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Nucleosynthesis along the N = Z line
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Nucleosynthesis in X-ray bursts

Analysis of X-ray burst light curves needs nuclear physics input

rp-process nucleosynthesis slows
down at waiting points

Proton capture energetically disfavored

Slow β+ decay rate dictates flow

Examples: 56Ni, 64Ge, 66Se, 72Kr

Sensitivity studies show (p,γ) reaction
rates very important

Spectroscopy of excited states
(often through surrogate reactions)

Spectroscopic factors from mirrored
reactions

Q-values and masses are needed
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Spectroscopy of 58Zn
57Cu(p, γ) reaction rate dominated by 2+

resonances in 58Zn

First spectroscopy of 58Zn

C. Langer et al., Phys. Rev. Lett. 113 (2014) 032502.

Remaining uncertainty in the reaction rate
dominated by Q-value
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Spectroscopy of 58Zn
57Cu(p, γ) reaction rate dominated by 2+

resonances in 58Zn

First spectroscopy of 58Zn

Uncertainty of reaction rate reduced
by 3 orders of magnitude

C. Langer et al., Phys. Rev. Lett. 113 (2014) 032502.

Remaining uncertainty in the reaction rate
dominated by Q-value
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Waiting point 64Ge
Proton capture on 64Ge leads to proton unbound 65As
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X. Zhou et al., Nature Physics 19 (2023) 1091.

Waiting points at 64Ge (T1/2 = 64 s) and
66Se (T1/2 = 36 s)

Mass uncertainties limiting reliability for reaction rate
calculation and X-ray burst light curves

New measurements at cooler-storage ring CSR,
Lanzhou

Improved uncertainties and new values
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Waiting point 64Ge
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Sandbanks beyond the proton drip-line
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Influence on rp-process nucleosynthesis needs to be explored
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K. Wimmer et al., Phys. Lett. B 795 (2019) 266.

Influence on rp-process nucleosynthesis needs to be explored
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Sandbanks beyond the proton drip-line
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K. Wimmer et al., Phys. Lett. B 795 (2019) 266,
H. Suzuki et al., Phys. Rev. Lett 119 (2017) 192503.

Odd-odd 68Br and 72Rb longer lived than less
proton-rich neighbors (T1/2 ∼ 100 ns)

Influence on rp-process nucleosynthesis needs to be explored
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Isospin symmetry
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Isospin symmetry

Neutron and proton: two representations of the nucleon with isospin tz = ±1/2

Led to the concept of quarks as constituents

Tz = -1 Tz = 0 Tz = +1

Tz = 0

T = 1

T = 0

Two nucleon system in T = 0 and 1 channel:
explains deuteron Jπ = 1+

Strong interaction independent of isospin or charge
Vnp = (Vpp + Vnn)/2

Symmetric under exchange of protons and neutrons
Vpp = Vnn
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Isospin symmetry

Neutron and proton: two representations of the nucleon with isospin tz = ±1/2

Led to the concept of quarks as constituents

Tz = -1 Tz = 0 Tz = +1

Tz = 0

T = 1

T = 0

Two nucleon system in T = 0 and 1 channel:
explains deuteron Jπ = 1+

Strong interaction independent of isospin or charge
Vnp = (Vpp + Vnn)/2

Symmetric under exchange of protons and neutrons
Vpp = Vnn

Violated by electromagnetic effects

Light quark mass difference mu ̸= md

→ free neutron is unstable

Relative proton-neutron mass difference 0.0013
→ symmetry breaking is small

nn, pp, and np scattering length are different

In nuclei:

Exactly degenerate energies of isobaric multiplets

Pure isospin quantum numbers

No isospin mixing in nuclear states

Identical wave functions for the members of an
isobaric multiplet
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Anomaly at A = 70
Coulomb energy differences between T = 1 states:

CED(Jπ) = E(Jπ, Tz = 0)− E(Jπ, Tz = 1)
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G. de Angelis et al., Eur. Phys. J. A 12 (2001) 51,
B. S. Nara Singh et al., Phys. Rev. C 75 (2007) 061301.

