# Two photon physics in the timelike and spacelike regions 

$\sqrt{6}$ HELMHOLTZ | ASSOCIATION

Helmholtz Institute Mainz


## Carl E. Carlson

The College of William and Mary in Virginia \& Helmholtz Institute, Johannes Gutenberg-University, Mainz (for ca. 6 months) International Workshop, "The Structure and Dynamies of Hadrons" Hirschegg, Kleinwalsertal, Austria, 16-22 January 2011

## "Abstract"

- Comments on two-photon physics
- Discuss new muonic Lamb shift meaurements
- Relativistically, example of two-photon physics
- Done before, but revisited with Marc Vanderhaeghen
- Review and critique of old two-photon results


## Proton charge radius

- Strikingly interesting because of new experiment measuring proton charge radius from finite proton size effects on the Lamb shift in muonic hydrogen
- Two "old" methods
- Electron scattering: get charge radius from derivative of form factor,

$$
R_{E}^{2} \equiv-\left.6 \frac{d G_{E}\left(Q^{2}\right)}{d Q^{2}}\right|_{Q^{2}=0}=(0.879(8) \mathrm{fm})^{2}
$$

from Bernauer et al. (2010).

- Atomic physics: measure energy levels (Lamb shift, etc.) and isolate proton size dependent terms. Gives

$$
R_{E}=0.8768(69) \mathrm{fm}
$$

using average from CODATA (2006).

## Spectrum of electronic Hydrogen (not to scale)



## Charge radius from Lamb shift

- Lamb shift, muonic hydrogen. Muon about 200 times closer than electron, proton size effects magnified. Long anticipated $0.1 \%$ measurement of charge radius.
- Obtained $R_{E}=0.84184$ (67) fm
- $4 \%$ or 5 (old) $\sigma$ lower than CODATA value

- Method: Induce $2 S \rightarrow 2 P$ with tuned and well calibrated laser. $2 S$ metastable; delay laser pulse until most other muons cascaded down to 15 state. Success in tuning laser signaled by $X$-ray from 2P to $1 S$ transition.
- More on $n=2$ for muonic hydrogen:
- Lamb shift dominated by vacuum polarization, drops 2S state by a lot

- Experiment measures $2 \mathrm{~F}=1$ to $2 P_{3 / 2} F=2$ level ( $F$ is total angular momentum)
- Calculation $=$ Measurement $\Rightarrow$ stated $R_{E}$

$$
209.9779(49)-\left(5.2262 R_{E}^{2}-0.0347 R_{E}^{3}\right)=206.2949(32) \mathrm{meV}
$$

- Experiment says corrections are $\approx 300 \mu \mathrm{eV}$ below expectation Either have smaller radius or must find $-300 \mu \mathrm{VV}$ further corr. Note: $R_{E}^{3}$ term is about $-27 \mu \mathrm{VV}$


## LO calculation (Relativistic)

- One photon exchange in momentum space
- One photon exchange in perturbation theory won't give a bound state, but corrections to one-photon exchange can be treated
 perturbatively.

$$
\mathcal{M}=-\frac{e^{2}}{q^{2}} \bar{u}\left(k^{\prime}\right) \gamma_{\mu} u(k) \bar{u}\left(p^{\prime}\right)\left[\gamma^{\mu}\left(F_{1}-1\right)+\frac{i}{2 M} \sigma^{\mu v} q_{v} F_{2}\right] u(p)
$$

- General:

$$
\Delta E=-\frac{\mathcal{M}}{\text { state normalization }} \phi_{n}^{2}(0)
$$

- O.k. to use: $\bar{u}\left(k^{\prime}\right) \gamma_{\mu} u(k) \rightarrow \bar{u}(k) \gamma_{\mu} u(k)=2 m g_{\mu 0}$


## LO calculation (Relativistic)

- Get

$$
\Delta E=-4 \pi \alpha\left(F_{1}^{\prime}(0)-\frac{1}{4 M^{2}} F_{2}(0)\right) \phi_{n}^{2}(0)
$$

