

Nuclear Physics at the N = Z Line

Kathrin Wimmer ウィマー カトリン

GSI Helmholtzzentrum für Schwerionenforschung

20. September 2024

Kathrin Wimmer

European Research Council

Established by the European Commission

1 Nucleosynthesis along the N = Z line

2 Isospin symmetry

3 Shape coexistence

Nucleosynthesis along the N = Z line

🖬 🖬 🏦 🔹 Nucleosynthesis in X-ray bursts

Analysis of X-ray burst light curves needs nuclear physics input

- *rp*-process nucleosynthesis slows down at waiting points
- Proton capture energetically disfavored
- Slow β^+ decay rate dictates flow
- Examples: ⁵⁶Ni, ⁶⁴Ge, ⁶⁶Se, ⁷²Kr
- Sensitivity studies show (p,γ) reaction rates very important
- Spectroscopy of excited states (often through surrogate reactions)
- Spectroscopic factors from mirrored reactions
- Q-values and masses are needed

Spectroscopy of ⁵⁸Zn

C. Langer et al., Phys. Rev. Lett. 113 (2014) 032502.

Kathrin Wimmer

International School of Nuclear Physics - 45th Course - Nuclei in the Laboratory and in Stars

Kathrin Wimmer

International School of Nuclear Physics - 45th Course - Nuclei in the Laboratory and in Stars

Waiting point ⁶⁴Ge F ST

Proton capture on ⁶⁴Ge leads to proton unbound ⁶⁵As

- Waiting points at ⁶⁴Ge ($T_{1/2} = 64$ s) and ⁶⁶Se ($T_{1/2} = 36$ s)
- Mass uncertainties limiting reliability for reaction rate calculation and X-ray burst light curves
- New measurements at cooler-storage ring CSR,

Improved uncertainties and new values

E = **x** Waiting point ⁶⁴Ge

Limits on neutron-star compactness

X. Zhou et al., Nature Physics 19 (2023) 1091.

Kathrin Wimmer

Sandbanks beyond the proton drip-line

GSI

Sandbanks beyond the proton drip-line

GSI

Sandbanks beyond the proton drip-line

Influence on rp-process nucleosynthesis needs to be explored

65Ť

Isospin symmetry

🖪 🗲 👖 👘 Isospin symmetry

Neutron and proton: two representations of the nucleon with isospin $t_z = \pm 1/2$

Led to the concept of quarks as constituents

Two nucleon system in T = 0 and 1 channel: explains deuteron $J^{\pi} = 1^+$

Strong interaction independent of isospin or charge $V_{np} = (V_{pp} + V_{nn})/2$

Symmetric under exchange of protons and neutrons $V_{pp} = V_{nn}$

🖬 🖬 👖 🛛 Isospin symmetry

Neutron and proton: two representations of the nucleon with isospin $t_z = \pm 1/2$

Led to the concept of quarks as constituents

- Two nucleon system in T = 0 and 1 channel: explains deuteron $J^{\pi} = 1^+$
- Strong interaction independent of isospin or charge $V_{np} = (V_{pp} + V_{nn})/2$
- Symmetric under exchange of protons and neutrons $V_{pp} = V_{nn}$

🖬 🖬 👖 Isospin symmetry

Neutron and proton: two representations of the nucleon with isospin $t_z = \pm 1/2$

Led to the concept of quarks as constituents

- Violated by electromagnetic effects
- Light quark mass difference $m_u \neq m_d$ → free neutron is unstable
- Relative proton-neutron mass difference 0.0013 → symmetry breaking is small
- nn, pp, and np scattering length are different

- Two nucleon system in T = 0 and 1 channel: explains deuteron $J^{\pi} = 1^+$
- Strong interaction independent of isospin or charge $V_{np} = (V_{pp} + V_{nn})/2$
- Symmetric under exchange of protons and neutrons $V_{pp} = V_{nn}$

In nuclei:

- Exactly degenerate energies of isobaric multiplets
- Pure isospin quantum numbers
- No isospin mixing in nuclear states
- Identical wave functions for the members of an isobaric multiplet

🖬 🖬 👖 Isospin symmetry

Neutron and proton: two representations of the nucleon with isospin $t_z = \pm 1/2$

Led to the concept of quarks as constituents

- Violated by electromagnetic effects
- Light quark mass difference $m_u \neq m_d$ → free neutron is unstable
- Relative proton-neutron mass difference 0.0013 → symmetry breaking is small
- nn, pp, and np scattering length are different

- Two nucleon system in *T* = 0 and 1 channel: explains deuteron *J*^π = 1⁺
- Strong interaction independent of isospin or charge $V_{np} = (V_{pp} + V_{nn})/2$
- Symmetric under exchange of protons and neutrons $V_{pp} = V_{nn}$

In nuclei:

- Exactly degenerate energies of isobaric multiplets
- Pure isospin quantum numbers
- No isospin mixing in nuclear states
- Identical wave functions for the members of an isobaric multiplet

