) \\ (\cos(1\phi) + 2\langle \cos(2\phi - \phi_{S}) \rangle_{LT}^{h} \cos(2\phi - \phi_{S})) \\ (\cos(1\phi) + 2\langle \cos(2\phi - \phi_{S}) \rangle_{LT}^{h} \cos(2\phi - \phi_{S})) \\ (\cos(1\phi) + 2\langle \cos(2\phi - \phi_{S}) \rangle_{LT}^{h} \cos(2\phi - \phi_{S})) \\ (\cos(1\phi) + 2\langle \cos(2\phi - \phi_{S}) \rangle_{LT}^{h} \cos(2\phi - \phi_{S})) \\ (\cos(1\phi) + 2\langle \cos(2\phi - \phi_{S}) \rangle_{LT}^{h} \cos(2\phi - \phi_{S})) \\ (\cos(1\phi) + 2\langle \cos(2\phi - \phi_{S}) \rangle_{LT}^{h} \cos(2\phi - \phi_{S})) \\ (\cos(1\phi) + 2\langle \cos(2\phi - \phi_{S}) \rangle_{LT}^{h} \cos(2\phi - \phi_{S})) \\ (\cos(1\phi) + 2\langle \cos(2\phi - \phi_{S}) \rangle_{LT}^{h} \cos(2\phi - \phi_{S})) \\ (\cos(1\phi) + 2\langle \cos(2\phi - \phi_{S}) \rangle_{LT}^{h} \cos(2\phi - \phi_{S})) \\ (\cos(1\phi) + 2\langle \cos(2\phi - \phi_{S}) \rangle_{LT}^{h} \cos(2\phi - \phi_{S})) \\ (\cos(1\phi) + 2\langle \cos(2\phi - \phi_{S}) \rangle_{LT}^{h} \cos(2\phi - \phi_{S})) \\ (\cos(1\phi) + 2\langle \cos(2\phi - \phi_{S}) \rangle_{LT}^{h} \cos(2\phi - \phi_{S})) \\ (\cos(1\phi) + 2\langle \cos(2\phi - \phi_{S}) \rangle_{LT}^{h} \cos(2\phi - \phi_{S})) \\ (\cos(1\phi) + 2\langle \cos(2\phi - \phi_{S}) \rangle_{LT}^{h} \cos(2\phi - \phi_{S})) \\ (\cos(1\phi) + 2\langle \cos(2\phi - \phi_{S}) \rangle_{LT}^{h} \cos(2\phi - \phi_{S})) \\ (\cos(1\phi) + 2\langle \cos(2\phi - \phi_{S}) \rangle_{LT}^{h} \cos(2\phi - \phi_{S})) \\ (\cos(1\phi) + 2\langle \cos(2\phi - \phi_{S}) \rangle_{LT}^{h} \cos(2\phi - \phi_{S})) \\ (\cos(1\phi) + 2\langle \cos(2\phi - \phi_{S}) \rangle_{LT}^{h} \cos(2\phi - \phi_{S})) \\ (\cos(1\phi) + 2\langle \cos(2\phi - \phi_{S}) \rangle_{LT}^{h} \cos(2\phi - \phi_{S})) \\ (\cos(1\phi) + 2\langle \cos(2\phi - \phi_{S}) \rangle_{LT}^{h} \cos(2\phi - \phi_{S})) \\ (\cos(1\phi) + 2\langle \cos(2\phi - \phi_{S}) \rangle_{LT}^{h} \cos(2\phi - \phi_{S})) \\ (\cos(1\phi) + 2\langle \cos(2\phi - \phi_{S}) \rangle_{LT}^{h} \cos(2\phi - \phi_{S})) \\ (\cos(1\phi) + 2\langle \cos(2\phi - \phi_{S}) \rangle_{LT}^{h} \cos(2\phi - \phi_{S})) \\ (\cos(1\phi) + 2\langle \cos(2\phi - \phi_{S}) \rangle_{LT}^{h} \cos(2\phi - \phi_{S})) \\ (\cos(1\phi) + 2\langle \cos(2\phi - \phi_{S}) \rangle_{LT}^{h} \cos(2\phi - \phi_{S})) \\ (\cos(1\phi) + 2\langle \cos(2\phi - \phi_{S}) \rangle_{LT}^{h} \cos(2\phi - \phi_{S})) \\ (\cos(1\phi) + 2\langle \cos(2\phi - \phi_{S}) \rangle_{LT}^{h} \cos(2\phi - \phi_{S})) \\ (\cos(1\phi) + 2\langle \cos(2\phi - \phi_$$

