Introduction	Big Bang Nucleosynthesis	Variation of $lpha$ 000	Variation of <i>v</i>	Conclusion	Outlook
00	OO		000	O	00

Anthropic Considerations for Big Bang Nucleosynthesis International School of Nuclear Physics – Erice 2024

Helen Meyer

with Ulf-G. Meißner and Bernard Metsch

20.09.2024

Helmholtz-Institut für Strahlen- und Kernphysik

Helen Meyer with Ulf-G. Meißner and Bernard Metsch Anthropic Considerations for Big Bang Nucleosynthesis

Introduction ●O	Big Bang Nucleosynthesis OO	Variation of $lpha$ 000	Variation of <i>v</i> 000	Conclusion O	Outlook 00
Motivation					
FundWe	damental constants: sho know them to precision	ow up in every di s given units of p	iscipline of scient parts per 10 ⁹¹	ce	

permeability of free space	μ_0	$4\pi \times 10^{-7} \text{ N A}^{-2} = 12.566 \ 370 \ 614 \dots \times 10^{-7} \text{ N A}^{-2}$	exact
fine-structure constant	$\alpha = e^2 / 4\pi\epsilon_0 \hbar c$	$7.297\ 352\ 5664(17) \times 10^{-3} = 1/137.035\ 999\ 139(31)^\dagger$	0.23, 0.23
classical electron radius	$r_e = e^2 / 4\pi \epsilon_0 m_e c^2$	$2.817\ 940\ 3227(19) \times 10^{-15} \text{ m}$	0.68
$(e^-$ Compton wavelength)/ 2π	$\chi_e = \hbar/m_e c = r_e \alpha^{-1}$	$3.861\ 592\ 6764(18) \times 10^{-13}\ \mathrm{m}$	0.45
Stefan-Boltzmann constant	$\sigma = \pi^2 k^4 / 60\hbar^3 c^2$	$5.670\ 367(13) \times 10^{-8} \text{ W m}^{-2} \text{ K}^{-4}$	2300
Fermi coupling constant ^{**}	$G_F/(\hbar c)^3$	$1.166~378~7(6) \times 10^{-5} { m GeV}^{-2}$	510
weak-mixing angle W^{\pm} boson mass	$\sin^2 \hat{\theta}(M_Z) \ (\overline{\text{MS}})$	$\begin{array}{c} 0.231 \ 22(4)^{\dagger\dagger} \\ 80 \ 379(12) \ \text{GeV}/c^2 \end{array}$	1.7×10^{5} 1.5×10^{5}

Some theories predict changes in these constants over cosmological time scales

How fine-tuned is our universe?²

• How can we test this? \Rightarrow Laboratory: Big Bang Nucleosynthesis (BBN)³

¹ PDG: Workman et al., 2022, ² Dirac, 1973 and many others, ³ Olive, Steigman, and Walker, 2000; locco et al., 2009; Cyburt et al.,

2016; Pitrou et al., 2018a

Introduction	Big Bang Nucleosynthesis	Variation of $lpha$ 000	Variation of <i>v</i>	Conclusion	Outlook
○●	OO		000	O	00

This talk

In this work: studied BBN under variation of

- the electromagnetic coupling constant α^1
 - also using results from Halo EFT calculations²
- the Higgs vacuum expectation value (VEV) v³

Goal: find a bound on these variations through comparing calculations with experimental values for light element abundances

: Source: ChatGPT

Meißner, Metsch, HM 2023; Bergström, Iguri, Rubenstein, 1999; Nollett, Lopez, 2002; Dent, Stern, Wetterich, 2007; Coc et al., 2007;
 Meißner, Metsch, HM 2024; Hammer, Ji, Phillips, 2017; ³ Meißner, HM 2024; Burns et al., 2024

Introduction	Big Bang Nucleosynthesis	Variation of $lpha$ 000	Variation of <i>v</i>	Conclusion	Outlook
00	●O		000	O	00

Introducing BBN – Evolution of Abundances

- abundance $Y_i = n_i / n_b$, with n_i density of nucleus *i* and n_b total baryon density
- Need to solve system of rate equations

$$\dot{Y}_i \supset -Y_i \Gamma_{i \to \dots} + Y_j \Gamma_{j \to i + \dots} \\ + Y_k Y_l \Gamma_{kl \to ij} - Y_i Y_j \Gamma_{ij \to kl}$$