- Remember

$$
G_{E}\left(Q^{2}\right)=F_{1}\left(Q^{2}\right)-\frac{Q^{2}}{4 M^{2}} F_{2}\left(Q^{2}\right)
$$

- to get

$$
\Delta E=-4 \pi \alpha G_{E}^{\prime}(0) \phi_{n}^{2}(0)=\frac{2 \pi \alpha}{3} R_{E}^{2} \phi_{n}^{2}(0)
$$

- Really is charge radius. Original NR calculation Karplus, Klein, Schwinger (1952)
- $O\left(\alpha^{4}\right)$ correction overall, since $\phi_{n}^{2}(0)=m_{r}^{3} \alpha^{3} /\left(\pi n^{3}\right)$


## Next order calculation

- The experimenters also kept an $O\left(\alpha^{5}\right)$ proton structure-dependent correction, found by Friar (1979)

$$
\Delta E=\frac{2 \pi \alpha}{3} \phi(0)^{2}\left(R_{p}^{2}-\frac{1}{2} m_{r} \alpha R_{(2)}^{3}\right)
$$

where nonrelativisticaly

$$
R_{(2)}^{3}=\int d^{3} r_{1} d^{3} r_{2}\left|r_{1}-r_{2}\right|^{3} \rho_{E}\left(r_{1}\right) \rho_{E}\left(r_{2}\right)
$$

- reminiscent of integral found by Zemach in a related context; Friar called it the 3rd Zemach moment.


## Next order calculation (NR)

- Note for later:
- NR,

$$
\rho_{E}(r)=\int\left(d^{3} q\right) e^{i \vec{q} \cdot \vec{r}} G_{E}\left(q^{2}\right)
$$

- Then,

$$
R_{(2)}^{3}=\frac{48}{\pi} \int_{0}^{\infty} \frac{d q}{q^{4}}\left[G_{E}^{2}(q)-1-2 q^{2} G_{E}(0) \frac{d G_{E}}{d q^{2}}(0)\right]
$$

## HO corrections

- Modern: HO corrections come from two-photon exchange, and calculation done using field theory

- Result involves Compton tensor,

$$
\begin{aligned}
& T^{\mu \nu}(p, q)=\frac{i}{8 \pi M} \int d^{4} x e^{i q x}\langle p| T j^{\mu}(x) j^{\nu}(0)|p\rangle \\
& =\left(-g^{\mu \nu}+\frac{q^{\mu} q^{v}}{q^{2}}\right) T_{1}\left(v, Q^{2}\right) \\
& +\frac{1}{M^{2}}\left(p^{\mu}-\frac{p \cdot q}{q^{2}} q^{\mu}\right)\left(p^{\nu}-\frac{p \cdot q}{q^{2}} q^{v}\right) T_{2}\left(v, Q^{2}\right) \\
& \quad\left(q^{2}=-Q^{2}, \quad v=p \cdot q / M\right)
\end{aligned}
$$

## HO corrections

- Straightforwardly get energy shift in terms of $T_{1}, T_{2}$,

$$
\begin{aligned}
\Delta E & =\frac{8 \alpha^{2} m}{\pi} \phi_{n}^{2}(0) \int d^{4} Q \\
& \times \frac{\left(Q^{2}+2 Q_{0}^{2}\right) T_{1}\left(i Q_{0}, Q^{2}\right)-\left(Q^{2}-Q_{0}^{2}\right) T_{2}\left(i Q_{0}, Q^{2}\right)}{Q^{4}\left(Q^{4}+4 m^{2} Q_{0}^{2}\right)}
\end{aligned}
$$

(with Wick rotation $q_{0}=i Q_{0}, \quad \vec{Q}=\vec{q}$ )

- Minor problem: We don't know what $T_{1}$ and $T_{2}$ are. But we know their imaginary parts, because they are the structure functions measured in DIS at Measured at SLAC, DESY, Bonn, JLab, Mainz, .....

$$
\begin{aligned}
& \operatorname{Im} T_{1}\left(v, Q^{2}\right)=\frac{1}{4 M} F_{1}\left(v, Q^{2}\right) \\
& \operatorname{Im} T_{2}\left(v, Q^{2}\right)=\frac{1}{4 v} F_{2}\left(v, Q^{2}\right)
\end{aligned}
$$

