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Size fluctuations
Motivation

Size fluctuations of the initial conditions

m Events with the same number of wounded nucleons N,, may have different
shape and size.

(r) =2.83 fm

Two examples? of non-central 197 Au + 197 Au collision with N, = 198.

2GLISSANDO WB, M. Rybczynski, P. Bozek, Comput. Phys. Commun. 180 (2009) 69
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Size fluctuations
Motivation

Size fluctuations of the initial conditions

m Events with the same number of wounded nucleons N,, may have different
shape and size.

Two examples? of non-central 197 Au + 197 Au collision with N, = 198.

smaller size — larger gradients — larger hydrodynamic flow —
— larger pr ( and vice versa)

2GLISSANDO WB, M. Rybczynski, P. Bozek, Comput. Phys. Commun. 180 (2009) 69
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Event-by-event fluctuations

average size fluctuations

m average of the transverse size in a
given event
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m convenient measure — scaled standard deviation for set N,,
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Oscaled = <<I’>>

In the wounded nucleon model the oscaeq is insensitive to onn.
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In the mixed model ($Nw + (1 — o) Nuin) @ moderate change with oy is caused by the
different admixture of the binary collisions profile which is much more sensitive to

fluctuations.
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e-by-e hydrodynamics
fluctuating initial conditions
m Instead of 100 000 events, two are enough!
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fluctuating initial conditions
e-by-e hydrodynamics

fluctuating initial conditions
m Instead of 100 000 events, two are enough!

m Size of the initial condition for hydrodynamics (energy density profile) is scaled
up and down according to the scaled variance.

m No e-by-e energy fluctuations (could be included).
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Event-by-event fluctuations fluctuating initial conditions

e-by-e hydrodynamics
fluctuating initial conditions

m Instead of 100000 events, two are enough!

m Size of the initial condition for hydrodynamics (energy density profile) is scaled
up and down according to the scaled variance.

m No e-by-e energy fluctuations (could be included).
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initial central temperature is changed from 455 MeV to 466 MeV (squeezed) or 445 MeV
(stretched) profile — total energy is the same.
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Results
distributions of (r) and {(pr)
m The distribution of the (r) is approximately Gaussian

_ 2
f“ﬂ)NeXp<_£%%Eé%¥l>

Imagine we ran simulations with fixed (r) (no size fluctuations). Then particles would have
some average momentum pr

m Since hydrodynamic evolution is deterministic, pr is a (very complicated)
function of (r).

m Now let us include fluctuations of (r). We can use Taylor expansion
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m The statistical distribution of (pr) is

~(pr — {{pr)))?

f(Br) ~ exp )
202((r)) (%5 )
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scaled variance of < pr >
Results

scaled variance of (pr)

m The full statistical distribution f({pr)) in a given centrality class is a folding of the
statistical distribution of (pr) at a fixed initial size, centered around a certain pr,
with the distribution of pr centered around ({pr)).

f({pr)) ~ /dzbrexp (—M) exp (WW>

2 2
20 Gat 2‘7dyn

((pr) — ((pr)))?
~ exp |- L
( 2 (Ugtat + ngn) )

where oq ((pr)) = o((r)) 5 is extracted by the experimentalists.
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Results

comparison with STAR data

STAR vs hydro

viscosity vs perfect fluid

' 2410 Hydro with Vlscus\ty (Bozek) A © 241D Hydro with Vlscosny (Bozek)
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m scaled variation for 2+1 boost invariant hydro with bulk&shear viscosity, Glauber

mixed IC (red doted circles) by Piotr Bozek

perfect hydro 2+1 B-l and 3+1, Glauber mixed IC (blue symbols)
overal amazing agreement when viscosity is introduced!

