

The deuteron as a six-quark state in QCD The deuteron as a six-quark
state in QCD
state with the state with an article Physics
designated the distribution and Experimental P article Physics
that the distribution and Experimental P article Physics
Mostruaty of Gra ²Faculty of Science s of the Unive rsity of Lis bon The deuteron as a
state in QCD
A. Nunes¹, A. Arriaga^{1,2}, G. Eichmann^{1,3}, T. Peña^{1,4}
Haboratory of Instrumentation and Experimental Particle Physics
²¹University of Graz
²¹University of Graz
Anstituto Superior T The deuteron as a six
state in QCD
A. Nunes¹, A. Arriaga^{1,2}, G. Eichmann^{1,3}, T. Peña^{1,4}
A. Nunes¹, A. Arriaga^{1,2}, G. Eichmann^{1,3}, T. Peña^{1,4}
^{2E}holisty of Instrumentation and Experimental Particle Physics

A. Nunes¹, A. Arriaga^{1,2}, G. Eichmann^{1,3}, T. Peña^{1,4} And an ann an ainm

Motivation

pentaquark.

- \circ Problem: Nuclear interaction not well understood from a fundamental level.
- \circ In a NR context, short-range interaction terms are purely phenomenological \Rightarrow large number of fitted parameters.
- \circ In a **R context**, hadrons with two to five valence quarks are being studied.
- \circ Goal: the study of the simplest non-trivial nucleus, the deuteron, from quarks and gluons degrees of freedom.

Quantum Chromodynamics (QCD)

 $\begin{array}{l} \n\mathbf{S} \begin{bmatrix} \mathbf{QCD} \end{bmatrix} \end{array}$

Fig.3 – Behavior of Green functions

near a pole for a 6-point function.
 $G^{(3)} \rightarrow$ Green function
 $\Psi \rightarrow$ Bethe-Salpeter Wave Function **S** (**OCD**)
Fig.3 – Behavior of Green functions
near a pole for a 6-point function.
 $G^{(3)} \rightarrow$ Green function
 $\Psi \rightarrow$ Bethe-Salpeter Wave Function
 $m_{\lambda} \rightarrow$ Mass of the bound state **OCD**
Behavior of Green functions
pole for a 6-point function.
Green function
the-Salpeter Wave Function
Mass of the bound state $\begin{array}{ll} \bullet & \bullet \\ \mathsf{P} & \mathsf{Behavior} \end{array}$ $\begin{array}{ll} \bullet & \mathsf{Behavior} \end{array} \ \bullet \ \mathsf{Green}\ \mathsf{functions} \\ \mathsf{Bethe-Salpeter Wave Function} \\ \mathsf{Bethe-Salpeter Wave Function} \\ \bullet \ \mathsf{Mass}\ \mathsf{of} \ \mathsf{the}\ \mathsf{bound}\ \mathsf{state} \\ \dots, k_j\}, P) \bar{\Psi}(\{q_1,...,q_j\}, P) \end{array}$

Quantum Chromodynamics (QCD)						
$\frac{k_i}{k_j}$	$G^{(3)}$	$\frac{q_i}{q_j}$	$\frac{p^2 \rightarrow -m_i^2}{q_j}$	$\frac{W}{k_j}$	$\frac{q_i}{\Psi}$	$\frac{q_i}{q_j}$
$G(x_1,...,x_j,y_1,...,y_j) = \langle 0 \hat{T} \left(\prod_{i=1}^j \psi(x_i) \right) \left(\prod_{i=1}^j \bar{\psi}(y_i) \right) 0 \rangle$	$\frac{P^2 \rightarrow -m_A^2}{P^2 \rightarrow m_A^2}$	$\frac{\Psi(\lbrace k_1,...,k_j \rbrace, P) \bar{\Psi}(\lbrace q_1,...,q_j \rbrace, P)}{P^2 + m_A^2}$				

Model

-
- **1.** SU(2) flavor symmetry;
2. The six quarks are divided into two nucleons:

Model
2. The six quarks are divided into two nucleons:
Deuteron amplitude Nucleon-nucleons
 3. The six quarks are divided into two nucleons:

Deuteron amplitude
 $\psi_{aa'} = \Psi_a S_a^N \Psi_{a'} S_{a'}^N \Gamma_{aa'}$

3. The nucleon is approximated as a quark-diquark bound state because:
 \circ the two-body force is dominant: color t Deuteron amplitude Nucleon-nucleon amplitude

- - \circ the two-body force is dominant: color trace for the leading three body irreducible interaction vanishes;
	- \circ to form a **color singlet** (the nucleon), two quarks must belong to an attractive color anti-triplet.