## HO corrections

- Record of Born contributions

$$
\begin{aligned}
& \Gamma^{\mu}=\gamma^{\mu} F_{1}\left(Q^{2}\right)+(i / \lambda M) \sigma^{\mu \nu} q_{v} F_{2}\left(Q^{2}\right) \\
& T_{1}^{B}=\frac{1}{4 \pi M}\left\{\frac{Q^{4} G_{M}^{2}}{\left(Q^{2}-i \epsilon\right)^{2}-4 M^{2} q_{0}^{2}}-F_{1}^{2}\left(Q^{2}\right)\right\} \\
& T_{2}^{B}=\frac{1}{\pi} \frac{M Q^{2}}{\left(Q^{2}-i \epsilon\right)^{2}-4 M^{2} q_{0}^{2}} \frac{G_{E}^{2}\left(Q^{2}\right)+\tau_{p} G_{M}^{2}\left(Q^{2}\right)}{1+\tau_{p}}
\end{aligned}
$$

## HO corrections

- Separate out pole terms, and write dispersion relations for $T_{1}$ and $T_{2}$ to obtain their real parts. $T_{1}$ requires a subtraction.

$$
T_{1}\left(q_{0}, Q^{2}\right)=T_{1}^{p o l e}+\bar{T}_{1}
$$

(The dispersion relation does not pick up the non-pole part of $T_{1}$.)

$$
\begin{aligned}
T_{1}\left(q_{0}, Q^{2}\right) & =T_{1}^{\text {pole }}\left(q_{0}, Q^{2}\right)+\bar{T}_{1}\left(0, Q^{2}\right)+\frac{q_{0}^{2}}{2 \pi M} \int_{v_{\text {th }}}^{\infty} d v \frac{F_{1}\left(v, Q^{2}\right)}{v\left(v^{2}-q_{0}^{2}\right)} \\
T_{2}\left(q_{0}, Q^{2}\right) & =T_{2}^{B}\left(q_{0}, Q^{2}\right)+\frac{1}{2 \pi} \int_{v_{\text {th }}}^{\infty} d v \frac{F_{2}\left(v, Q^{2}\right)}{v^{2}-q_{0}^{2}}
\end{aligned}
$$

## HO corrections

- Insert the DR result into the energy formula, do what integrals can be done, and obtain

$$
\Delta E=\Delta E^{\text {subt }}+\Delta E^{\text {inel }}+\Delta E^{e l}
$$

- $\Delta E^{e l}$ : shown on demand. Will note NR limit ( $M \rightarrow \infty$, m and proton size held fixed) gives NR result.
- $\Delta E^{\text {inel }}$ : shown on demand.
- $\Delta E^{\text {subt }}$ deserves some commentary

$$
\Delta E^{\text {subt }}=\frac{4 \pi \alpha^{2}}{m} \phi_{n}^{2}(0) \int_{0}^{\infty} \frac{d Q^{2}}{Q^{2}} \frac{\gamma_{1}\left(\tau_{\ell}\right)}{\sqrt{\tau_{\ell}}} \bar{T}_{1}\left(0, Q^{2}\right)
$$

$\tau_{\ell}=Q^{2} /\left(4 m^{2}\right)$
$\gamma_{1}\left(\tau_{\ell}\right)=\left(1-2 \tau_{\ell}\right)\left(\left(1+\tau_{\ell}\right)^{1 / 2}-\tau_{\ell}^{1 / 2}\right)+\tau_{\ell}^{1 / 2}$

## HO corrections

- Subtraction function due to excitations of proton, codified at low energy by effective Hamiltonian

Use here

$$
\begin{aligned}
& \mathcal{H}=-\frac{1}{2} 4 \pi \alpha_{E} \vec{E}^{2}-\frac{1}{2} 4 \pi \beta_{M} \vec{B}^{2} \\
& \lim _{v^{2}, Q^{2} \rightarrow 0} \bar{T}_{1}\left(v, Q^{2}\right)=\frac{v^{2}}{e^{2}}\left(\alpha_{E}+\beta_{M}\right)+\frac{Q^{2}}{e^{2}} \beta_{M}
\end{aligned}
$$

$$
\bar{T}_{1}\left(0, Q^{2}\right)=\frac{\beta_{M}}{4 \pi \alpha} Q^{2} F_{\pi}^{2}\left(Q^{2}\right)
$$

