International School of Nuclear Physics 45th Course, September 16th-22nd, 2024

Impact of neutrino oscillations on ν -process **in the core-collapse supernovae** and *v*r-process

Heamin Ko (Technical University of Darmstadt)

In collaboration with M.-K. Cheoun, D. Jang, M. Kusakabe, T. Hayakawa, H. Sasaki, T. Kajino, M. Ono, S. Chiba, T. Kawano, and G. J. Mathews G. Martínez-Pinedo and Z. Xiong

TECHNISCHE UNIVERSITÄT DARMSTADT

The *ν***-process**

• Core-collapse supernova

The *ν***-process**

International School of Nuclear Physics 45th Course, September 16th-22nd, 2024

 92 Nb ($τ_{1/2}$ ~ 34.7 Myr); *T. Hayakawa, et al. ApJL (2013)*

¹³⁸La ($τ_{1/2}$ ~ 102 Gyr); *S. E. Woosley et al. APJ (1990) A. Heger et al. PLB (2005)*

Neutrino eigenstates

$$
\begin{pmatrix} \nu_e \\ \nu_\mu \\ \nu_\tau \end{pmatrix} = \begin{pmatrix} U_{e1} & U_{e2} & U_{e3} \\ U_{\mu 1} & U_{\mu 2} & U_{\mu 3} \\ U_{\tau 1} & U_{\tau 2} & U_{\tau 3} \end{pmatrix} \begin{pmatrix} \nu_1 \\ \nu_2 \\ \nu_3 \end{pmatrix}
$$

where *U* is the PMNS (Pontecorvo-Maki-Nakagawa-Sakata) mixing matrix

$$
|\nu_{\alpha}\rangle = \sum_{k} U_{\alpha k} |\nu_{k}\rangle
$$

$$
U = \begin{pmatrix} 1 & 0 & 0 \\ 0 & \cos \theta_{23} & \sin \theta_{23} \\ 0 & -\sin \theta_{23} & \cos \theta_{23} \end{pmatrix} \begin{pmatrix} \cos \theta_{13} & 0 & \sin \theta_{13} \\ 0 & 1 & 0 \\ -\sin \theta_{13} & 0 & \cos \theta_{13} \end{pmatrix} \begin{pmatrix} \cos \theta_{12} & \sin \theta_{13} \\ -\sin \theta_{12} & \cos \theta_{13} \end{pmatrix}
$$

• Neutrino flavor basis

Flavor eigenstate Mass eigenstate

• Mass Ordering (Hierarchy)

Neutrino oscillation in vacuum

$$
i\frac{d}{dt}\psi_{\nu_{\alpha}\to\nu_{\beta}} = H_{\text{Vacuum}}\psi_{\nu_{\alpha}\to\nu_{\beta}}
$$

$$
E_i = \sqrt{p_{\nu}^2 + m_i^2} \approx E_{\nu} + \frac{m_i^2}{2E_{\nu}}
$$

Uitrarelativistic

Neutrino equation of motion $\nu_{\alpha} \rightarrow \nu_{\beta}$ in flavor basis

International School of Nuclear Physics 45th Course, September 16th-22nd, 2024

• Neutrino hamiltonian in vacuum

$$
H_{\text{vacuum}} = U \text{diag}\left(0, \frac{\Delta m_{21}^2}{2E_{\nu}}, \frac{|\Delta m_{31}^2|}{2E_{\nu}}\right) U^{\dagger}
$$

Flavor change probability $\nu_{\alpha} \rightarrow \nu_{\beta}$

$$
P_{\beta\alpha}(r) = |\psi_{\nu_{\alpha} \to \nu_{\beta}}(r)|^2
$$

Neutrino oscillation in star

-
- Neutrino-neutrino (neutral current interaction)
- Neutrino-nucleus (charged and neutral current interaction)

$$
H_{\text{vacumm}} + V_{e\nu_e} + V_{\nu\nu}
$$

• Neutrino-electron (charged current interaction); $V_{e\nu_e}(r) = \sqrt{2} G_F n_e(r) \text{ diag}(1,0,0)$