EG SET I Anomaly at A = 70

• Coulomb energy differences between T = 1 states:

$$CED(J^{\pi}) = E(J^{\pi}, T_z = 0) - E(J^{\pi}, T_z = 1)$$

B. S. Nara Singh et al., Phys. Rev. C **75** (2007) 061301.

- CED rise as a function of spin in the sd and fp shell
- A = 70 isobars show anomalous Coulomb energy differences
- Weakly bound: reduction of Coulomb repulsion due to spatial extension of proton wave functions
- However, negative CED only occur in A = 70 isotones
- May be explained by a shape change between ⁷⁰Se and ⁷⁰Br

EG SET I Anomaly at A = 70

• Coulomb energy differences between T = 1 states:

$$CED(J^{\pi}) = E(J^{\pi}, T_z = 0) - E(J^{\pi}, T_z = 1)$$

B. S. Nara Singh et al., Phys. Rev. C **75** (2007) 061301.

- CED rise as a function of spin in the sd and fp shell
- A = 70 isobars show anomalous Coulomb energy differences
- Weakly bound: reduction of Coulomb repulsion due to spatial extension of proton wave functions
- However, negative CED only occur in A = 70 isotones
- May be explained by a shape change between ⁷⁰Se and ⁷⁰Br

EG SET I Anomaly at A = 70

• Coulomb energy differences between T = 1 states:

$$CED(J^{\pi}) = E(J^{\pi}, T_z = 0) - E(J^{\pi}, T_z = 1)$$

G. de Angelis et al., Eur. Phys. J. A **12** (2001) 51, B. S. Nara Singh et al., Phys. Rev. C **75** (2007) 061301.

- CED rise as a function of spin in the sd and fp shell
- A = 70 isobars show anomalous Coulomb energy differences
- Weakly bound: reduction of Coulomb repulsion due to spatial extension of proton wave functions
- However, negative CED only occur in A = 70 isotones
- May be explained by a shape change between ⁷⁰Se and ⁷⁰Br

 \rightarrow Further lowering of states for $T_z = -1$ nucleus ⁷⁰Kr expected

E S Predicted shapes of nuclei

Predicted deformation parameters using finite-range droplet macroscopic model

P. Möller et al., At. Data Nucl. Data Tables 109 (2016) 1.

Energy differences of the A = 70 triplet

K. Wimmer et al., Phys. Lett. B **785** (2018) 441, G. L. Zimba et al. Phys. Rev. C **110** (2024) 024314.

- Large positive contribution from monopole components leads to positive MED for A = 74, large negative spin-orbit component to negative MED for A = 70
- Negative TED due to the fact that the excitation energy of the odd-odd $T_z = 0$ nucleus is larger than either of the even-even isobars, proton-neutron pairing

• A = 70 anomaly can be understood without invoking any "exotic" physics

651

Energy differences of the A = 70 triplet

enderson et al., Phys. Rev. C **90** (2014) 051303(R), D. M. Debenham et al., Phys. Rev. C **94** (2016) 054311, K. Wimmer et al., Phys. Lett. B **785** (2018) 441, G. L. Zimba et al. Phys. Rev. C **110** (2024) 024314.

- Large positive contribution from monopole components leads to positive MED for A = 74, large negative spin-orbit component to negative MED for A = 70
- Negative TED due to the fact that the excitation energy of the odd-odd $T_z = 0$ nucleus is larger than either of the even-even isobars, proton-neutron pairing
- A = 70 anomaly can be understood without invoking any "exotic" physics

Energies alone do not probe the wave function, we need another observable to test the symmetry

Isospin symmetry of matrix elements

- Charge independence of the nuclear interaction implies
 - Exactly degenerate energies of isobaric multiplets
 - Pure isospin quantum numbers and no isospin mixing
 - Identical wave functions for the members of an isobaric multiplet

Isospin symmetry of matrix elements

- Charge independence of the nuclear interaction implies
 - Exactly degenerate energies of isobaric multiplets
 - Pure isospin quantum numbers and no isospin mixing
 - Identical wave functions for the members of an isobaric multiplet
- Determine multipole matrix elements from measured B(E2) values

$$\begin{split} M_{p/n} &= \langle J_{f} || \sum_{p/n} r^{\lambda} Y_{\lambda}(\Omega) || J_{i} \rangle \\ B(E2; \ J_{i} \to J_{f}) &= \frac{|\langle J_{f} || E2 || J_{i} \rangle|^{2}}{2J_{i} + 1} = \frac{M_{p}^{2}(E2)}{2J_{i} + 1} \\ M_{n/p} &= \frac{1}{2} \left(M_{0}(T_{z}) \pm M_{1}(T_{z}) \right) \\ M_{p}(T_{z}) &= \frac{1}{2} \left(M_{0} - M_{1} \cdot T_{z} \right) \end{split}$$

A. M. Bernstein, V. R. Brown, and V. A. Madsen, Phys. Rev. Lett. 42 (1979) 425.

In isospin representation:

Assuming isospin symmetry:

