

Institut für Theoretische Physik

In-Medium Dynamics of ω-Mesons

Horst Lenske

Institut für Theoretische Physik, JLU Gießen

ω -Mesons in Free Space

$$J^{PC}~(I^G) = 1^{--}~(0^-)$$
 .
 $m_\omega = (781.94 \pm 0.12)~{
m MeV}~\Gamma_0 = (8.41 \pm 0.09)~{
m MeV}$

$$\omega \to \pi^0 \pi^+ \pi^- \text{ and } \omega \to \rho \pi$$

ω>	Γ_i/Γ_0 in $\%$	Γ_i in ${ m MeV}$	
$\pi^0\pi^+\pi^-$	88.8 ± 0.7	7.486	
$\pi^0\gamma$	8.5 ± 0.5	0.717	
$\pi^+\pi^-$	2.21 ± 0.3	0.186	G-parity forbidden,
$\eta\gamma$	$(6.5 \pm 1.0) \cdot 10^{-4}$	$5.47 \cdot 10^{-3}$	
$\pi^0 e^+ e^-$	$(5.9 \pm 1.9) \cdot 10^{-4}$	$5.0 \cdot 10^{-3}$	
$\pi^0\mu^+\mu^-$	$(9.6 \pm 2.3) \cdot 10^{-5}$	$8.0 \cdot 10^{-4}$	
$e^+ e^-$	$(7.07 \pm 0.19) \cdot 10^{-5}$	$5.9 \cdot 10^{-4}$	

2

Why exposing Mesons to Nuclear Matter?

c/o Haiyan Gao

Agenda

- Mesons in a Nuclear Environment
- Lagrangian for ωNN and ωNN^* Interactions
- N*N⁻¹ particle-hole Polarization Modes
- ω-Mesons in Infinite Nuclear Matter
- ω-Mesons in a ⁹³Nb Nucleus
- $\omega + {}^{93}$ Nb Bound States
- Outlook

W. Peters, H.L. et al. The spectral function of the rho meson in nuclear matter Nucl. Phys. A 632 (1998) 109

[Mev] 350 300 🛨 this experiment 250 200 150 100 500 1000 1500 2000 2500 p [MeV/c]

- PRL 114 (2015) 199903

4

CBELSA/TAPS Data: Friedrich et al., Eur. Phys. J. A (2016) 52: 297

Polarization Tensors and Self-Energies

ω-Mesons interacting with Nuclear Matter: The Leading Order Processes

The ω -nucleon scattering amplitudes (left) and the corresponding particle{hole type diagrams (right). Nucleons and hole states are denoted by N. The intermediate B = N,N* states (left), which become particle states (right), are indicated by double line

NN⁻¹ and N*N⁻¹ Polarization Tensors and Self-Energies in Infinite Matter (B=N,N*)

$$\Pi_{NB}^{\mu\nu}(w,\mathbf{q}) = \int \frac{d^3k}{(2\pi)^3} \frac{\theta(k_{F_N}^2 - \mathbf{k}^2)\theta((\mathbf{k} + \mathbf{q})^2 - k_{F_B}^2)}{2E_N^*(\mathbf{k})} Tr_s (\Gamma^{\mu}(\mathbf{k}^* + M_N^*)\Gamma^{\nu}G_B(\mathbf{k} + \mathbf{q}|k_F))$$

Interaction Vertices

$$\Gamma^{\mu}_{NB} = \gamma^{\mu}$$
 if B=N,N^{*} is a positive parity state,
 $\Gamma^{\mu}_{NB} = \gamma_5 \gamma^{\mu}$ if B=N^{*} is a negative parity state,

Omega In-Medium Self-Energy Tensor

$$\mathcal{S}^{\mu
u}_{\omega A}(w,\mathbf{q}) = \sum_{N;B} g^2_{\omega NB} \Pi^{\mu
u}_{NB}(w,\mathbf{q}),$$

$$\mathcal{S}^{\mu\nu}(w,\mathbf{q}) = \left(P_L^{\mu\nu} + P_T^{\mu\nu}\right)^2 \mathcal{S}^{\mu\nu}(w,\mathbf{q}) = P_L^{\mu\nu} \Sigma_L(w,\mathbf{q}) + P_T^{\mu\nu} \Sigma_T(w,\mathbf{q})$$

$$\Sigma_{L/T}(w, \mathbf{q}) = P_{L/T}^{\mu\nu} \mathcal{S}_{\mu\nu}(w, \mathbf{q}) = \sum_{N=p,n;B} g_{BN\omega}^2 P_{L/T}^{(NB)}(w, \mathbf{q}).$$
$$P_{L/T}^{(NB)}(w, \mathbf{q}) = P_{L/T}^{\mu\nu} \Pi_{\mu\nu,NB}(w, \mathbf{q}).$$