Used five different codes¹ to get an estimate of systematical errors

1 PRIMAT: Pitrou et al., 2018b, AlterBBN: Arbey et al., 2020, PArthENoPE: Gariazzo et al., 2022, NUC123: Kawano, 1992 and PRyMordial: Burns, Tait, and Valli, 2023

Introduction	Big Bang Nucleosynthesis	Variation of $lpha$ 000	Variation of <i>v</i>	Conclusion	Outlook
00	O●		000	O	00

Introducing BBN – The Timescales

$\bullet \quad t \leq 1 \, \mathrm{s}$

Weak $n \leftrightarrow p$ reactions ^{IV} number density ratio $\frac{n_n}{n_p} = e^{-Q_n/T}$, Q_n : mass difference ^{IV} at 1 s or $T \approx 1$ MeV: freeze-out and free neutron decay

: produced by PRIMAT

Introduction	Big Bang Nucleosynthesis	Variation of $lpha$ 000	Variation of <i>v</i>	Conclusion	Outlook
00	O●		000	O	00

Introducing BBN – The Timescales

 $\bullet \quad t \leq 1 \, \mathsf{s}$

Weak $n \leftrightarrow p$ reactions number density ratio $\frac{n_n}{n_p} = e^{-Q_n/T}$, Q_n : mass difference at 1 s or $T \approx 1$ MeV: freeze-out and free neutron decay

 $t = 1 \min$

Deuterium bottleneck: $n + p \rightarrow d + \gamma$ efficient

Helen Meyer

Introduction	Big Bang Nucleosynthesis	Variation of $lpha$ 000	Variation of <i>v</i>	Conclusion	Outlook
00	O●		000	O	00

Introducing BBN – The Timescales

: produced by PRIMAT

$\bullet \quad t \leq 1 \, \mathsf{s}$

Weak $n \leftrightarrow p$ reactions number density ratio $\frac{n_n}{n_p} = e^{-Q_n/T}$, Q_n : mass difference at 1 s or $T \approx 1$ MeV: freeze-out and free neutron decay

$t = 1 \min$

Deuterium bottleneck: $n + p \rightarrow d + \gamma$ efficient

 $| t \lesssim 3 \min$

Fusion of light elements (up to ^{7}Be)

Introduction 00	Big Bang Nucleosynthesis OO	Variation of α	Variation of <i>v</i> 000	Conclusion O	Outlook 00

Variation of α – What to consider


```
Radiative capture
```


- $n \leftrightarrow p$ and β -decay rates: final (initial) state interactions between charged particles
- Indirect effects: binding energies² and Q_n (QED contribution)³

$$\Delta Q_n = Q_n^{ ext{QED}} \cdot \delta lpha = -0.58(16) \, ext{MeV} \cdot oldsymbol{\delta} lpha$$

 1 Blatt and Weisskopf, 1979; 2 Elhatisari et al., 2024; 3 Gasser, Leutwyler, and Rusetsky, 2021

Introduction 00	Big Bang Nucleosynthesis OO	Variation of α OOO	Variation of <i>v</i> 000	Conclusion O	Outlook 00

Experimental constraints

PDG¹: reliable measurements for ${}^{4}\text{He}$, *d* and ${}^{7}\text{Li}$ (But: Lithium problem²)

- 5 codes give similar results
- Only α -variation of $|\delta \alpha| < 1.8\%$ is consistent with experiment

 1 Workman et al., 2022; 2 Fields, 2011

Helen Meyer

Introduction	Big Bang Nucleosynthesis	Variation of α	Variation of <i>v</i>	Conclusion	Outlook
00	OO		000	O	00

Halo Effective Field Theory (EFT)

Biggest source of uncertainty: reaction rates and cross sections

- \Rightarrow Need theoretical predictions
 - So far: only pionless EFT for $n + p \rightarrow d + \gamma^{1}$
 - Now: include Halo EFT² rates for $n + {}^{7}\text{Li} \rightarrow {}^{8}\text{Li} + \gamma {}^{3}$ $p + {}^{7}\text{Be} \rightarrow {}^{8}\text{B} + \gamma {}^{4}$ $p + {}^{7}\text{He} \rightarrow {}^{7}\text{Li} + \gamma \text{ and}$ ${}^{3}\text{He} + {}^{4}\text{He} \rightarrow {}^{7}\text{Be} + \gamma {}^{5}$

¹ Rupak, 2000; ² review: Hammer, Ji, Phillips, 2017; ³ Fernando,
Higa, Rupak 2012; Higa, Premarathna, Rupak, 2021; ⁴ Higa,
Premarathna, Rupak, 2022;

⁵ Higa, Rupak, Vaghani, 2018; Premarathna, Rupak, 2020

: Meißner, Metsch, HM 2024: in print (EPJA)

 $^{7}Li + ^{7}Be$ abundance diverges?