Isospin symmetry of matrix elements

- Charge independence of the nuclear interaction implies
 - Exactly degenerate energies of isobaric multiplets
 - Pure isospin quantum numbers and no isospin mixing
 - Identical wave functions for the members of an isobaric multiplet
- Determine multipole matrix elements from measured B(E2) values

$$M_{p/n} = \langle J_{f} || \sum_{p/n} r^{\lambda} Y_{\lambda}(\Omega) || J_{i} \rangle$$

$$B(E2; J_{i} \to J_{f}) = \frac{|\langle J_{f} || E2 || J_{i} \rangle|^{2}}{2J_{i} + 1} = \frac{M_{p}^{2}(E2)}{2J_{i} + 1}$$

$$M_{n/p} = \frac{1}{2} (M_{0}(T_{z}) \pm M_{1}(T_{z}))$$

$$M_{p}(T_{z}) = \frac{1}{2} (M_{0} - M_{1} \cdot T_{z})$$

A. M. Bernstein, V. R. Brown, and V. A. Madsen, Phys. Rev. Lett. 42 (1979) 425.

In isospin representation:

Assuming isospin symmetry:

IS IS \mathbf{x} Isospin purity of $\mathbf{T} = \mathbf{1}$ states

• $M_p(T_z)$ should be linear if isospin is conserved

• Well tested for nuclei up to A = 46

K. L. Yurkewicz et al., Phys. Rev. C 70 (2004) 054319.

Different experiments and techniques used for different isobars \rightarrow need for a consistent approach

A = 54

In-beam spectroscopy at the RIBF

Kathrin Wimmer

GSI DALI2

S. Takeuchi et al., Nucl. Instr. Meth. **A 763** (2014) 596.

- 226 Nal(TI) detectors
- Intrinsic resolution 7 % at 1 MeV
- \blacksquare In-beam resolution \sim 10 % at 150 AMeV
- Efficiency ~ 20 % at 1 MeV (before add-back)
- Beam tracking by PPACs

Coulomb excitation at relativistic energies

- Excitation of the projectile in the electromagnetic field of a high-Z target
- Absorption of virtual photon

651

- At relativistic energies one-step excitation is limited to (first) 2⁺ states
- Measure cross section from de-excitation yield
- Nuclear excitation also contributes and interferes
- Developed consistent analysis approach for relativistic Coulomb excitation
 K. Wimmer et al., Eur. Phys. J. A 56 (2020)

Coulomb excitation at relativistic energies

- Excitation of the projectile in the electromagnetic field of a high-Z target
- Absorption of virtual photon

651

- At relativistic energies one-step excitation is limited to (first) 2⁺ states
- Measure cross section from de-excitation yield
- Nuclear excitation also contributes and interferes
- Developed consistent analysis approach for relativistic Coulomb excitation
 K. Wimmer et al., Eur. Phys. J. A 56 (2020) 159.

• Excitation energy of ⁷⁰Kr: $E(2^+) = 884 \text{ keV}$

K. Wimmer et al., Phys. Lett. B 785 (2018) 441.

- Nuclear deformation length from Be target data: $\beta_N = 0.22(4)$
- Feeding corrections estimated from ⁷²Kr and ⁶⁸Se, and theoretical calculations

■
$$B(E2\uparrow) = 2726(294)_{\text{stat.}}(224)_{\text{syst.}}(258)_{\text{theo.}} e^2 \text{fm}$$

or $\beta_{\text{C}} = 0.25(2)$

J. Ljungvall et al., Phys. Rev. Lett. **100** (2008) 102502, A. J. Nichols et al., Phys. Lett. B **733** (2014) 52.

Linear fit with:

$$M_p(T_z) = \frac{1}{2} \left(M_0 - M_1 \cdot T_z \right)$$

 $M_0 = 76(4) \text{ efm}^2, M_1 = -6(5) \text{ efm}^2$

Larger matrix element for proton-rich?

• Negative trend in other A > 50 cases

C. Morse et al., Phys. Lett. B. **787** (2018) 198.

• Extrapolation
$$M(E2, T_z = -1) = 35.0(43)$$
 efm²

J. Ljungvall et al., Phys. Rev. Lett. **100** (2008) 102502, A. J. Nichols et al., Phys. Lett. B **733** (2014) 52.

Linear fit with:

$$M_p(T_z) = \frac{1}{2} \left(M_0 - M_1 \cdot T_z \right)$$

 $M_0 = 76(4) \ {
m efm^2}, \, M_1 = -6(5) \ {
m efm^2}$

Larger matrix element for proton-rich?