Model

o The six-body kernel takes the form:

o The four-point function is approximated as:

Quark Exchange

$$
\Gamma^{\lambda}(p, P) = \int \frac{d^4q}{(2\pi)^4} \int \frac{d^4k}{(2\pi)^4} \bar{\Psi}^{\mu'}(r'_1, p_1) S(l_1) \Psi^{\nu}(r_2, q_2) \left[\Phi^{\lambda}(q, P) \right]^T
$$

$$
\times D^{\mu'\mu}(k_1) \left[\bar{\Psi}^{\nu'}(r'_2, p_2) S(l_2) \Psi^{\mu}(r_1, q_1) \right]^T D^{\nu'\nu}(k_2)
$$

$$
\Phi^{\lambda}(q, P) = S^{N}(q_{1})\Gamma^{\lambda}(q, P)[S^{N}(q_{2})]^{T} \longrightarrow BSWF
$$

\n
$$
S^{N}(q_{i}) \longrightarrow SU(2)
$$

\n
$$
O6/15
$$

\n
$$
S^{N}(q_{i}) \longrightarrow U^{N}(\mu_{i})
$$

\n
$$
S^{N}(q_{i}) \
$$

Solution Strategy

o To obtain the deuteron mass we solve an eigenvalue problem:

 $KG\Gamma^{\mu} = \lambda(P)\Gamma^{\mu}$

o The BSA is divided in three components:

o The propagators and amplitudes in the kernel were calculated using the AWW interaction with rainbow ladder truncation.

Meson Exchange

- o Flavor component: different flavor factor for charged and neutral pions;
- o Color component;
- \circ Meson amplitudes calculated using the AWW interaction with rainbow ladder truncation.

Pion-Nucleon Vertex

o The pion-nucleon vertex is approximated as:

o The nucleon amplitudes are normalized to reproduce the pion-nucleon coupling constant on-shell:

$$
\Psi^{\mu} \longrightarrow \Psi^{\mu}/\sqrt{N} \,, \qquad N = 0.61
$$

Results: Quark Exchange

Fig.10 $-$ Inverse of the ground state eigenvalue as a function of the deuteron mass for the quark exchange.

Fig.11 - Inverse of the eigenvalue as a function of the deuteron mass for the quark exchange. Ground, first exited and second excited states.

Results: Pion Exchange

11/15 momentum contributions (bottom) of the pion exchange.

Results: Scalar Exchange

12/15 momentum contributions (bottom) of the scalar exchange.

Results: Individual Contributions

and orbital angular momentum contributions (bottom) of the scalar exchange.

Results: Different Sums

angular momentum contributions (bottom) of the scalar exchange.

Conclusions and Future Work

o Conclusions:

- **Conclusions and Future Work**
 1. P-wave contribution is significant in relativistic calculations, although it is

forbidden in NR calculations;

2. No exited states predicted; forbidden in NR calculations; **Conclusions and Future**
 Conclusions:

1. P-wave contribution is significant in relativistic cal

forbidden in NR calculations;

2. No exited states predicted;

3. Scalar exchange is the dominant interaction (pion

calc **1.** P-wave contribution is significant in relativistic calculations, although if forbidden in NR calculations;

2. No exited states predicted;

3. Scalar exchange is the dominant interaction (pion exchange dominant calcul 2. P-wave contribution is significant in relativistic calculations, although it
forbidden in NR calculations;
2. No exited states predicted;
3. Scalar exchange is the dominant interaction (pion exchange dominant i
calculat
-
- **Conclusions and Future Work**

I. P-wave contribution is significant in relativistic calculations, although it is

forbidden in NR calculations;

2. No exited states predicted;

3. Scalar exchange is the dominant interacti calculations); **Conclusions and Future Work**

Unclusions:

1. P-wave contribution is significant in relativistic calculations, although it is

forbidden in NR calculations;

2. No exited states predicted;

3. Scalar exchange is the domin 2. No exited states predicted;
3. Scalar exchange is the dominant interaction (pion
calculations);
4. Diquark exchange might be the origin of short-ran
ture work:
1. Substitute AWW interaction with Maris-Tandy interactio
-

o Future work:

-
-
-