Neutrino oscillation in star

Flavor change probability - Vacuum + *νee* **+** *νν*

• Single-angle approximation $((1 - \hat{p} \cdot \hat{q}) \approx (1 - \cos \theta_p \cos \theta_q) \approx 1 - \cos \theta_q)$ ̂

Neutrino energy distribution (Fermi-Dirac)

f(*E*, *T*) = 1 *F*2(0)*T*³ *ν* ∑ *β E*2 *ν* exp(*E^ν* /*Tνβ*) + 1 *Pνβ*→*να* (*Eν*,*r*) 0 5 10 15 20 25 30 35 40 45 50 νe Energy [MeV] x= 10 km x= 1000 km dashed: dotted: solid: final *Tνe* = 3.2 MeV *Tνx* = 6 MeV *νe* (*r* = 1000 km)

Probability

$$
\cos \theta_p \cos \theta_q \approx 1 - \cos \theta_q
$$

The role of neutrino oscillations on the *ν***-process**

• Neutrino reaction rates

International School of Nuclear Physics 45th Course, September 16th-22nd, 2024

$$
\lambda_{\nu_e}(r) = n_{\nu_e} \langle \sigma_{\nu_e A} c \rangle = \int_0^\infty \frac{d\phi_{\nu_e}}{dE_\nu} \sigma_{\nu_e A}(E_\nu) dE_\nu
$$

$$
\frac{d}{dE_{\nu}}\phi_{\nu_e}(t, r; E_{\nu}, T_{\nu_e}) \propto \sum_{\beta=e,\mu,\tau} P_{\nu_{\beta} \to \nu_e}(r, E_{\nu}) f_{FD}^{\beta}(E_{\nu}, T_{\nu_{\beta}})
$$
\nby ν -oscillation

Neutrino-induced reactions rate *λν^e*

Neutrino differential flux

Result - Abundance at 50 s

•
$$
^{138}\text{Ba} + \nu_e \rightarrow ^{138}\text{La} + e^-
$$

\n• $^{98}\text{Mo} + \nu_e \rightarrow ^{98}\text{Tc} + e^-$
\n• $^{92}\text{Zr} + \nu_e \rightarrow ^{92}\text{Nb} + e^-$
\n $m_{\nu_2} > m_{\nu_1} > m_{\nu_2}$
\n $m_{\nu_2} > m_{\nu_1} > m_{\nu_3}$

International School of Nuclear Physics 45th Course, September 16th-22nd, 2024

Initial progenitor mass : ~ 20 *M*[⊙] Metallicity: $Z = Z_{\odot}/4$ in Large Magellanic cloud Explosive nucleosynthesis for He-core 6*M*[⊙]

• SN1987A

Another environment to produce 92Nb and also p-nuclei

• Several processes contribute to the nucleosynthesis beyond Iron: s-process, r-process and p-process (γ-process)

- Origin p-nuclei unclear
-

*νr***-process: another environment to produce 92Nb and also p-nuclei**

- Novel nucleosynthesis process that operates under strong neutrino fluxes
- •Sequence of neutron captures and charged-current neutrino-nucleus reactions
- Co-production of p-nuclei from A=88-138
- May require high magnetic fields as found in magnetars (see arXiv:2402.06003)
- •Experimental constraints to neutrinonucleus cross sections are necessary

• p-nuclei from neutron-rich outflows

12/15

*νr***-process: another environment to produce 92Nb and also p-nuclei**

• The role of neutrino in nucleosynthesis Neutrino changes the thermal energy by heating and cooling

i

International School of Nuclear Physics 45th Course, September 16th-22nd, 2024

13/15

$$
\langle \dot{\varepsilon}_{\nu A} \rangle_{\text{total}} = \sum_{i} \langle \dot{\varepsilon}_{\nu A_i} \rangle Y_i
$$