• Negative trend in other A > 50 cases

C. Morse et al., Phys. Lett. B. **787** (2018) 198.

• Extrapolation $M(E2, T_z = -1) = 35.0(43) \text{ efm}^2$

J. Ljungvall et al., Phys. Rev. Lett. **100** (2008) 102502, A. J. Nichols et al., Phys. Lett. B **733** (2014) 52.

Linear fit with:

$$M_p(T_z) = \frac{1}{2} \left(M_0 - M_1 \cdot T_z \right)$$

 $M_0 = 76(4) \ {
m efm^2}, M_1 = -6(5) \ {
m efm^2}$

- Larger matrix element for proton-rich?
- Negative trend in other A > 50 cases C. Morse et al., Phys. Lett. B. 787 (2018) 198.
- Extrapolation $M(E2, T_z = -1) = 35.0(43) \text{ efm}^2$

J. Ljungvall et al., Phys. Rev. Lett. **100** (2008) 102502, A. J. Nichols et al., Phys. Lett. B **733** (2014) 52.

Linear fit with:

$$M_p(T_z) = \frac{1}{2} \left(M_0 - M_1 \cdot T_z \right)$$

 $M_0 = 76(4) \ {
m efm^2}, M_1 = -6(5) \ {
m efm^2}$

- Larger matrix element for proton-rich?
- Negative trend in other A > 50 cases

C. Morse et al., Phys. Lett. B. 787 (2018) 198.

• Extrapolation $M(E2, T_z = -1) = 35.0(43) \text{ efm}^2$

J. Ljungvall et al., Phys. Rev. Lett. **100** (2008) 102502, A. J. Nichols et al., Phys. Lett. B **733** (2014) 52.

Linear fit with:

$$M_p(T_z) = \frac{1}{2} \left(M_0 - M_1 \cdot T_z \right)$$

- $M_0 = 76(4) \ {
 m efm^2}, M_1 = -6(5) \ {
 m efm^2}$
- Larger matrix element for proton-rich?
- Negative trend in other A > 50 cases

C. Morse et al., Phys. Lett. B. 787 (2018) 198.

• Extrapolation $M(E2, T_z = -1) = 35.0(43) \text{ efm}^2$

New measurement of 70 Kr deviates from linear trend by 3σ

Sign of deviation from isospin symmetry in A = 70 triplet

K. Wimmer et al., Phys. Rev. Lett. 126 (2021) 072501.
⁷⁰Se is oblate deformed

65Ť

- Isospin symmetry: same expected for ⁷⁰Kr
- Theoretical calculations predict
 - Oblate deformation for ⁷⁰Se and ⁷⁰K
 - Only a small increase in M_p in ⁷⁰K

A. M. Hurst et al., Phys. Rev. Lett. **98** (2007) 072501, J. Ljungvall et al., Phys. Rev. Lett. **100** (2008) 102502.

⁷⁰Se is oblate deformed

651

- Isospin symmetry: same expected for ⁷⁰Kr
- Theoretical calculations predict
 - Oblate deformation for ⁷⁰Se and ⁷⁰Kr
 - Only a small increase in $M_{
 ho}$ in 70 Kr

A. M. Hurst et al., Phys. Rev. Lett. **98** (2007) 072501, J. Ljungvall et al., Phys. Rev. Lett. **100** (2008) 102502.

⁷⁰Se is oblate deformed

65Ť

- Isospin symmetry: same expected for ⁷⁰Kr
- Theoretical calculations predict
 - Oblate deformation for $^{70}\mbox{Se}$ and $^{70}\mbox{Kr}$
 - Only a small increase in $M_{
 ho}$ in 70 Kr

A. M. Hurst et al., Phys. Rev. Lett. **98** (2007) 072501, J. Ljungvall et al., Phys. Rev. Lett. **100** (2008) 102502.

(Axial) rotational model

$$B(E2\uparrow)=\left(rac{3Z}{4\pi}R_0^2
ight)^2|eta_2|^2$$

• Larger $B(E2) \rightarrow$ more deformed

⁷⁰Se is oblate deformed

651

- Isospin symmetry: same expected for ⁷⁰Kr
- Theoretical calculations predict
 - Oblate deformation for $^{70}\mbox{Se}$ and $^{70}\mbox{Kr}$
 - Only a small increase in $M_{
 ho}$ in 70 Kr

A. M. Hurst et al., Phys. Rev. Lett. **98** (2007) 072501, J. Ljungvall et al., Phys. Rev. Lett. **100** (2008) 102502.

(Axial) rotational model

$${\cal B}({\it E2}\uparrow)=\left(rac{3Z}{4\pi}{\it R}_0^2
ight)^2|eta_2|^2$$

• Larger $B(E2) \rightarrow$ more deformed

EF Solution Shapes of the A = 70 triplet

- Heaviest isospin triplet where all three matrix elements are experimentally known
- $M_p(E2; 0^+_1 \rightarrow 2^+_1)$ value of ⁷⁰Kr significantly larger than in ⁷⁰Se
- 3σ deviation from the extrapolation of a linear relation ship $M_{\rho}(T_z)$
 - Isospin mixing of T = 0, 1 states in ⁷⁰Br?
 - No close-lying 2⁺ states known
 - Isospin mixing cannot explain the increase in collectivity in ⁷⁰Kr
 - A shape change of the mirror nuclei ⁷⁰Se and ⁷⁰Kr can explain the result
 - Is ⁷⁰Kr prolate?
 - Low-energy Coulomb excitation could help, but experiment presently out of reach cf. ⁷⁰Kr intensity 15 pps
 - What about other medium-mass T = 1 triplets?