ω-Meson Interactions on ⁹³Nb

Choice of States and Methods

- NN⁻¹ and N*N⁻¹ with P-wave (positive parity) and S-wave (negative parity) resonances, M_{N*} < 2.5 GeV
- Only isospin I=1/2 resonances are allowed
- g_{N*Nw} coupling constants are determined by fit to data

Particle	Mass/MeV	total Width/MeV	$g_{N^*N\omega}$	M^*/M
ω	782.7	8.68	_	1
$P_{11}(940)$	938.92	—	2.076	0.60
$P_{11}(1440)$	1386	350	0.218	0.72
$P_{11}(1710)$	1670	140	2.163	0.78
$P_{11}(1880)$	1880	230	$< 10^{-3}$	0.80
$P_{11}(2100)$	2100	260	$< 10^{-3}$	0.82
$P_{11}(2300)$	2300	340	1.714	0.84
$P_{13}(1720)$	1720	225	0.022	0.78
$P_{13}(1920)$	1920	215	0.017	0.80
$S_{11}(1535)$	1535	150	$< 10^{-3}$	0.76
$S_{11}(1650)$	1650	125	0.008	0.77
$S_{11}(1895)$	1880	120	0.006	0.80
$S_{13}(1520)$	1520	110	0.003	0.75
$S_{13}(1700)$	1700	200	0.011	0.78
$S_{13}(1875)$	1875	200	1.554	0.70
$S_{13}(2120)$	2120	300	0.008	0.82

In-Medium Dynamics, Self-Energies, and Widths

- N, N* mean-field dynamics \rightarrow static (time-like) vector fields (v) and scalar fields (s), i.e. $M_B \rightarrow M_B^*(\rho)$
- Mean-field couplings $f_{N^*Na} = f_{NNa}$ for a=s,v
- P-wave N* lead to purely transversal self-energies
- S-wave N* lead to longitudinal and transversal self-energies

Exploratory Independent P-wave and S-Wave Studies

Independent P-wave and S-wave Fits to the observed Widths (at central density of 93 Nb: ρ =0.140 fm⁻³)

Friedrich et al., Eur. Phys. J. A (2016) 52: 297

Dominant P-wave and S-wave Components

- P-wave and S-wave polarization self-energies are compatible with the data
- The complete description must include both combined
- Width at threshold is decisive for and selective on the N* states

Combined P-wave and S-wave Description

Results of Combined P- and S-wave Approach

Unconstrained Fit at ρ =0.140 fm⁻³ (χ^2 =1.014)

Self-Energies and Spectral Distributions

Energy Dependence of ω +A Polarization Self-Energies in the Center of ⁹³Nb (ρ =0.14 fm⁻³)

ω In-Medium Spectral Distributions

- At q = 0.05 GeV/c and central density (upper left) the distributions are moved to energies ω < m_w
- At q = 1 GeV/c (upper right), A_L is centered close to A_{free}, A_T is shifted to $\omega > m_w$ with $\Gamma_T >> \Gamma_L$.
- At low densities (lower row), these differences prevail on a less pronounced level.

ω+⁹³Nb Bound States?

ω+⁹³Nb Self-Energy at Threshold and Low-Energy Parameters

 ω +⁹³Nb g.s. self-energies at threshold

⁹³Nb RMF proton and neutron g.s densities

Low-energy Constants: $a_s = 5.6542 - i0.9041 \text{ fm}$ and $r_s = 3.7372 - i0.5183 \text{ fm}$

 $\rightarrow \varepsilon_{\rm B}$ = -0.488 MeV ; $\Gamma_{\rm B}$ = 13.125 MeV

ω +⁹³Nb Bound States by Solution of the Wave Equation

Meson Cloud vs. Polarization Self-Energies

from Friedrich et al., Eur. Phys. J. A (2016) 52: 297

Overlap of N*N⁻¹ and Meson Cloud Self-Energies

Illustrating the relation of in-medium meson loops to baryon particle-hole loops for the $\omega \rightarrow \pi + \rho$ decay for the case where the rho-meson couples to an (isovector) excitation of the nuclear background medium.

...and what is missing?

...e.g. mean-field dynamics!

Summary

- ω-mesons in nuclear matter and a finite nucleus
- NN⁻¹ and N*N⁻¹ polarization self-energies
- Spectral distributions in nuclear matter
- ω self-energies in ⁹³Nb
- ω- ⁹³Nb bound states
- Meson cloud and medium polarization

Motivation, inspiration, and enlightening discussions with Mariana Nanova and Volker Metag are gratefully acknowledged!

> Interactions of ω Mesons in Nuclear Matter and with Nuclei Eur. Phys. J A (in print)

Supported by DFG grant Le 439/16