

Microscopic description of β-decay rates of r-process nuclei

Diana Alvear Terrero1,2,3

In collaboration with Gabriel Martínez-Pinedo1,2,3 Caroline E. P. Robin4,3 Ante Ravlić⁵ Thomas Neff³

¹Helmholtz Forschungsakademie Hessen für FAIR. ²Technische Universität Darmstadt. ³GSI Helmholtzzentrum für Schwerionenforschung. ⁴Fakultät für Physik, Universität Bielefeld. ⁵Facility for Rare Isotope Beams, Michigan State University.

45th International School of Nuclear Physics. September 20, 2024

GSII

The r-process.

- Path not fully accessible to experiments \rightarrow theoretical predictions
- Inputs: β -decay half-lives, neutron-capture rates, fission rates, ...

Determine the nuclear timescale for the r-process: competition with expansion timescale.

g.s.

rs s T

β -decay rates of r-process nuclei.

g.s.
\n
$$
(Z, N) \xrightarrow{\beta^-} (Z + 1, N - 1) + e^- + \bar{\nu}_e
$$
\n
$$
L, J, S:
$$
\n
$$
L = 0: \text{ allowed (GT: } \Delta S = 1)
$$
\n
$$
J_i^{\pi_i} \qquad L > 0: \text{ forbidden (FF: } L = 1, \pi_i \neq \pi_f)
$$

Allowed decays (GT):

$$
\lambda = \frac{\ln 2}{T_{1/2}} \propto \int^{\mathcal{Q}_{\beta}} f(Z, \mathcal{Q}_{\beta} - E) S(E) dE
$$

$$
S(E) = \sum_{f} |\langle f|\hat{F}|i\rangle|^2 \delta(E - E_f + E_i)
$$

Correlations relevant to the low-lying strength.

rs s T

Global β-decay calculations within QRPA.

- **FRDM** + gross theory for $FF¹$
- relativistic microscopic self-consistent spherical approach with **D3C*** functional² shorter half-lives for *N* > 126 ⇒ shift of the third abundance peak (*A* ∼ 195)
- non-relativistic microscopic self-consistent deformed approach with SKO' functional (**Ney 2020**) 3

¹P. Möller et al., Phys. Rev. C **67**[, 055802 \(2003\),](https://doi.org/10.1103/PhysRevC.67.055802) P. Möller et al., [Atomic Data and Nuclear Data Tables](https://doi.org/https://doi.org/10.1016/j.adt.2018.03.003) **125**, 1–192 (2019). ²T. Marketin et al., Phys. Rev. C **93**[, 025805 \(2016\),](https://doi.org/10.1103/PhysRevC.93.025805) M. Eichler et al., [The Astrophysical Journal](https://doi.org/10.1088/0004-637X/808/1/30) **808**, 30 (2015). 3 E. M. Ney et al., Phys. Rev. C **102**[, 034326 \(2020\).](https://doi.org/10.1103/PhysRevC.102.034326)

45th International School of Nuclear Physics. September 20, 2024 D. Alvear Terrero 4

Global β-decay calculations within QRPA.

Very different predictions of the FF contribution to the rates

E. M. Ney et al., Phys. Rev. C **102**[, 034326 \(2020\).](https://doi.org/10.1103/PhysRevC.102.034326)

P. Möller et al., Phys. Rev. C **67**[, 055802 \(2003\),](https://doi.org/10.1103/PhysRevC.67.055802) P. Möller et al., [Atomic Data and Nuclear Data Tables](https://doi.org/https://doi.org/10.1016/j.adt.2018.03.003) **125**, 1–192 (2019). T. Marketin et al., Phys. Rev. C **93**[, 025805 \(2016\).](https://doi.org/10.1103/PhysRevC.93.025805)

rs s T

Global β-decay calculations within QRPA.

FF contribution to the rates

 \rightarrow After some recent corrections to the code for the RMF approach with **D3C*** functional⁷

 7 C. E. P. Robin and G. Martínez-Pinedo, [arXiv:2403.17115 \(2024\).](https://doi.org/10.48550/arXiv.2403.17115)

rs s T

Global β-decay calculations within QRPA.

Sensitivity to isoscalar pairing strength (V_0) and comparison with experiment⁸

For constant V_0 , the effect along one chain depends on the single particle states being filled.

Within ORPA scheme, the inclusion of V_0 is needed.

⁸G. Lorusso et al., [Phys. Rev. Lett.](https://doi.org/10.1103/PhysRevLett.114.192501) **114**, 192501 (2015).

Global β-decay calculations within QRPA.