Presented amplitudes

$$\sigma^{h}(\phi, \phi_{S}) = \sigma^{h}_{UU} \left\{ 1 + 2\langle \cos(\phi + \lambda_{l} 2\langle \sin(\phi) \rangle^{h}_{LU} \sin \phi + \lambda_{l} 2\langle \sin(\phi) \rangle^{h}_{UL} \sin \phi + S_{L} [2\langle \sin(\phi) \rangle^{h}_{UL} \sin \phi + \lambda_{l} (2\langle \cos(0\phi) \rangle^{h}_{LL} + S_{T} [2\langle \sin(\phi - \phi_{S}) \rangle^{h}_{UL} + 2\langle \sin(3\phi - \phi_{S}) \rangle^{h}_{UL} + 2\langle \sin(2\phi - \phi_{S}) \rangle^{h}_{UL} + \lambda_{l} (2\langle \cos(\phi -$$

+ $2\langle\cos(\phi_S)\rangle_{LT}^h\cos(\phi_S)\rangle_{LT}^h$

$$\frac{1}{2}\langle\cos(\phi)\rangle_{UU}^{h}\cos(\phi) + \frac{2}{2}\langle\cos(2\phi)\rangle_{UU}^{h}\cos(2\phi)$$

$$\frac{1}{2}\int_{LU}^{h}\sin(\phi)$$

$$\frac{1}{2}\int_{UL}^{h}\sin(\phi) + \frac{2}{\sin(2\phi)}\int_{UL}^{h}\sin(2\phi)$$

$$\frac{1}{2}\int_{UL}^{h}\cos(0\phi) + \frac{2}{\cos(\phi)}\int_{LL}^{h}\cos(\phi)\Big]$$

$$\frac{1}{2}\int_{UT}^{h}\sin(\phi - \phi_{S}) + \frac{2}{2}\langle\sin(\phi + \phi_{S})\rangle_{UT}^{h}\sin(\phi + \phi_{S})$$

$$\frac{1}{2}\int_{UT}^{h}\sin(3\phi - \phi_{S}) + \frac{2}{\sin(\phi_{S})}\int_{UT}^{h}\sin(\phi_{S})$$

$$\frac{1}{2}\int_{UT}^{h}\sin(2\phi - \phi_{S})$$

$$\frac{1}{2}\int_{UT}^{h}\cos(\phi - \phi_{S})$$

$$\frac{1}{2}\int_{UT}^{h}\cos(\phi - \phi_{S})$$

$$\frac{1}{2}\int_{UT}^{h}\cos(\phi - \phi_{S})$$

$$\frac{1}{2}\int_{UT}^{h}\cos(\phi_{S}) + \frac{2}{2}\langle\cos(2\phi - \phi_{S})\rangle_{LT}^{h}\cos(2\phi - \phi_{S})\Big]\Big]$$

Factorisation and universality

Factorisation and universality

Drell-Yan

Factorisation and universality

Drell-Yan

Adapted from A. Bacchetta

Factorisation and universality

Adapted from A. Bacchetta

Validity of TMD description

Consistent results for TMD and CT3 in overlap region 10

FRN

BROOKHAVEN

Experiments investigating TMD PDFs and TMD FFs

$\vec{e} + \vec{p}, \vec{n}, \vec{d}$

Spin-independent TMD PDFs: global analysis

leptor)			epton			
proton hadron semi-inclusive DIS							
	Experiment	Reaction	ref.	Kinematics	$N_{\rm pt}$ after cuts		
	HERMES	$\begin{array}{c} p \rightarrow \pi^+ \\ p \rightarrow \pi^- \\ p \rightarrow K^+ \\ p \rightarrow K^- \\ D \rightarrow \pi^+ \\ D \rightarrow \pi^- \\ D \rightarrow K^+ \\ D \rightarrow K^- \end{array}$	[<mark>67</mark>]	$\begin{array}{l} 0.023 < x < 0.6 \ (6 \ {\rm bins}) \\ 0.2 < z < 0.8 \ (6 \ {\rm bins}) \\ 1.0 < Q < \sqrt{20} \ {\rm GeV} \end{array} \\ \\ W^2 > 10 {\rm GeV}^2 \\ 0.1 < y < 0.85 \end{array}$	$ \begin{array}{c} 24 \\ 24 \\ 24 \\ 24 \\ 24 \\ 24 \\ 24 \\ 24 \\$		
	COMPASS	$\frac{d \to h^+}{d \to h^-}$	[68]	0.003 < x < 0.4 (8 bins) 0.2 < z < 0.8 (4 bins) $1.0 < Q \simeq 9 \text{GeV}$ (5 bins)	195 195		
	Total				582		