Starting point: PDG quotes $\beta_{M}=(1.9 \pm 0.5) \times 10^{-4} \mathrm{fm}^{3}$
But other analyses give

$$
\beta_{M}= \begin{cases}(4.0 \pm 0.7) \times 10^{-4} \mathrm{fm}^{3} & \text { Lensky and Pascalutsa (2009) } \\ (3.4 \pm 1.2) \times 10^{-4} \mathrm{fm}^{3} & \text { Beane et al. (2005) }\end{cases}
$$

Get

$$
\Delta E^{\text {subt }}=4.8 \mu \mathrm{eV} \times \frac{\beta_{M}}{\left(3.4 \times 10^{-4} \mathrm{fm}^{3}\right)}
$$

## HO corrections

- Results for $O(\alpha 5)$ proton structure-dependent terms.

Energy units are $\mu \mathrm{eV}$.

| $(\mu \mathrm{eV})$ | here | Pachucki (1999) | Martynenko (2005) |
| :--- | ---: | :---: | :---: |
| $\Delta E^{\text {subt }}$ | 4.8 | 1.8 | 2.3 |
| $\Delta E^{\text {inel }}$ | -12.7 | -13.9 | -13.8 |
| $\Delta E^{\text {el }}$ | -29.5 | -23.0 | -23.0 |
| $\Delta E$ | -37.4 | -35.1 | -34.5 |

- Different, but not $300 \mu \mathrm{~V}$ different.


## Two-photon section

- "Once upon a time" (2003) the elastic form factor ratio $G_{E_{p}} / G_{M p}$ appeared to depend whether it was measured using the Rosenbluth method or using polarization transfer.



## Two-photon section

- Putative solution: there were until then uncalculated two-photon corrections. They were not strikingly large, but had a big effect because the $G_{E p}$ contributions to the cross sections that the Rosenbluth measurements relied on were also not big.

- Some early papers:

Guichon, Vanderhaeghen (2003)
Blunden, Melnitchouk, Tjon (2003)
Chen et al. (2004)
Afanasev et al. (2005)

## Two-photon section

- At higher $Q^{2}$, calculate in terms of GPDs

- Lower part of diagram is GPD, upper part is electron-quark (same as electron-muon, mutatis mutando) elastic scattering
- General expression for LO + two-photon amplitude is

$$
\begin{aligned}
\mathcal{M}_{h, \lambda_{N}^{\prime} \lambda_{N}} & =\frac{e^{2}}{Q^{2}} \bar{u}\left(k^{\prime}, h\right) \gamma_{\mu} u(k, h) \\
& \times \bar{u}\left(p^{\prime}, \lambda_{N}^{\prime}\right)\left(\tilde{G}_{M} \gamma^{\mu}-\tilde{F}_{2} \frac{P^{\mu}}{M}+\tilde{F}_{3} \frac{\gamma \cdot K P^{\mu}}{M^{2}}\right) u\left(p, \lambda_{N}\right)
\end{aligned}
$$

## Two-photon section

- Three form factors:

$$
\begin{array}{ccc}
\tilde{G}_{M} & =G_{M}\left(Q^{2}\right)+\delta \tilde{G}_{M}\left(\varepsilon, Q^{2}\right) \\
\tilde{G}_{E} & =G_{E}\left(Q^{2}\right)+\delta \tilde{G}_{E}\left(\varepsilon, Q^{2}\right) \\
\tilde{F}_{3} & =0 & 0 \\
& \uparrow \tilde{F}_{3}\left(\varepsilon, Q^{2}\right) \\
& \text { ordinary FF } & \uparrow \uparrow \\
& \text { TPE }
\end{array}
$$

- The TPE corrections are not functions of one variable and in general are complex
- Calculated using GPD models available in 2004/2005.
- Calculated cross sections for Rosenbluth, but also had predictions for dependences of polarizations upon $\varepsilon$.