CED rise as a function of spin in the sd and fp
shell

A = 70 isobars show anomalous Coulomb
energy differences

Weakly bound: reduction of Coulomb repulsion
due to spatial extension of proton wave functions

However, negative CED only occur in A = 70
isotones

May be explained by a shape change between
70Se and 70Br

→ Further lowering of states for Tz = −1 nucleus 70Kr expected
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Predicted shapes of nuclei
Predicted deformation parameters using finite-range droplet macroscopic model
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Energy differences of the A = 70 triplet
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A. Petrovici, Phys. Rev. C 91 (2015) 014302, K. Kaneko et al., Phys. Rev. Lett. 109 (2012) 092504,
J. Henderson et al., Phys. Rev. C 90 (2014) 051303(R), D. M. Debenham et al., Phys. Rev. C 94 (2016) 054311,

K. Wimmer et al., Phys. Lett. B 785 (2018) 441, G. L. Zimba et al. Phys. Rev. C 110 (2024) 024314.

Large positive contribution from monopole components leads to positive MED for A = 74, large negative
spin-orbit component to negative MED for A = 70
Negative TED due to the fact that the excitation energy of the odd-odd Tz = 0 nucleus is larger than
either of the even-even isobars, proton-neutron pairing
A = 70 anomaly can be understood without invoking any “exotic” physics

Energies alone do not probe the wave function,
we need another observable to test the symmetry
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Isospin symmetry of matrix elements

Tz = -1 Tz = 0 Tz = +1

Charge independence of the nuclear interaction implies

Exactly degenerate energies of isobaric multiplets

Pure isospin quantum numbers and no isospin mixing

Identical wave functions for the members of an isobaric
multiplet

Determine multipole matrix elements from measured B(E2) values

Mp/n = ⟨J f||
∑
p/n

rλYλ(Ω)||J i⟩

B(E2; Ji → Jf) =
|⟨J f||E2||J i⟩|2

2Ji + 1
=

M2
p (E2)

2Ji + 1

In isospin representation: Mn/p =
1
2
(M0(Tz)± M1(Tz))

Assuming isospin symmetry: Mp(Tz) =
1
2
(M0 − M1 · Tz)

A. M. Bernstein, V. R. Brown, and V. A. Madsen, Phys. Rev. Lett. 42 (1979) 425.
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Isospin purity of T = 1 states
Mp(Tz) should be linear if isospin is conserved
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F. M. Prados Estévez et al., Phys. Rev. C 75 (2007) 014309.

Well tested for nuclei up to A = 46

A. Boso et al., Phys. Lett. B 797 (2019) 134835.

No B(E2) data on Tz = −1 nuclei beyond
A = 54

K. L. Yurkewicz et al., Phys. Rev. C 70 (2004) 054319.

Different experiments and techniques used for different isobars
→ need for a consistent approach
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In-beam spectroscopy at the RIBF
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intensity 70Kr only 15 pps

Secondary reaction target at F8 surrounded by γ-ray detectors
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ZeroDegree spectrometer in large acceptance mode
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DALI2

beam

PPACPPAC

target

S. Takeuchi et al.,
Nucl. Instr. Meth. A 763 (2014) 596.

226 NaI(Tl) detectors

Intrinsic resolution 7 % at 1 MeV

In-beam resolution ∼ 10 % at 150 AMeV

Efficiency ∼ 20 % at 1 MeV (before add-back)

Beam tracking by PPACs
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Coulomb excitation at relativistic energies
Excitation of the projectile in the electromagnetic field of a high-Z target

Absorption of virtual photon

At relativistic energies one-step excitation is limited to (first) 2+ states

Measure cross section from de-excitation yield

Nuclear excitation also contributes and interferes

Developed consistent analysis approach for relativistic Coulomb
excitation K. Wimmer et al., Eur. Phys. J. A 56 (2020) 159.
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Coulomb excitation of 70Kr
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Excitation energy of 70Kr: E(2+) = 884 keV K. Wimmer et al., Phys. Lett. B 785 (2018) 441.

Nuclear deformation length from Be target data: βN = 0.22(4)

Feeding corrections estimated from 72Kr and 68Se, and theoretical calculations

B(E2 ↑) = 2726(294)stat.(224)syst.(258)theo. e2fm4

or βC = 0.25(2)
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Coulomb excitation of 70Kr
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Previous measurements of Se/Br suggest negative trend
J. Ljungvall et al., Phys. Rev. Lett. 100 (2008) 102502,

A. J. Nichols et al., Phys. Lett. B 733 (2014) 52.

Linear fit with:

Mp(Tz) =
1
2
(M0 − M1 · Tz)

M0 = 76(4) efm2, M1 = −6(5) efm2

Larger matrix element for proton-rich?