Experiment	ref.	$\sqrt{s} \; [\text{GeV}]$	$Q \; [{ m GeV}]$	y/x_{E}	fiducia
			46 [004]	37-7	region
E288 (200)	[73]	19.4	4–9 in 1 GeV bins*	$0.1 < x_F < 0.7$	
E288 (300)	[73]	23.8	4−12 in 1 GeV bins*	$-0.09 < x_F < 0.51$	_
E288 (400)	[73]	27.4	5 14 in 1 GeV bins*	$-0.27 < x_F < 0.33$	
E605	[74]	38.8	$7{-}18$ in 5 bins [*]	$-0.1 < x_F < 0.2$	
E772	[75]	38.8	5 15 in 8 bins [*]	$0.1 < x_F < 0.3$	
PHENIX	[76]	200	4.8 - 8.2	1.2 < y < 2.2	
CDF (run1)	[77]	1800	66 - 116		
CDF (run2)	[78]	1960	66 - 116	_	_
D0 (run1)	[79]	1800	75 105		
D0 (run2)	[80]	1960	70 - 110	_	
D0 $(run2)_{\mu}$	[81]	1960	65 - 115	y < 1.7	$ p_T > 15 { m Ge}^2$ $ \eta < 1.7$
ATLAS (7 TeV)	[47]	7000	66-116	$egin{array}{c c c c c } y < 1 \ 1 < y < 2 \ 2 < y < 2.4 \end{array}$	$p_T > 20 \text{ Ge}$ $ \eta < 2.4$
ATLAS (8 TeV)	[48]	8000	6 6–116	y < 2.4 in 6 bins	$p_T > 20 \text{ Ge}$ $ \eta < 2.4$
ATLAS (8 TeV)	[48]	8000	46-66	y < 2.4	$p_T > 20 \text{ Ge}^2$ $ \eta < 2.4$
ATLAS (8 TeV)	[48]	8000	116-150	y < 2.4	$p_T > 20 \text{ Ge}$ $ \eta < 2.4$
${\rm CMS}~(7{\rm TeV})$	[49]	7000	60 - 120	y < 2.1	$p_T > 20~{ m Ge}^2$ $ \eta < 2.1$
CMS~(8TeV)	[50]	8000	60 - 120	y < 2.1	$p_T > 20 \text{ Ge}$ $ \eta < 2.1$
LHCb $(7 {\rm TeV})$	[82]	7000	60-120	2 < y < 4.5	$p_T > 20 \text{ Ge}^2$ $2 < \eta < 4.5$
LHCb $(8{\rm TeV})$	[83]	8000	60 - 120	2 < y < 4.5	$p_T > 20 { m GeV}$ $2 < \eta < 4.5$
LHCb (13 TeV)	[84]	13000	$60 \ 120$	2 < y < 4.5	$p_T > 20 \text{ Ge}$ $2 < \eta < 4.8$
Total					

Spin-independent TMD PDFs: global analysis

Collins amplitudes

Collins amplitudes

Artru model

polarisation component in lepton scattering plane reversed by photoabsorption:

string break, quark-antiquark pair with vacuum numbers:

X. Artru et al., Z. Phys. C73 (1997) 527

$A_{M}^{\sin(\phi_h + \phi_s)} \propto h^q \otimes H_{1q}^{\perp h} SSA[twist-2]$ Colling amplitudes: QCD evolution

 $\mathscr{C} \mid h_{1T}^q \times H_1^{\perp,q}$

Sivers amplitudes

- Sivers function:
- requires non-zero orbital angular momentum
- final-state interactions azimuthal asymmetries

Sivers amplitudes

- Sivers function:
- requires non-zero orbital angular momentum
- final-state interactions azimuthal asymmetries

Sivers amplitudes

- Sivers function:
- requires non-zero orbital angular momentum
- final-state interactions azimuthal asymmetries