## Two-photon section

- Examples of polarization predictions


2- $\gamma$ corrections to polarization ratio - proton


## Two-photon section

- Now there are real data (GE-2Y experiment, M. Meziane et al, PRL, submitted), at $Q^{2}=2.64 \mathrm{GeV}^{2}$.


$\begin{aligned} & \text { (Above same } \\ & \left.\text { as } P_{\dagger} / P_{l},\right)\end{aligned} \quad \frac{P_{s}}{P_{l}}=-\sqrt{\frac{2 \varepsilon}{\tau(1+\varepsilon)}} \frac{G_{E}\left(Q^{2}\right)}{G_{M}\left(Q^{2}\right)}$
- Idea of Guttmann, Kivel, Meziane, \& Vanderhaeghen (1012.0564): Take above data, plus Rosenbluth data, and reverse formulas to find actual $\delta G_{M}, \delta G_{E}$, and $\delta F_{3}$. See how we did!


## Two-photon section

- Results given in terms of ratios (all for $Q^{2}=2.64 \mathrm{GeV}^{2}$ )

$$
\begin{aligned}
& Y_{2 \gamma}^{M}=\operatorname{Re} \frac{\delta \tilde{G}_{M}}{G_{M}} \\
& Y_{2 \gamma}^{E}=\operatorname{Re} \frac{\delta \tilde{G}_{E}}{G_{M}} \\
& Y_{2 \gamma}^{3}=\frac{s-u}{M^{2}} \operatorname{Re} \frac{\delta \tilde{F}_{3}}{G_{M}}
\end{aligned}
$$

- BTW: Old calculations qualitatively o.k. for $G_{M}$ and $F_{3}$, though too small, and flat for $G_{E}$.



## Two-photon section

- New prediction for $\sigma(e+p) / \sigma(e-p)$ considerably larger in magnitude.



## Final remarks

- The proton charge radius puzzle is a major problem
- Did not mention during talk: (g-2) ${ }_{\mu}$ experiment makes "new physics" explanations hard. New particles that might affect the Lamb shift also affect $(\mathrm{g}-2)_{\mu}$, and the accuracy of theory and experiment for $(\mathrm{g}-2)_{\mu}$ is very good.
- Have here reported redoing the modern analysis of $O\left(\alpha^{5}\right)$ or two-photon exchange corrections, with up to date form factors fits and inelastic structure function fits.
- Problem remains.
- On electron scattering two-photon side, new experiments remind us that old used model GPDs. Now enough data to extract 2-photon terms from data. One part of future: better GPDs.



## Extra

## Timelike $2 \gamma$

- p p-bar $\rightarrow e^{+} e^{-}$with $1 \gamma$ exchange is forwardbackward symmetric, i.e., even in $\cos \theta$. With $2 \gamma$ exchange, interference terms give an asymmetry.
- Feasibility study by Sudol+16, EPJA 44, 373 (2010)
- Calculations by Chen, Zhou, \& Dong, PRC 78, 045208 (2008) show few percent effects. Used only protons intermediate states (like Blunden et al. (2003))

$$
\frac{d \sigma}{d \Omega} \propto|\mathcal{M}(1 \gamma)|^{2}\left(1+\delta_{2 \gamma}\right)
$$

## Timelike $2 \gamma$

- from Chen, Zhou, \& Dong,

$$
\frac{d \sigma}{d \Omega} \propto|\mathcal{M}(1 \gamma)|^{2}\left(1+\delta_{2 \gamma}\right)
$$