perfect hydro mixed model overshoots data by 20%
approximate scaling oayn/{(pr)) ~ 1/+/Nw holds
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connection to the EoS
Results

connection to the EoS®
m scaled variance of (pr) is connected to thermodynamics
oan__ Po((s) _ ,Palin)
((pr)) & ((s) e {(N)

where s is the entropy density, € energy density, and P the pressure

3Jean-Yves Ollitrault, Phys. Lett. B 273 (1991)
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connection to the EoS
Results

connection to the EoS®
m scaled variance of (pr) is connected to thermodynamics
oan__ Po((s) _ ,Palin)
((pr)) & ((s) e {(N)

where s is the entropy density, € energy density, and P the pressure
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m We can study this way the average properties of the equation-of-state i.e. its
stiffness

3Jean-Yves Ollitrault, Phys. Lett. B 273 (1991)
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Conclusions

m a few percent fluctuations at the initial size of the collision explains
the bulk of the experimental (pr) fluctuations

m viscosity lowers the fluctuations by about 20%, which helps to go
exactly through the data (perfect hydro gives a bit too much)

m proper scaling with the number of wounded nucleons
agyn/{(pT)) ~ 1/+/Nw — proper dependence on centrality

m a weak dependence on energy

m our (pr) fluctuations should be considered as the main geometric
background for studying further effects like: (mini) jets, clusters,
temperature fluctuations, etc.

m average information on P/e according to Ollitrault’s formula
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Viscous 2+1 B-l hydrodynamics

by Piotr Bozek
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Bozek viscous hydrodynamics

Viscous 2+1 B-l hydrodynamics
by Piotr Bozek
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m shear viscosity in QGP & HG /s = 0.1
m bulk viscosity only in HG with (/s = 0.04 — 0.03
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Results
comparison with PHENIX data
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m 2+1D B-l perfect fluid hydrodynamics with wounded nucleon IC (blue crosses)
and with the mixed model IC (red crosses.)
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GLauber Initial-State Simulation AND mOre
GLISSANDO

GLauber Initial-State Simulation AND mOre

The algorithm:
B nucleon positions generated according to the Woods-Saxon distribution,

m a short-range repulsion is simulated by keeping the distance (d > 0.4 fm)
between the nucleons,

Overlapping nucleons in the transverse plane

Mikotaj Chojnacki (IFJ PAN) pT fluctuations 5 December 2009 15/18



Nuclear density profiles
GLISSANDO

Nuclear density profiles
Nucleons interact if the distance d = \/oxx /7.
Three models for constructing the nuclear density profile are consider:
m Wounded Nucleons [Bialas, Bleszynski, Czyz, 1976],
m Binary Collisions,
m mixture of the two above, where « is the fraction of the binary collisions taken.

The inelastic cross-section onxn varies from 32 mb (SPS), 42 mb (RHIC) to 63 mb at
the LHC.

Wounded Nucleons Binary Collisions
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il Gzl
Hydrodynamics with statistical hadronization

Initial condition

initial transverse energy density profile — Gaussian fit to GLISSANDO

2 2
e(x,y) = eo(Ti) exp (*2732 -7

m parameters a, b and T; depend on centrality,
m eccentricity fluctuations are included,
m a and b are fitted to reproduce the GLISSANDO’s (x) and (y),
m T is fitted to reproduce the correct particle multiplicity
c [%] \ 0-5 5-10 10-20 20-30 30-40 40-50 50-60 60-70
a [fm] 270 2.54 2.38 2.00 1.77 1.58 1.40 1.22
b [fm] 293 2.85 2.74 2.59 2.45 2.31 2.16 2.02
T; [MeV] | 500 491 476 455 429 398 354 279
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average transverse momentum
Results

average transverse momentum

m event-averaged transversed momentum ((pr))

<<pr>> [MeV]
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m solid line: averaged over whole pr range,
dashed line: STAR cuts 0.2 GeV < pr <2 GeV

m experimental points from STAR Collaboration Phys. Rev. C 79, 034909 (2009)
extrapolated to full pr range
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