Helen Meyer

Introduction	Big Bang Nucleosynthesis	Variation of $lpha$ 000	Variation of <i>v</i>	Conclusion	Outlook
00	OO		●00	O	00

Higgs VEV Variation – What to consider

- QCD scale $\Lambda_{
 m QCD} \propto \left(1 + \delta v
 ight)^{0.251}$
- Fermi constant $G_F \propto (1+\delta v)^{-2}$
- Change of electron and quark masses $\Rightarrow M_{\pi}$ through Gell-Mann-Oakes-Renner relation
- $\rightarrow Q_n (QCD part)^2$
- → Deuteron binding energy (right)
- → nucleon mass and axial-vector coupling (from Lattice QCD or ChPT)
- \rightarrow nucleon-nucleon scattering parameters (low energy theorems)³

 1 Burns et al., 2024, 2 Gasser, Leutwyler, and Rusetsky, 2021, 3 Baru et al., 2015, 2016

Introduction	Big Bang Nucleosynthesis	Variation of $lpha$ 000	Variation of <i>v</i>	Conclusion	Outlook
00	OO		O●O	O	00
$n + p \rightarrow d$	$d + \gamma$				

¹ Rupak, 2000; ² Burns et al., 2024

Introduction	Big Bang Nucleosynthesis	Variation of $lpha$ 000	Variation of <i>v</i>	Conclusion	Outlook
00	OO		OO●	O	00

Experimental constraints

: PDG: Workman et al., 2022 ; EMPRESS: Matsumoto et al., 2022

• found more stringent 2σ -bound from deuterium abundance:

$$-0.5\% \leq \delta v \leq -0.1\%$$

Helen Meyer

Introduction 00	Big Bang Nucleosynthesis OO	Variation of $lpha$ 000	Variation of <i>v</i> 000	Conclusion	Outlook 00			
To summarize								

- simulated Big Bang Nucleosynthesis with
 5 different codes as laboratory
- considered variation of fundamental physical constants and found
 - for the fine-structure constant (1σ)

$$|\delta lpha| < 1.8\%$$

• for the Higgs VEV (2σ)

$$-0.5\% \leq \delta v \leq -0.1\%$$

to be consistent with measurementsNow: How fine-tuned is our universe?

Introduction 00	Big Bang Nucleosynthesis OO	Variation of $lpha$ 000	Variation of <i>v</i> 000	Conclusion O	Outlook ●O
Outlook					

- Combined analysis of α and v- or α and quark mass variations
- Quantitative and detailed error estimations
- Main source of uncertainty: reaction cross sections and rates
- \Rightarrow need more theoretical predictions

🖌 Halo EFT

- - \rightarrow contributions to nuclear binding energies (already used for α -variation)
 - → *ab initio* calculation of scattering parameters and rates: deuteron-deuteron reactions in the making
 - $\rightarrow\,$ can directly vary fundamental parameters: no need for approximation

: Source : ChatGPT

Introduction 00	Big Bang Nucleosynthesis OO	Variation of $lpha$ 000	Variation of <i>v</i> 000	Conclusion O	Outlook ●O
Outlook					

- Combined analysis of α and v- or α and quark mass variations
- Quantitative and detailed error estimations
- Main source of uncertainty: reaction cross sections and rates
- \Rightarrow need more theoretical predictions

🖌 Halo EFT

- $\stackrel{\text{\tiny IDEW}}{\longrightarrow} \text{ new: Nuclear Lattice Effective Field Theory } \rightarrow \text{\tiny Dean Lee's} \\ \underset{\text{\tiny talk}}{\xrightarrow}$
 - \rightarrow contributions to nuclear binding energies (already used for α -variation)
 - \rightarrow *ab initio* calculation of scattering parameters and rates: deuteron-deuteron reactions in the making
 - $\rightarrow\,$ can directly vary fundamental parameters: no need for approximation

: Source : ChatGPT

Thank you for your attention!