## Box contributions to energy shift

- Elastic terms

$$
\begin{gathered}
\Delta E^{e l}=-\frac{\alpha^{2} m}{M\left(M^{2}-m^{2}\right)} \phi_{n}^{2}(0) \int_{0}^{\infty} \frac{d Q^{2}}{Q^{2}} \\
\times\left\{\left(\frac{\gamma_{2}\left(\tau_{p}\right)}{\sqrt{\tau_{p}}}-\frac{\gamma_{2}\left(\tau_{\ell}\right)}{\sqrt{\tau_{\ell}}}\right) \frac{G_{E}^{2}+\tau_{p} G_{M}^{2}}{\tau_{p}\left(1+\tau_{p}\right)}-\left(\frac{\gamma_{1}\left(\tau_{p}\right)}{\sqrt{\tau_{p}}}-\frac{\gamma_{1}\left(\tau_{\ell}\right)}{\sqrt{\tau_{\ell}}}\right) G_{M}^{2}\right\} \\
\tau_{p}=Q^{2} /\left(4 M^{2}\right), \quad \tau_{\ell}=Q^{2} /\left(4 m^{2}\right) \\
\gamma_{1}(\tau)=(1-2 \tau)\left((1+\tau)^{1 / 2}-\tau^{1 / 2}\right)+\tau^{1 / 2} \\
\gamma_{2}(\tau)=(1+\tau)^{3 / 2}-\tau^{3 / 2}-\frac{3}{2} \tau^{1 / 2}
\end{gathered}
$$

## Box contributions to energy shift

- Inelastic term
$\Delta E^{\text {inel }}=-\frac{2 \alpha^{2}}{m M} \phi_{n}^{2}(0) \int_{0}^{\infty} \frac{d Q^{2}}{Q^{2}} \int_{v_{\text {th }}}^{\infty} d v\left[\frac{\widetilde{\gamma}_{1}\left(\tau, \tau_{\ell}\right) F_{1}\left(v, Q^{2}\right)}{v}+\frac{\widetilde{\gamma}_{2}\left(\tau, \tau_{\ell}\right) F_{2}\left(\nu, Q^{2}\right)}{Q^{2} / M}\right]$

$$
\begin{aligned}
\tau & =v^{2} / Q^{2}, \quad \tau_{\ell}=Q^{2} /\left(4 m^{2}\right) \\
\widetilde{\gamma}_{1}\left(\tau, \tau_{\ell}\right) & =\frac{1}{\tau_{\ell}-\tau}\left(\sqrt{\tau_{\ell}} \gamma_{1}\left(\tau_{\ell}\right)-\sqrt{\tau} \gamma_{1}(\tau)\right) \\
\widetilde{\gamma}_{2}\left(\tau, \tau_{\ell}\right) & =\frac{1}{\tau_{\ell}-\tau}\left(\frac{\gamma_{2}(\tau)}{\sqrt{\tau}}-\frac{\gamma_{2}\left(\tau_{\ell}\right)}{\sqrt{\tau_{\ell}}}\right)
\end{aligned}
$$

## De Rújula idea

- De Rújula has form factor (PLB 693, 555 (2010))

$$
\begin{gathered}
G_{E} p\left(Q^{2}\right)=\frac{1}{M^{2} \cos ^{2} \theta+m^{2} \sin ^{2} \theta}\left[\frac{M^{2} \cos ^{2} \theta}{1+Q^{2} / M^{2}}+\frac{m^{2} \sin ^{2} \theta}{\left(1+Q^{2} / m^{2}\right)^{2}}\right] \\
\sin ^{2} \theta=0.3, \quad M=750 \mathrm{MeV}, \quad m=18 \mathrm{MeV}
\end{gathered}
$$

- Gives CODATA value for charge radius
- Gives "Friar radius" or 3rd Zemach moment

$$
\left(R_{(2)}^{3}\right)^{1 / 3}=3.27 \mathrm{fm}
$$

or about 2.35 times AMT result ( 1.39 fm , with 1.41 fm for new Mainz FF), or about 13 times bigger in cube. "Explains" the muonic hydrogen proton radius measurement.

## De Rújula idea

- Fits two numbers, but has trouble globally. Compare to Arrington, Melnitchouk, Tjon form factor,

- For regular Zemach radius, which goes into HFS, gives 0.95 fm , versus 1.08 fm for AMT (using AMT $\mathrm{G}_{\mathrm{M}}$ in both cases). Leads to 5 ppm excess in HFS, a big number in what is otherwise accurate to 1 ppm .