- π^+ :
 - positive -> non-zero orbital angular momentum
- *π*⁻:
- consistent with zero $\rightarrow u$ and d quark cancelation

Sivers function

18

Predicted Sivers sign change f

$$\Phi_{ij}(p, P, S) = \frac{1}{(2\pi)^4} \int d^4\xi \; e^{ip \cdot \xi} \langle P, S | \, \bar{\psi}_j(0) \, U_{[0,\xi]} \, \psi_i(\xi) \, d^4\xi \, e^{ip \cdot \xi} \langle P, S | \, \bar{\psi}_j(0) \, U_{[0,\xi]} \, \psi_i(\xi) \, d^4\xi \, e^{ip \cdot \xi} \langle P, S | \, \bar{\psi}_j(0) \, U_{[0,\xi]} \, \psi_i(\xi) \, d^4\xi \, e^{ip \cdot \xi} \langle P, S | \, \bar{\psi}_j(0) \, U_{[0,\xi]} \, \psi_i(\xi) \, d^4\xi \, e^{ip \cdot \xi} \langle P, S | \, \bar{\psi}_j(0) \, U_{[0,\xi]} \, \psi_i(\xi) \, d^4\xi \, e^{ip \cdot \xi} \langle P, S | \, \bar{\psi}_j(0) \, U_{[0,\xi]} \, \psi_i(\xi) \, d^4\xi \, e^{ip \cdot \xi} \langle P, S | \, \bar{\psi}_j(0) \, U_{[0,\xi]} \, \psi_i(\xi) \, d^4\xi \, e^{ip \cdot \xi} \langle P, S | \, \bar{\psi}_j(0) \, U_{[0,\xi]} \, \psi_i(\xi) \, d^4\xi \, e^{ip \cdot \xi} \, d^4\xi \, d^4\xi \, e^{ip \cdot \xi} \, d^4\xi \,$$

for SIDIS and Drell-Yan

J. C. Collins, Phys. Lett. B 536 (2002) 43

 $)\left|P,S\right\rangle$

 $d\sigma(\pi^- p^\uparrow \to \mu^+ \mu^- X) \sim 1 + \overline{h}_1^\perp \otimes h_1^\perp \cos(2\phi)$ $+|S_T| \ \overline{f}_1 \otimes \overline{f}_{1T}^{\perp} \sin \phi_S$ $+|S_T| \ \overline{h}_1^{\perp} \otimes h_{1T}^{\perp} \sin(2\phi + \phi_S)$ $+|S_T| \cdot \overline{h}_1^\perp \otimes h_{1T} \sin(2\phi - \phi_S)$

/

-

 $d\sigma(\pi^- p^\uparrow \to \mu^+ \mu^- X) \sim 1 + \overline{h}_1^\perp \otimes h_1^\perp \cos(2\phi)$ $+|S_T| \ \overline{f}_1 \otimes \overline{f}_{1T}^{\perp} \sin \phi_S$ $+|S_T| \ \overline{h}_1^{\perp} \otimes h_{1T}^{\perp} \sin(2\phi + \phi_S)$ $+|S_T| \overline{h_1}^{\perp} \otimes h_{1T} \sin(2\phi - \phi_S)$

/

-

$$\rightarrow \mu^{+}\mu^{-}X) \sim 1 + \overline{h}_{1}^{\perp} \otimes h_{1}^{\perp} \cos(2\phi)$$

$$+ |S_{T}| \quad \overline{f}_{1} \otimes \overline{f}_{1T}^{\perp} \sin \phi_{S}$$

$$+ |S_{T}| \quad \overline{h}_{1}^{\perp} \otimes h_{1T}^{\perp} \sin(2\phi + \phi_{S})$$

$$+ |S_{T}| \quad \overline{h}_{1}^{\perp} \otimes h_{1T} \sin(2\phi - \phi_{S})$$

$$\pi^{-} \qquad p$$

/

-

Investigation of the Sivers sign change in $p^{\uparrow}\pi^{-}$ collisions

Investigation of the Sivers sign change in $p^{\uparrow}\pi^{-}$ collisions

Investigation of the Sivers sign change in $p^{\uparrow}p$ collisions

arXiv:2308.15496v1

Spin-dependence with unpolarised hadrons!

Spin-dependence with unpolarised hadrons!

Measurement in ep: $\langle \cos(2\phi_h) \rangle_{Born}(j)$

 $\langle \cos(2\phi_h) \rangle_{meas}(i)$

Spin-dependence with unpolarised hadrons!