EF Solution Shapes of the A = 70 triplet

- Heaviest isospin triplet where all three matrix elements are experimentally known
- $M_p(E2; 0^+_1 \rightarrow 2^+_1)$ value of ⁷⁰Kr significantly larger than in ⁷⁰Se
- 3σ deviation from the extrapolation of a linear relation ship $M_{\rho}(T_z)$
 - Isospin mixing of T = 0, 1 states in ⁷⁰Br?
 - No close-lying 2⁺ states known
 - Isospin mixing cannot explain the increase in collectivity in ⁷⁰Kr
 - A shape change of the mirror nuclei ⁷⁰Se and ⁷⁰Kr can explain the result
 - Is ⁷⁰Kr prolate?

Low-energy Coulomb excitation could help, but experiment presently out of reach cf. ⁷⁰Kr intensity 15 pps

What about other medium-mass T = 1 triplets?

- Heaviest isospin triplet where all three matrix elements are experimentally known
- $M_p(E2; 0^+_1 \rightarrow 2^+_1)$ value of ⁷⁰Kr significantly larger than in ⁷⁰Se
- 3σ deviation from the extrapolation of a linear relation ship $M_{\rho}(T_z)$
 - Isospin mixing of T = 0, 1 states in ⁷⁰Br?
 - No close-lying 2⁺ states known
 - Isospin mixing cannot explain the increase in collectivity in ⁷⁰Kr
 - A shape change of the mirror nuclei ⁷⁰Se and ⁷⁰Kr can explain the result
 - Is ⁷⁰Kr prolate?

Low-energy Coulomb excitation could help, but experiment presently out of reach cf. ⁷⁰Kr intensity 15 pps

What about other medium-mass T = 1 triplets?

- Heaviest isospin triplet where all three matrix elements are experimentally known
- $M_p(E2; 0^+_1 \rightarrow 2^+_1)$ value of ⁷⁰Kr significantly larger than in ⁷⁰Se
- 3σ deviation from the extrapolation of a linear relation ship $M_{\rho}(T_z)$
 - Isospin mixing of T = 0, 1 states in ⁷⁰Br?
 - No close-lying 2⁺ states known
 - Isospin mixing cannot explain the increase in collectivity in ⁷⁰Kr
 - A shape change of the mirror nuclei ⁷⁰Se and ⁷⁰Kr can explain the result
 - Is ⁷⁰Kr prolate?

Low-energy Coulomb excitation could help, but experiment presently out of reach cf. $^{70}\mathrm{Kr}$ intensity 15 pps

• What about other medium-mass T = 1 triplets?

🖬 🖬 👖 🔹 Precision test of isospin symmetry

- Systematic uncertainties from different measurements → use same technique for all three members of a triplet
- New experiment: Coulomb excitation of A = 62, T = 1 triplet using identical target, beam energy, and detector
- Cancellation of systematic uncertainties

Precision test of isospin symmetry GSI

- Systematic uncertainties from different measurements \rightarrow use same technique for all three members of a triplet
- New experiment: Coulomb excitation of A = 62, T = 1 triplet using identical target, beam energy, and detector
- Cancellation of systematic uncertainties

F S I Precision test of isospin symmetry

Linearity confirmed and good agreement with *fp* shell model calculations with KB3GR interaction

Relative proton matrix elements M_p confirm isospin symmetry at % level

T. Hüyük et al., in prep.

Precision test of isospin symmetry

Linearity confirmed and good agreement with fp shell model calculations with KB3GR interaction

Relative proton matrix elements M_p confirm isospin symmetry at % level

Precision experiment with radioactive beams

T. Hüyük et al., in prep.

651

What changes for A = 70?

• A = 62 triplet well in shell-model regime

- Strong onset of collective behavior from ⁷²Kr
- Maximum collectivity and deformation observed for ⁷⁶Si

K. Wimmer, P. Ruotsalainen, S.M. Lenzi et al., Phys. Lett. B 847 (2023) 138249.

R. D. O. Llewellyn et al., Phys. Rev. Lett. 124 (2020) 152501

■ For *N* = *Z* curious odd-odd versus even-even staggering

Kathrin Wimmer

What changes for A = 70?

- A = 62 triplet well in shell-model regime
- Strong onset of collective behavior from ⁷²Kr
- Maximum collectivity and deformation observed for ⁷⁶Sr

K. Wimmer, P. Ruotsalainen, S.M. Lenzi et al., Phys. Lett. B 847 (2023) 138249.

R. D. O. Llewellyn et al., Phys. Rev. Lett. 124 (2020) 152501.

■ For *N* = *Z* curious odd-odd versus even-even staggering

Kathrin Wimmer

What changes for A = 70?