Negative trend in other A > 50 cases
C. Morse et al., Phys. Lett. B. 787 (2018) 198.

Extrapolation M(E2, Tz = −1) = 35.0(43) efm2

New measurement of 70Kr deviates from linear trend by 3σ
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Shapes of the A = 70 triplet
70Se is oblate deformed

Isospin symmetry: same expected for 70Kr

Theoretical calculations predict
- Oblate deformation for 70Se and 70Kr
- Only a small increase in Mp in 70Kr

Shape change in the mirror nuclei 70Se and 70Kr
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Shapes of the A = 70 triplet
Heaviest isospin triplet where all three matrix elements are experimentally known

Mp(E2; 0+
1 → 2+

1 ) value of 70Kr significantly larger than in 70Se

3σ deviation from the extrapolation of a linear relation ship Mp(Tz)

Isospin mixing of T = 0, 1 states in 70Br?

No close-lying 2+ states known
Isospin mixing cannot explain the increase in collectivity
in 70Kr

A shape change of the mirror nuclei 70Se and 70Kr
can explain the result

Is 70Kr prolate?
Low-energy Coulomb excitation could help,
but experiment presently out of reach
cf. 70Kr intensity 15 pps

What about other medium-mass
T = 1 triplets?
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Precision test of isospin symmetry
Systematic uncertainties from different measurements
→ use same technique for all three members of a triplet

New experiment: Coulomb excitation of A = 62, T = 1 triplet
using identical target, beam energy, and detector

Cancellation of systematic uncertainties
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Precision test of isospin symmetry
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Deformation and collectivity at N = Z

What changes for A = 70?
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A = 62 triplet well in shell-model regime K. Wimmer, P. Ruotsalainen, S.M. Lenzi et al., Phys. Lett. B 847 (2023) 138249.

Strong onset of collective behavior from 72Kr

Maximum collectivity and deformation observed for 76Sr
R. D. O. Llewellyn et al., Phys. Rev. Lett. 124 (2020) 152501.

For N = Z curious odd-odd versus even-even staggering
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Deformation and collectivity at N = Z

deformation β
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prolateoblate Nuclei around A = 80 are very strongly deformed

Small changes in the single-particle structure can lead to drastic
change in deformation

Contribution of p orbitals to radial Coulomb term quenched due to
decrease in radius A. Fernández et al., Phys. Lett. B 823 (2021) 136784.

Coulomb interaction depends on spatial configuration of protons
70Kr currently out of reach for shell model calculations
required model space is at least pf5/2g9/2, but excitations beyond
50 and below 28 are required to appropriately model the
collectivity

Fully microscopic description of the deformation in the region yet to be attained

In a region where deformation and collectivity rise, a small change in the
configuration of protons and neutrons can cause large difference in shape
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Shape coexistence
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Shape coexistence in Kr isotopes
Proton-rich Kr (Z = 36) isotopes show a variety of shapes

Self-consistent beyond mean-field calculations of potential energy surface
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T. R. Rodrı́guez, Phys. Rev. C 90 (2014) 034306.

Spherical 76,78Kr

Degenerate minima in 74Kr: shape coexistence and mixing
E. Clement et al., Phys. Rev. C 75 (2007) 054313.

72Kr: oblate ground state and rapid oblate - prolate transition with increasing spin
A. Gade et al., Phys. Rev. Lett. 95 (2005) 022502, H. Iwasaki et al., Phys. Rev. Lett. 112 (2014) 142502.

Second minimum: excited 0+ state in 72Kr with large difference in deformation
E. Bouchez et al., Phys. Rev. Lett. 90 (2003) 082502.