 $\langle \cos(2\phi_h) \rangle_{Born}(j)$ Measurement in ep:

•

 $\langle \cos(2\phi_h) \rangle_{meas}(i)$ QED radiate effects

Spin-dependence with unpolarised hadrons!

 $\langle \cos(2\phi_h) \rangle_{Born}(j)$ Measurement in ep:

•

٠

limited geometric and kinematic acceptance of detector

Spin-dependence with unpolarised hadrons!

Measurement in ep: $\langle \cos(2\phi_h) \rangle_{Born}(j)$

- QED radiate effects •
- ٠
- ٠

limited geometric and kinematic acceptance of detector

limited detector resolution

Spin-dependence with unpolarised hadrons!

 $\langle \cos(2\phi_h) \rangle_{Born}(j)$ Measurement in ep:

- QED radiate effects •
- ٠
- •

limited geometric and kinematic acceptance of detector

limited detector resolution

@72dpi	85.2KB
@72dpi	180KB
@300dpi	0.7MB
@300dpi	1MB
@300dpi	1.5MB

Search

00 x 12 bins

NG								
rendering IS X 12 ϕ -bins								
Bin limits								
2	0.078	0.145	0.27	1	5			
	0.6	0.7	0.85		4			
	0.45	0.6	0.75	1	5			
	0.35	0.5	0.75		4			

tector

36

H–D comparison: $h_1^{\perp,u} \approx h_1^{\perp,d}$ Negative for π^+ ; positive for $\pi^- \to H_1^{\perp,fav} \approx -H_1^{\perp,disfav}$

H–D comparison: $h_1^{\perp,u} \approx h_1^{\perp,d}$ Negative for π^+ ; positive for $\pi^- \to H_1^{\perp,fav} \approx -H_1^{\perp,disfav}$

25

Twist-3: $\langle \sin(\phi) \rangle_{LU}^h$

$\langle \sin(\phi) \rangle_{LU}^h \propto \mathcal{C} \left[h_1^\perp \times \tilde{E}, e \times H_1^\perp, g^\perp \times D_1, f_1 \times \tilde{G}^\perp \right]$

Twist-3: $\langle \sin(\phi) \rangle_{LU}^h$

Boer-Mulders PDF

Twist-3: $\langle \sin(\phi) \rangle_{LU}^h$

Twist-3: $\langle \sin(\phi) \rangle_{LU}^{h}$

$$e(x) = e^{WW}(x) + \bar{e}(x)$$

Twist-3: $\langle \sin(\phi) \rangle_{LU}^h$

$$e(x) = e^{WW}(x) + \bar{e}(x)$$

$$e_2 \equiv \int_0^1 dx \, x^2 \bar{e}(x)$$
force on struck quark at t=0
M. Burkardt, arXiv:0810.3589

Twist-3: $\langle \sin(\phi) \rangle_{I,I}^h$

Twist-3: $\langle \sin(\phi) \rangle_{I,I}^h$

Twist-3: $\langle \sin(\phi) \rangle_{LU}^{h}$

Twist-3: $\langle \sin(\phi) \rangle_{LU}^{h}$

- Opposite behaviour for π^{-} z projection due to different x range probed
- CLAS probes higher x region: more sensitive to $e \times H_1^{\perp}$? $\langle \sin(\phi) \rangle_{LU}^h \propto \mathcal{C} \left[h_1^\perp \times \tilde{E}, x \, e \times H_1^\perp, x \, g^\perp \times D_1, f_1 \times \tilde{G}^\perp \right]$

27

Twist-3: $\langle \sin(\phi) \rangle_{LU}^{h}$

- Opposite behaviour for π^{-} z projection due to different x range probed
- CLAS probes higher x region: more sensitive to $e \times H_1^{\perp}$? $\langle \sin(\phi) \rangle_{LU}^h \propto \mathcal{C} \left[h_1^\perp \times \tilde{E}, x \, e \times H_1^\perp, x \, g^\perp \times D_1, f_1 \times \tilde{G}^\perp \right]$

CLAS12, Phys. Rev. Lett. 128 (2022) 062005

27

Gluons

GLUONS	unpolarized	circular	linear
U	(f_1^g)		$h_1^{\perp g}$
L		(g_{1L}^g)	$h_{_{1L}}^{\perp g}$
Т	$f_{1T}^{\perp g}$	$g^g_{_{1T}}$	$h_{1T}^g, h_{1T}^{\perp g}$