Large V_0 **values can produce problems in the QRPA when moving to the heavy and** superheavy region \rightarrow Need a better prescription for V_0 .

- No adjustable proton-neutron pairing needed. So far limited to spherical systems.
	-

⁹C. Robin and E. Litvinova, Phys. Rev. C **98**[, 051301 \(2018\),](https://doi.org/10.1103/PhysRevC.98.051301) C. Robin and E. Litvinova, [European Physical Journal A](https://doi.org/10.1140/epja/i2016-16205-0) **52**, 205, 205 (2016). 45th International School of Nuclear Physics. September 20, 2024 D. Alvear Terrero 9, 2024 D. Alvear Terrero

GSII

Extensions: particle-vibration coupling.¹⁰

¹⁰C. E. P. Robin and G. Martínez-Pinedo, [arXiv:2403.17115 \(2024\).](https://doi.org/10.48550/arXiv.2403.17115)

I E I

Extensions: particle-vibration coupling & deformation.

Efficiency of FAM-QRPA allows to account for deformation Procedure: ¹¹,¹²

- Extract $qPVC$ vertices from like-particle FAM-ORPA¹³
- Add the vertices to the deformed β -decay calculation (in collaboration with A. Ravlić)¹⁴

¹¹E. Litvinova and Y. Zhang, Phys. Rev. C **104**[, 044303 \(2021\),](https://doi.org/10.1103/PhysRevC.104.044303) Y. Zhang et al., Phys. Rev. C **105**[, 044326 \(2022\).](https://doi.org/10.1103/PhysRevC.105.044326) ¹²Q. Liu et al., Phys. Rev. C **109**[, 044308 \(2024\).](https://doi.org/10.1103/PhysRevC.109.044308)

¹³A. Bjelčić and T. Nikšić, [Computer Physics Communications](https://doi.org/10.1016/j.cpc.2023.108689) **287**, 108689 (2023).

¹⁴A. Ravli ć et al., Phys. Rev. C **110**[, 024323 \(2024\).](https://doi.org/10.1103/PhysRevC.110.024323)

45th International School of Nuclear Physics. September 20, 2024 D. Alvear Terrero 11

D. ALVEAR TERRERO

Extensions: particle-vibration coupling & deformation.

Procedure: ¹¹,¹²

Extract qPVC vertices from like-particle FAM-QRPA¹³

For all multipole excitations:

- Solve FAM equations with initial Δ
- Identify ω_n peaks

$$
\delta H(\omega) = \begin{pmatrix} \delta H^{(11)}(\omega) & \delta H^{(20)}(\omega) \\ -\delta H^{(02)}(\omega) & -\delta H^{(11)T}(\omega) \end{pmatrix}
$$

$$
\Gamma_{\mu\nu}^{(ij)n} = \lim_{\Delta \to 0} \sqrt{\frac{\Delta}{\pi S(\omega_n)}} \delta H_{\mu\nu}^{(ij)}(\omega_n + i\Delta)
$$

¹¹E. Litvinova and Y. Zhang, Phys. Rev. C **104**[, 044303 \(2021\),](https://doi.org/10.1103/PhysRevC.104.044303) Y. Zhang et al., Phys. Rev. C **105**[, 044326 \(2022\).](https://doi.org/10.1103/PhysRevC.105.044326) ¹²Q. Liu et al., Phys. Rev. C **109**[, 044308 \(2024\).](https://doi.org/10.1103/PhysRevC.109.044308)

¹³A. Bjelčić and T. Nikšić, [Computer Physics Communications](https://doi.org/10.1016/j.cpc.2023.108689) **287**, 108689 (2023).

Extensions: particle-vibration coupling & deformation.

Effects of PVC on the Gamow-Teller strength with the Skyrme pnFAM¹⁴

- **Phonons calculated with:**
	- $L < 6$
	- 40 excitation frequencies from 0 MeV to 20 MeV
	- $\Delta = 0.5$ MeV

rs s T

IF 57 11

Summary and outlook.

- Towards improvement of global β -decay rates calculations within relativistic description taking into account the particle-vibration coupling and deformation of the nuclei.
- At QRPA level:
	- Corrections and update of previous relativistic QRPA β-decay rates calculation *(in progress)*.
	- Need a prescription for the $T = 0$ pairing strength that does not introduce artefacts.
- Beyond QRPA:
	- Inclusion of the phonons reduces the half-lives, bringing them closer to the experiment without the need for proton-neutron pairing.
	- Calculation of the deformed like-particle phonon matrices *(in progress)*.
	- Implementation in the deformed code pending (in collaboration with A. Ravlić)

Thank you for your attention!