- A = 62 triplet well in shell-model regime
- Strong onset of collective behavior from ⁷²Kr
- Maximum collectivity and deformation observed for ⁷⁶Sr

K. Wimmer, P. Ruotsalainen, S.M. Lenzi et al., Phys. Lett. B 847 (2023) 138249.

- R. D. O. Llewellyn et al., Phys. Rev. Lett. 124 (2020) 152501.
- For *N* = *Z* curious odd-odd versus even-even staggering

- Nuclei around *A* = 80 are very strongly deformed
- Small changes in the single-particle structure can lead to drastic change in deformation
- Contribution of p orbitals to radial Coulomb term quenched due to decrease in radius
 A. Fernández et al., Phys. Lett. B 823 (2021) 136784.
- Coulomb interaction depends on spatial configuration of protons
- ⁷⁰Kr currently out of reach for shell model calculations required model space is at least $pf_{5/2}g_{9/2}$, but excitations beyond 50 and below 28 are required to appropriately model the collectivity

Fully microscopic description of the deformation in the region yet to be attained

In a region where deformation and collectivity rise, a small change in the configuration of protons and neutrons can cause large difference in shape

Shape coexistence

🖬 🖬 👖 Shape coexistence in Kr isotopes

- Proton-rich Kr (Z = 36) isotopes show a variety of shapes
- Self-consistent beyond mean-field calculations of potential energy surface

- Spherical ^{76,78}Kr
- Degenerate minima in ⁷⁴Kr: shape coexistence and mixing

E. Clement et al., Phys. Rev. C 75 (2007) 054313.

⁷²Kr: oblate ground state and rapid oblate - prolate transition with increasing spin

A. Gade et al., Phys. Rev. Lett. 95 (2005) 022502, H. Iwasaki et al., Phys. Rev. Lett. 112 (2014) 142502.

Second minimum: excited 0⁺ state in ⁷²Kr with large difference in deformation

E. Bouchez et al., Phys. Rev. Lett. 90 (2003) 082502.

Prediction for ⁷⁰Kr: oblate deformed

Kathrin Wimmer

Higher order deformation

 Large octupole and hexadecupole deformation inferred from inelastic scattering

M. Spieker et al., Phys. Lett. B 841 (2023) 137932.

counts / 16 keV

Shape coexistence at N = Z - 2?

- Inelastic scattering of ⁷⁰Kr on Be target
- One- and two-neutron removal reaction from ^{71,72}Kr
- Likely-hood fit to obtain γ -ray transitions energies

65Ť

Shape coexistence at N = Z - 2?

- New excited states in ⁶⁶Se
- SCCM calculations show rough agreement with data
- Coexisting triaxial-deformed configurations
- Ground-state band more oblate
- Excited band more prolate

Z. Elekes et al., Phys. Lett. B 844 (2023) 138072.

100

Relativistic Coulomb excitation of ⁷²Kr

High-spin ⁷²Kr level scheme well known from fusion evaporation reactions

N. S. Kelsall et al., Phys. Rev. C 64 (2001) 024309, S. M. Fisher et al., Phys. Rev. C 67 (2003) 064318.

Excited states in ⁷²Kr populated in inelastic scattering off Be and Au targets

Four new transitions observed

1148(5) keV transition also in Coulomb excitation \rightarrow new 2⁺ state

947(7) keV transition in coincidence \rightarrow new 4⁺ state

Relativistic Coulomb excitation of ⁷²Kr

■ High-spin ⁷²Kr level scheme well known from fusion evaporation reactions

N. S. Kelsall et al., Phys. Rev. C 64 (2001) 024309, S. M. Fisher et al., Phys. Rev. C 67 (2003) 064318.

Excited states in ⁷²Kr populated in inelastic scattering off Be and Au targets

- Four new transitions observed
- \blacksquare 1148(5) keV transition also in Coulomb excitation \rightarrow new 2^+ state
- $\blacksquare~947(7)~keV$ transition in coincidence \rightarrow new 4^+ state

Two-band mixing model

Physical $J^{\pi} = 0^+, 2^+$, and 4^+ states are mixture of pure prolate and oblate configurations:

 $\begin{array}{ll} |J_1^+\rangle &=& +a_J|J_p^+\rangle + b_J|J_o^+\rangle \\ |J_2^+\rangle &=& -b_J|J_p^+\rangle + a_J|J_o^+\rangle \end{array}$

- Yrast band prolate deformed at high spin
 R. B. Piercey et al., Phys. Rev. Lett. 47 (1981) 1514.
- Extrapolation using variable moment of inertia $I = I_0 + \omega^2 I_1$ \rightarrow unperturbed energies

Two-band mixing model

Physical $J^{\pi} = 0^+, 2^+$, and 4^+ states are mixture of pure prolate and oblate configurations:

 $\begin{array}{lcl} |J_{1}^{+}\rangle & = & +a_{J}|J_{p}^{+}\rangle + b_{J}|J_{o}^{+}\rangle \\ |J_{2}^{+}\rangle & = & -b_{J}|J_{p}^{+}\rangle + a_{J}|J_{o}^{+}\rangle \end{array}$