- In contrast to quark TMDs, gluon TMDs are almost unknown
- Accessible through production of dijets, high-P_T hadron pairs, quarkonia

Gluons

GLUONS	unpolarized	circular	linear
U	(f_1^g)		$h_1^{\perp g}$
L		(g_{1L}^g)	$h_{_{1L}}^{\perp g}$
Т	$f_{1T}^{\perp g}$	$g^g_{_{1T}}$	$h_{1T}^g, h_{1T}^{\perp g}$

- In contrast to quark TMDs, gluon TMDs are almost unknown
- Accessible through production of dijets, high-P_T hadron pairs, quarkonia

Gluons

GLUONS	unpolarized	circular	linear
U	(f_1^g)		$h_1^{\perp g}$
L		(g_{1L}^g)	$h_{_{1L}}^{\perp g}$
Т	$f_{1T}^{\perp g}$	$g^g_{_{1T}}$	$h_{1T}^g, h_{1T}^{\perp g}$

- In contrast to quark TMDs, gluon TMDs are almost unknown
- Accessible through production of dijets, high-P_T hadron pairs, quarkonia

28

Upcoming

Meson structure

Upcoming

Upcoming

Future

X 30

Spin-independent TMD PDFs at EIC

Fit: A. Bacchetta et al., JHEP 06 (2017) 081, JHEP 06 (2019) 051 (erratum)

EIC uncertainties dominated by assumed 3% point-to-point uncorrelated uncertainty 3% scale uncertainty

Theory uncertainties dominated by TMD evolution.

Spin-independent TMD PDFs at EIC

Fit: A. Bacchetta et al., JHEP 06 (2017) 081, JHEP 06 (2019) 051 (erratum)

EIC uncertainties dominated by assumed 3% point-to-point uncorrelated uncertainty 3% scale uncertainty

Theory uncertainties dominated by TMD evolution.

Spin-independent TMD PDF: impact of EIC

DIS variables via scattered lepton

$$Q^2 > 1 \text{ GeV}^2$$
 5 × 42
 $0.01 < y < 0.95$ 10 × 10
 $W^2 > 10 \text{ GeV}^2$ 18 × 27

$$\mathcal{L} = 10$$

Sivers TMD PDF: TMD evolution \mathscr{C} Sivers asymmetry ECCE

Decrease of asymmetry with increasing $Q^2 \rightarrow$ need high precision (<1%) to measure asymmetry at high Q^2

Sivers asymmetry

Beam polarisations assumed to be 70%.

systematic uncertainty= generated - reconstructed

Additionally: 3% scale uncertainty

- Low x and Q²: small statistical uncertainty. High precision is needed since asymmetry at low x and Q² well below 1%.
- For not too large z and P_T , statistical uncertainty well below 1%.
- Systematic uncertainties increase with z and P_T : likely because of higher smearing effects.

34

Q² dependence of the Sivers asymmetry at EIC

Intermediate and high x: good coverage in Q², with complementarity in coverage at different COM energies.

Sivers TMD PDF: impact of EIC

Q=2 GeV

DIS variables via scattered lepton

$$Q^2 > 1 \text{ GeV}^2$$

 $0.01 < y < 0.95$
 $W^2 > 10 \text{ GeV}^2$

$$\begin{array}{l} 5 \times 41 \ \mathrm{GeV}^2 \\ 10 \times 100 \ \mathrm{GeV}^2 \\ 18 \times 100 \ \mathrm{GeV}^2 \\ 18 \times 275 \ \mathrm{GeV}^2 \end{array} \quad \mathcal{L} = 10 \ \mathrm{fb}^{-1} \ \mathrm{for \ each \ collision \ energy} \\ \end{array}$$

Parametrisation from M. Bury et al., JHEP, 05:151, 2021

Summary

 Transverse momentum dependent hadron structure and hadron formation: rich field of physics, with sensitivity to correlations between quark and hadron spin and transverse momentum.

Pioneering fixed-target experiments at HERMES, COMPASS, JLab 6 GeV: quark distributions

- Entering era of precision measurements:
 - JLab 12 GeV: unique precision in the valence region
 - EIC: extending down to x=10⁻⁴
 - LHC measurements can provide additional, invaluable high energy input
 - need to extend measurements with sensitivity to gluons