Prediction for 70Kr: oblate deformed
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Higher order deformation
K r (Z = 36) Se (Z = 34) Ge (Z = 32)

M. Spieker et al., Phys. Rev. C 106 (2022) 054305.

Large octupole and hexadecupole deformation
inferred from inelastic scattering M. Spieker et al., Phys. Lett. B 841 (2023) 137932.
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Shape coexistence at N = Z − 2?
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Inelastic scattering of 70Kr on Be target

One- and two-neutron removal reaction from 71,72Kr

Likely-hood fit to obtain γ-ray transitions energies
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K. Wimmer et al., Phys. Lett. B 785 (2018) 441.

Coexisting excited band in 70Kr
0+ states still missing in 70Se and 70Kr
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Shape coexistence at N = Z − 2?

New excited states in 66Se

SCCM calculations show
rough agreement with data

Coexisting triaxial-deformed
configurations

Ground-state band more
oblate

Excited band more prolate
Z. Elekes et al.,

Phys. Lett. B 844 (2023) 138072.
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Relativistic Coulomb excitation of 72Kr
High-spin 72Kr level scheme well known from fusion evaporation reactions

N. S. Kelsall et al., Phys. Rev. C 64 (2001) 024309, S. M. Fisher et al., Phys. Rev. C 67 (2003) 064318.

Excited states in 72Kr populated in inelastic scattering off Be and Au targets
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Four new transitions observed

1148(5) keV transition also in Coulomb excitation → new 2+ state

947(7) keV transition in coincidence → new 4+ state
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Two-band mixing model

Physical Jπ = 0+, 2+, and 4+ states are mixture of pure
prolate and oblate configurations:

|J+
1 ⟩ = +aJ |J+

p ⟩+ bJ |J+
o ⟩

|J+
2 ⟩ = −bJ |J+

p ⟩+ aJ |J+
o ⟩

Yrast band prolate deformed at high spin
R. B. Piercey et al., Phys. Rev. Lett. 47 (1981) 1514.

Extrapolation using variable moment of inertia I = I0 + ω2I1
→ unperturbed energies

+
10

+
12

+
14

band 1

Kr72

+
20

+
22

+
24

band 2

ground state oblate dominated
E. Bouchez et al., Phys. Rev. Lett. 90 (2003) 082502.

New 2+
2 and 4+

2 states allow to extend the mixing analysis
Inversion with oblate ground state, rapid transition towards prolate yrast states
In agreement with interpretation of B(E2; 4+

1 → 2+
1 )

H. Iwasaki et al., Phys. Rev. Lett. 112 (2014) 142502.
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Results for 72Kr
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Nuclear deformation length and E2 matrix elements obtained from comparison with FRESCO (DWCC)
calculations

state βN βC B(E2 ↑) (e2fm4) this prev.
2+

1 0.309(2)(9)(8) 0.296(3)(11)(13) 4023(81)stat.(290)syst.(380)theo. 4997(647)
4050(750)

2+
2 0.123(4)(5)(3) 0.112(3)(4)(5) 665(39)stat.(58)syst.(63)theo. -

A. Gade et al., Phys. Rev. Lett. 95 (2005) 022502, H. Iwasaki et al., Phys. Rev. Lett. 112 (2014) 142502.

Different deformation → shape coexistence
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Transition strengths in the mixing model

So far, only energies are considered to obtain a, bJ :
b2

0 = 0.881, b2
2 = 0.256, and b2

4 = 0.028

Matrix elements (transitions between the pure configurations are forbidden)

⟨2+
1 ||E2||0+

1 ⟩ = b0b2⟨2+
o ||E2||0+

o ⟩+ a0a2⟨2+
p ||E2||0+

p ⟩
⟨2+

2 ||E2||0+
1 ⟩ = b0a2⟨2+

o ||E2||0+
o ⟩ − a0b2⟨2+

p ||E2||0+
p ⟩

⟨4+
1 ||E2||2+

1 ⟩ = b2b4⟨4+
o ||E2||2+

o ⟩+ a2a4⟨4+
p ||E2||2+

p ⟩
⟨0+

2 ||E0||0+
1 ⟩ = a0b0(⟨0+

o ||E0||0+
o ⟩ − ⟨0+

p ||E0||0+
p ⟩)
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Transition strengths in the mixing model

So far, only energies are considered to obtain a, bJ :
b2

0 = 0.881, b2
2 = 0.256, and b2

4 = 0.028

Matrix elements (transitions between the pure configurations are forbidden)
4+ states pure a4 = 1, deformation β from reduced transition probability