- Yrast band prolate deformed at high spin
 R. B. Piercey et al., Phys. Rev. Lett. 47 (1981) 1514.
- Extrapolation using variable moment of inertia $I = I_0 + \omega^2 I_1$ \rightarrow unperturbed energies

Physical $J^{\pi} = 0^+, 2^+$, and 4^+ states are mixture of pure prolate and oblate configurations:

 $\begin{array}{lcl} |J_1^+\rangle &=& +a_J|J_p^+\rangle + b_J|J_o^+\rangle \\ |J_2^+\rangle &=& -b_J|J_p^+\rangle + a_J|J_o^+\rangle \end{array}$

- Yrast band prolate deformed at high spin
 R. B. Piercey et al., Phys. Rev. Lett. 47 (1981) 1514.
- Extrapolation using variable moment of inertia $I = I_0 + \omega^2 I_1$ \rightarrow unperturbed energies

- ground state oblate dominated
- New 2⁺₂ and 4⁺₂ states allow to extend the mixing analysis
- Inversion with oblate ground state, rapid transition towards prolate yrast states
- In agreement with interpretation of $B(E2; 4^+_1 \rightarrow 2^+_1)$

E. Bouchez et al., Phys. Rev. Lett. 90 (2003) 082502.

H. Iwasaki et al., Phys. Rev. Lett. 112 (2014) 142502.

Results for⁷²Kr

Nuclear deformation length and E2 matrix elements obtained from comparison with FRESCO (DWCC) calculations

state	β_{N}	$eta_{ extsf{c}}$	$B(E2\uparrow)$ (e ² fm ⁴) this	prev.
2 ₁ ⁺	0.309(2)(9)(8)	0.296(3)(11)(13)	4023(81) _{stat} .(290) _{syst} .(380) _{theo} .	4997(647)
				4050(750)
2 ₂ ⁺	0.123(4)(5)(3)	0.112(3)(4)(5)	665(39) _{stat.} (58) _{syst.} (63) _{theo.}	-

A. Gade et al., Phys. Rev. Lett. 95 (2005) 022502, H. Iwasaki et al., Phys. Rev. Lett. 112 (2014) 142502.

Different deformation \rightarrow shape coexistence

Transition strengths in the mixing model

So far, only energies are considered to obtain a, b_J : $b_0^2 = 0.881, b_2^2 = 0.256, \text{ and } b_4^2 = 0.028$

Matrix elements (transitions between the pure configurations are forbidden)

FI SI II

Transition strengths in the mixing model

- So far, only energies are considered to obtain a, b_J : $b_0^2 = 0.881, b_2^2 = 0.256, \text{ and } b_4^2 = 0.028$
- Matrix elements (transitions between the pure configurations are forbidden)
- 4⁺ states pure $a_4 = 1$, deformation β from reduced transition probability

$$egin{array}{rcl} {\sf B}({\sf E2};\;J_i o J_f) &=& rac{5}{16\pi} \left(e Q_0
ight)^2 |\langle J_i {\sf K}_i 20 | J_f {\sf K}_f
angle |^2 \ Q_0^{
m o/
m p} &=& Z {\sf R}^2 rac{3}{\sqrt{5\pi^{\,
m i}}} \left(eta_{
m o/
m p} + 0.36 eta_{
m o/
m p}^2
ight) \end{array}$$

$$\begin{split} B(E2; \ 2_1^+ \to 0_1^+) &= \left(\frac{3e}{4\pi}R^2Z\right)^2 |\langle 2020|00\rangle|^2 \left[b_0b_2(1+0.36\beta_0)\beta_0 + a_0a_2(1+0.36\beta_p)\beta_p\right]^2 \\ B(E2; \ 2_2^+ \to 0_1^+) &= \left(\frac{3e}{4\pi}R^2Z\right)^2 |\langle 2020|00\rangle|^2 \left[b_0a_2(1+0.36\beta_0)\beta_0 - a_0b_2(1+0.36\beta_p)\beta_p\right]^2 \\ B(E2; \ 4_1^+ \to 2_1^+) &= \left(\frac{3e}{4\pi}R^2Z\right)^2 |\langle 4020|20\rangle|^2 \left[a_2(1+0.36\beta_p)\beta_p\right]^2 \\ \rho^2(E0; \ 0_2^+ \to 0_1^+) &= \left(\frac{3e}{4\pi}Z\right)^2 a_0^2b_0^2 \left(\beta_0 - \beta_p\right)^2 \end{split}$$

651

Transition strengths in the mixing model

So far, only energies are considered to obtain *a*, *b_J*:

 $b_0^2 = 0.881, \, b_2^2 = 0.256, \, {\rm and} \, \, b_4^2 = 0.028$

- Matrix elements (transitions between the pure configurations are forbidden)
- 4^+ states pure $a_4 = 1$, deformation β from reduced transition probability

$$\begin{array}{lll} B(\textit{E2}; \; J_i \to J_f) & = & \displaystyle \frac{5}{16\pi} \left(e Q_0 \right)^2 |\langle J_i K_i 2 0 | J_f K_f \rangle|^2 \\ & Q_0^{o/p} & = & \displaystyle \mathcal{ZR}^2 \frac{3}{\sqrt{5\pi}} \left(\beta_{o/p} + 0.36 \beta_{o/p}^2 \right) \end{array}$$

