Quasicrystal in QCD

Zebin Qiu (Keio University) JHEP 05, 170 (2023) arXiv 2304.05089

Low Energy Regime of QCD

Spontaneous Chiral Symmetry Breaking

 $U(1)_V \times SU(N_f)_L \times SU(N_f)_R \rightarrow U(1)_V \times SU(N_f)_V$ Nambu Goldstone (NG) boson

$$\Sigma = \exp\left(iT^a \pi^a\left(x\right)/f_\pi\right) \in SU\left(N_f\right)$$

Chiral Lagrangian (Kinetic & Mass Terms):

$$\mathcal{L}_{\text{chiral}} = \frac{f_{\pi}^2}{4} \text{Tr} \left(\partial^{\mu} \Sigma \partial_{\mu} \Sigma \right) - \frac{b}{2} \text{Tr} \left[M \left(\Sigma - 1 \right) + \text{h.c.} \right]$$
$$N_f = 2 \text{ case with approximately } m_u \approx m_d$$
$$M = \begin{pmatrix} m_u & 0 \\ 0 & m_d \end{pmatrix} \quad m_u \approx m_d \equiv m$$

Topology with Magnetic Field

Pions \xrightarrow{B} Chiral Soliton Lattice (CSL) / π^0 domain wall (DW) Idea by T. Brauner LLL: n = 0, Pion: Spin s = 0and N. Yamamoto, JHEP 04, 132 $\varepsilon^{2} = p_{z}^{2} + 2 \left| eB \right| \left(n + 1/2 \right) + m^{2} - 2 seB$ (2017). $\pi^{1,2} \xrightarrow{B\uparrow}$ "massive", $\Sigma \to \exp(i\tau^3\pi^3)$ Transverse homogeneity $\partial_{x,v} = 0$ minimizes the Hamiltonian $\frac{f_{\pi}^{2}}{2} \left(\nabla \pi^{0} \right)^{2} + m_{\pi}^{2} f_{\pi}^{2} \left(1 - \cos \pi^{0} \right) - \frac{\mu_{\omega} B}{4\pi^{2}} \partial_{z} \pi^{0}$ $\frac{\partial_{z}}{\partial_{z}} \qquad \text{Sine Gordon Solution} \qquad \text{Winding } \pi_{1} \left(U \left(1 \right) \right) = \mathbb{Z}$

Result from Triangle Anomaly

Coupling of two U(1) via triangle anomaly to NG boson ϕ_i

 $\mathcal{L}_{B} = \frac{1}{8\pi^{2}} \epsilon^{\mu\nu\alpha\beta} \sum_{i} C_{i} \partial_{\mu} \phi_{i} A^{B}_{\nu} F_{\alpha\beta} \qquad D. T. Son, M. A. Stephanov, and A. R. Zhitnitsky, Phys. Rev. Lett. 86, 3955 (2001);$

Setup of chemical potential μ and magnetic field $B = B\hat{z}$

$$U(1)_B : A^B_{\nu} = (\mu, \mathbf{0}) . \quad U(1)_{\text{EM}} : A_{\mu} = (0, yB/2, -xB/2, 0)$$

 ϕ_i be not only pions but also η mesons (also form DW)

 $\phi_{3} \equiv \frac{\pi_{3}}{f_{\pi}}: \quad \mathcal{L}_{WZW} = -\frac{\mu B}{4\pi^{2}} \partial_{z} \phi_{3} \Rightarrow \text{CSL} \quad \begin{array}{l} D. \text{ T. Son and A. R. Zhitnitsky}, \\ Phys. Rev. D 70, 074018 (2004). \end{array}$ $Our motivation: \\ \phi_{0} \equiv \frac{\eta}{f_{\eta}}: \quad \mathcal{L}_{\eta} = -\frac{\mu B}{12\pi^{2}} \partial_{z} \phi_{0} \Rightarrow \eta\text{-CSL}? \quad \begin{array}{l} \text{mixture of the two,} \\ \text{new ground state}? \end{array}$

ChPT of U(2) and Reduction

 $\pi^{\pm} \text{ decoupled, } \eta \text{ with } \pi^{0} \text{ remained: } U = \exp \phi_{0} \exp (i\tau_{3}\phi_{3})$ $Newly \text{ included } \eta$ $H = \frac{1}{2} \begin{bmatrix} \alpha (\partial_{z}\phi_{3})^{2} + (\partial_{z}\phi_{0})^{2} \end{bmatrix} - \frac{\gamma}{2\pi} \begin{pmatrix} \partial_{z}\phi_{3} + \frac{1}{3}\partial_{z}\phi_{0} \end{pmatrix}$ $+ \sin \beta (1 - \cos 2\phi_{0}) + \cos \beta (1 - \cos \phi_{0} \cos \phi_{3}) \text{ Mass}$