B(E2; Ji → Jf ) =
5

16π
(eQ0)

2 |⟨Ji Ki 20|Jf Kf ⟩|2

Qo/p
0 = ZR2 3√

5π

(
βo/p + 0.36β2

o/p

)

B(E2; 2+1 → 0+1 ) =

(
3e

4π
R2Z

)2

|⟨2020|00⟩|2 [b0b2(1 + 0.36βo)βo + a0a2(1 + 0.36βp)βp]
2

B(E2; 2+2 → 0+1 ) =

(
3e

4π
R2Z

)2

|⟨2020|00⟩|2 [b0a2(1 + 0.36βo)βo − a0b2(1 + 0.36βp)βp]
2

B(E2; 4+1 → 2+1 ) =

(
3e

4π
R2Z

)2

|⟨4020|20⟩|2 [a2(1 + 0.36βp)βp]
2

ρ2(E0; 0+2 → 0+1 ) =

(
3e

4π
Z

)2

a2
0b2

0 (βo − βp)
2
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Transition strengths in the mixing model

So far, only energies are considered to obtain a, bJ :
b2

0 = 0.881, b2
2 = 0.256, and b2

4 = 0.028
Matrix elements (transitions between the pure configurations are forbidden)
4+ states pure a4 = 1, deformation β from reduced transition probability

B(E2; Ji → Jf ) =
5

16π
(eQ0)

2 |⟨Ji Ki 20|Jf Kf ⟩|2

Qo/p
0 = ZR2 3√

5π

(
βo/p + 0.36β2

o/p

)
Equation system with many possible signs

Using a2
0 = 0.256, a2

2 = 0.744 from the energies

Overlap in the region βo = 0.24 and βp = 0.45

Shape coexistence and mixing

K. Wimmer et al., Eur. Phys. J. A 56 (2020) 159.
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Comparison to theoretical calculations

+0 0 keV +0 0 keV +0 0 keV
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+0 1038 keV

+0 287 keV

+2 710 keV +2 728 keV

+2 397 keV

+2 1148 keV

+2 1251 keV

+2 517 keV

133

100

9

57.0

010

2.2

805 691 1603
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<376

< 3.5
1204
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2123
100

1752

460

exp. HFB-5DCH SCCM

Beyond mean field calculations using Gogny
D1S interaction

HFB-5DCH calculations
J. P. Delaroche et al., Phys. Rev. C 81 (2010) 014303.

SCCM method
T. R. Rodrı́guez, Phys. Rev. C 90 (2014) 034306.

Both in expanded spaces

Reproduce B(E2; 2+
1 → 0+

1 ) rather well
HFB-5DCH calculations over predict the 0+

2 energy
Moderately oblate 2+

1 and stronger prolate deformation for 2+
2

SCCM calculations over predict the deformation, too small energies, large quadrupole moments
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Comparison to theoretical calculations
Probability densities (HFB-5DCH method) and collective wave functions (SCCM)
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5DCH: 0+
1 and 2+

1 oblate, transition to prolate for 4+
1

SCCM: shape coexistence of oblate 0+
1 and prolate 0+

2 , strong mixing of 2+ states

Coexistence and shape change along yrast band
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Comparison to theoretical calculations
Probability densities (HFB-5DCH method) and collective wave functions (SCCM)
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Comparison to theoretical calculations
Probability densities (HFB-5DCH method) and collective wave functions (SCCM)
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Summary: Nuclei at N = Z

Their properties influence nucleosynthesis

Mass measurements and proton-capture reactions

Lifetimes of proton-unbound nuclei
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M
p
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fm
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70Kr

70Br

70Se
Isospin symmetry of multipole matrix elements violated at
A = 70

Shape change in the mirror nuclei 70Se and 70Kr

Symmetry preserved in A = 62 system

Interesting region of large ground state deformation
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R. Gernhäuser, D. Jenkins, A. Jungclaus, S. Koyama,
T. Motobayashi, S. Nagamine, M. Niikura, A. Obertelli,

D. Lubos, B. Rubio, E. Sahin, H. Sakurai, T. Saito, L. Sinclair,
D. Steppenbeck, R. Taniuchi, V. Vaquero, R. Wadsworth, and

M. Zielinska

RIBF151
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