- Equation system with many possible signs
- Using $a_0^2 = 0.256$, $a_2^2 = 0.744$ from the energies
- Overlap in the region $\beta_{\rm o} = 0.24$ and $\beta_{\rm p} = 0.45$
- Shape coexistence and mixing

K. Wimmer et al., Eur. Phys. J. A 56 (2020) 159.

651

- Beyond mean field calculations using Gogny D1S interaction
- HFB-5DCH calculations

J. P. Delaroche et al., Phys. Rev. C 81 (2010) 014303.

SCCM method

T. R. Rodríguez, Phys. Rev. C 90 (2014) 034306.

Both in expanded spaces

Reproduce $B(E2; 2_1^+ \rightarrow 0_1^+)$ rather well

HFB-5DCH calculations over predict the 0⁺₂ energy

Moderately oblate 2⁺₁ and stronger prolate deformation for 2⁺₂

SCCM calculations over predict the deformation, too small energies, large quadrupole moments

Kathrin Wimmer

- Beyond mean field calculations using Gogny D1S interaction
- HFB-5DCH calculations

J. P. Delaroche et al., Phys. Rev. C $\boldsymbol{81}$ (2010) 014303.

SCCM method

T. R. Rodríguez, Phys. Rev. C 90 (2014) 034306.

Both in expanded spaces

- Reproduce $B(E2; 2^+_1 \rightarrow 0^+_1)$ rather well
- HFB-5DCH calculations over predict the 0⁺₂ energy
- Moderately oblate 2⁺₁ and stronger prolate deformation for 2⁺₂
- SCCM calculations over predict the deformation, too small energies, large quadrupole moments

Probability densities (HFB-5DCH method) and collective wave functions (SCCM)

K. Wimmer et al., Eur. Phys. J. A 56 (2020) 159.

5DCH: 0_1^+ and 2_1^+ oblate, transition to prolate for 4_1^+

SCCM: shape coexistence of oblate 0⁺₁ and prolate 0⁺₂, strong mixing of 2⁺ states

Probability densities (HFB-5DCH method) and collective wave functions (SCCM)

5DCH: 0_1^+ and 2_1^+ oblate, transition to prolate for 4_1^+

■ SCCM: shape coexistence of oblate 0⁺₁ and prolate 0⁺₂, strong mixing of 2⁺ states

GSI

Probability densities (HFB-5DCH method) and collective wave functions (SCCM)

5DCH: 0_1^+ and 2_1^+ oblate, transition to prolate for 4_1^+

■ SCCM: shape coexistence of oblate 0⁺₁ and prolate 0⁺₂, strong mixing of 2⁺ states

Coexistence and shape change along yrast band

651

ES Summary: Nuclei at N = Z

- Their properties influence nucleosynthesis
- Mass measurements and proton-capture reactions
- Lifetimes of proton-unbound nuclei

Summary: Nuclei at N = Z

- Their properties influence nucleosynthesis
- Mass measurements and proton-capture reactions
- Lifetimes of proton-unbound nuclei

- Isospin symmetry of multipole matrix elements violated at A = 70
- Shape change in the mirror nuclei ⁷⁰Se and ⁷⁰Kr
- Symmetry preserved in *A* = 62 system
- Interesting region of large ground state deformation

F 5 1

RIBF94

W. Korten, T. Arici, P. Doornenbal, P. Aguilera, A. Algora, T. Ando, H. Baba, B. Blank, A. Boso, S. Chen, A. Corsi,
P. Davies, G. de Angelis, G. de France, D. Doherty, J. Gerl, R. Gernhäuser, D. Jenkins, A. Jungclaus, S. Koyama, T. Motobayashi, S. Nagamine, M. Niikura, A. Obertelli,
D. Lubos, B. Rubio, E. Sahin, H. Sakurai, T. Saito, L. Sinclair,
D. Steppenbeck, R. Taniuchi, V. Vaquero, R. Wadsworth, and M. Zielinska

RIBF151

S.M. Lenzi, A. Poves, T. Hüyük, F. Browne, P. Doornenbal, T. Koiwai, T. Arici, M. Bentley, M. L. Cortés, N. Imai, A. Jungclaus, N. Kitamura, B. Longfellow, R. Lozeva, B. Mauss, D. Napoli, M. Niikura, X. Pereira-Lopez,
F. Recchia, P. Ruotsalainen, R. Taniuchi, S. Uthayakumaar, V. Vaguero, R. Wadsworth, and R. Yaizev

U Tokyo, RIKEN, CEA Saclay, GSI, U Giessen, CCEN, U Valencia, U Bordeaux, INFN Padova, U York, INFN Legnaro, GANIL, TU München, CSIC Madrid, U Olso, U Padova, UA Madrid, CNS Tokyo, NSCL, CSNSM, U Jyväskylä

Thank you for your attention