Redefine parameters to have dimensionless quantities $\alpha \equiv \frac{f_{\pi}^2}{f_{\eta}^2}, \quad \beta \equiv \arctan \frac{a}{2mb}, \quad \gamma \equiv \frac{\mu B}{2\pi} \frac{\left[a^2 + (4mb)^2\right]^{1/4}}{f_{\eta}}$

Boundary conditions for periodic lattices with both mesons

$$(\phi_3, \phi_0) \bigg|_{z=0} = (0, 0), \quad (\phi_3, \phi_0) \bigg|_{z=d} = (p\pi, q\pi), \quad \frac{p \pm q}{2} \in \mathbb{Z}$$

Mixed Soliton Lattice

Irrelevant $\gamma_{\eta} \gg \gamma_{\pi,m}$. Duel is between γ_{π} and γ_{m} .

 γ_m can be lowest! for $\alpha > \alpha_c(\beta)$

Ground State Alternation

Up to p+q=4, under $\alpha = 0.7$ and $\beta = \pi/16$: competitive configurations are (1,1), (2,0), and (3,1)with critical $\gamma_m = 6.5$, $\gamma_\pi = 6.7$ and $\gamma_{31} = 7.3$. 0.8 Ground State 0.6 (3,1) $= \begin{cases} (1,1) & \gamma \in [6.4, \ 7.2) & \stackrel{\mathfrak{R}}{\models} \ 0.4 \\ (2,0) & \gamma \in [7.2, \ 13.0) \\ (3,1) & \gamma \in (13.0, \ \ldots) \end{cases} \quad 0.2 \end{cases}$ (2,0) $\bar{m} \equiv$ (1,1) $M \equiv -\frac{\delta}{\delta B} \int dz H = \frac{\tilde{\mu}}{2} \left(p + \frac{q}{3} \right)$ Magnetic moment density 0.0 8 10 12 14 16 18 20quantifies the alternation γ as a piece-wise function of μB 7

Strong Magnetic Field Limit

Conclusion: in $\gamma \rightarrow \infty$ limit, the ground state satisfies

$$r \equiv \frac{p}{q} = \frac{3}{\alpha}$$

Profiles: $\gamma \uparrow$, $d \downarrow$, $\phi_{3(0)} \rightarrow p(q)\pi z/d$; (almost linear)

The near linearity means mass (β) terms are negligible.

Semi-analytical Derivation

Kinetic and WZW terms remain:

$$H\left(\gamma \to \infty\right) \simeq \frac{1}{2} \left(\alpha \phi_3^{\prime 2} + \phi_0^{\prime 2}\right) - \frac{\gamma}{2\pi} \left(\phi_3^{\prime} + \frac{1}{3}\phi_0^{\prime}\right) \equiv H_{\infty}.$$

Simple trick of total square finds us the minimum:

$$H_{\infty} = \frac{1}{2} \left[\left(\sqrt{\alpha} \phi_3' - \frac{\gamma}{2\sqrt{\alpha}\pi} \right)^2 + \left(\phi_0' - \frac{\gamma}{6\pi} \right)^2 \right] - \frac{\gamma^2}{8\pi^2} \left(\frac{1}{\alpha} + \frac{1}{9} \right)$$
$$\geq -\frac{\gamma^2}{8\pi^2} \left(\frac{1}{\alpha} + \frac{1}{9} \right) \equiv E_{\min}.$$

Lattice period d_L and ratio p/q minimizing the energy

$$d_L = \frac{2\pi^2}{\gamma} \cdot p\alpha = \frac{2\pi^2}{\gamma} \cdot 3q \quad \Rightarrow \quad \frac{p}{q} = \frac{3}{\alpha},$$

Quasicrystal for irrational α

Grey dots: mixed soliton lattice of different *p*, *q*.

Blue solid line (exemplary):² $p/q=3f_{\eta}^{2}/f_{\pi}^{2}$ (irrational)

Orange dots: adjacent (p,q) to the blue line.

Beige band: candidate ground states with no defined period.

Conclusion

- Depending on decay constants and effective masses, the mixed soliton lattice of η and π^0 could have lower energy / critical magnetic field than separate ones.
- The ground state is alternating among mixed soliton lattices with different *p* and *q* when changing *γ*.
- In strong magnetic field / density limit, the ground state ratio p/q approaches $3f_{\eta}^2/f_{\pi}^2$ which is generally irrational and unreachable. The result is a mesonic quasicrystal (perhaps the first in QCD context).