= $n_{\nu} c \sum_{i} Y_i \frac{\int_0^{\infty} f_{FD}(E_{\nu}, T_{\nu}) \sigma_{\nu A_i}(E_{\nu}) E_{\nu} dE_{\nu}}{\int_0^{\infty} f_{FD}(E_{\nu}, T_{\nu}) dE_{\nu}}$

Parameters

- n_{ν} : neutrino number density
- **•** T_{ν} : neutrino temperature
- **•** $\sigma_{\nu A}$: A. Severing et al. APJ. 865, 143 (2018). ν_e and $\bar{\nu}_e \rightarrow$ Charged current $\nu_{e,\mu,\tau}$ and $\bar{\nu}_{e,\mu,\tau} \rightarrow$ Neutral current

By the neutrino-nucleus interaction

*νr***-process: another environment to produce 92Nb and also p-nuclei**

• The p-nuclei production

- •Temperature changes caused by neutrino heating are less effective.
- •The heavy neutrinos interact with nucleus through the NC reactions and change the abundance.
- •The dependence of neutrino parameters (n_{ν_x},T_{ν_x}) needs to be studied.

Summary

- $(92Nb, 98Tc, and 138La).$
- Neutrinos interact with electron and neutrinos in the star. As a result, the each neutrino energy distribution are change.
- The neutrino oscillation calculation has a dependency on neutrino mass hierarchy.
- The elements presented are produced by <u>*ν*−process and sensitive to the ν_e flux</u> due to the charged current reaction.
- *vr*-process can produce not only the ⁹²Nb, but also the p-nuclei.
- The *v*-nucleus interactions can also increase the temperature, but the effect of changing the abundances is small.
- Further sensitivity studies on heavy neutrinos are needed.

• The neutrino during the supernova explosion plays a key role to produce the elements

Thank You

International School of Nuclear Physics 45th Course, September 16th-22nd, 2024

15/15

BACK UP

Initial progenitor mass : \sim 20 M_\odot Metallicity: $Z = Z_{\odot}/4$ in Large Magellanic cloud Explosive nucleosynthesis for He-core 6*M*[⊙]

™rwork calculation • Network calculation

- 4 He and 12 C : *T. Yoshida et al. APJ 686, 448 (2008)*
- \bullet 13 C to 80 Kr: *D. H. Hartmann and S. E. Woosley et al.* (1995)
- *•* : *Cheoun et al. PRC 82, ⁰³⁵⁵⁰⁴ (2010), PRC 85, ⁰⁶⁵⁸⁰⁷ (2012)* Nb, Tc, La and Ta

• SN1987A

Nuclides: 3080 # of thermonuclear reactions: 38198 JINA database # of neutrino-induced reactions: about 4300 *Cyburt et al. ApJS, 189, 240 (2010)* Neutrino-nucleus cross sections (Theoretical calculation)

Initial progenitor mass : \sim 20 M_\odot Metallicity: $Z = Z_{\odot}/4$ in Large Magellanic cloud Explosive nucleosynthesis for He-core 6*M*[⊙]

• SN1987A

Nuclides: 3080 # of thermonuclear reactions: 38198 JINA database # of neutrino-induced reactions: about 4300

• Network calculation

$$
{}^{92}\text{Nb} \ (\tau_{1/2} \sim 34.7 \text{ Myr})
$$
\n
$$
{}^{98}\text{Tc} \ (\tau_{1/2} \sim 4.2 \text{ Myr})
$$
\n
$$
{}^{138}\text{La} \ (\tau_{1/2} \sim 1.02 \times 10^{11} \text{yr})
$$
\n
$$
{}^{180}\text{Ta}^m \ (\tau_{1/2} \sim 7.15 \times 10^{15} \text{ yr})
$$