Hadron Structure at BESIII

Marco Maggiora* on behalf of the BESIII Collaboration

* Dep. of General Physics, University of Turin and INFN, Turin

The Structure and Dynamics of Hadrons

International Workshop XXXIX on Gross Properties of Nuclei and Nuclear Excitations

Hirschegg, January 16th - 22nd, 2011

BEPCII: *e*⁺*e*⁻ double ring collider

Hirschegg 2011 anuary 16th - 22nd, 2011

The **BESIII** detector

A significant improvement with respect to BESII

Hirschegg 2011 🧱 January 16th - 22nd, 2011

The **BESII** and **BESIII** detectors

BESIII @ BEPCII

Device	Performance		
MDC	$\sigma_p/p = 1.7\% \sqrt{1+p^2} , \ dE/dx = 8\%$		
TOF	180 ps (bhabha)		
EMC	$\sigma_{\sf E}/{\sf E} < 22\%/\sqrt{{\sf E}}$		
MUC	3 layers		
Magnet	0.4 T Solenoidal		

Device	Performance
MDC	$\sigma_{p}/p = 0.5\% \ , \ dE/dx < 6\%$
TOF	80 ps barrel (bhabha), 100 ps endcap
EMC	$\sigma_{ extsf{E}}/ extsf{E} < 2.5\%/\sqrt{ extsf{E}}$
MUC	9 barrel + 8 endcap layers
Magnet	1 T Solenoidal

Physics at **BEPCII/BESIII**

- *R*_{had} and precision test of Standard Model
- Light hadron spectroscopy ($\phi f_0(980), \phi \pi^0, \dots$)
- Charm and charmonium physics
- τ physics
- Precision measurements of CKM matrix elements
- Search for new physics / new particles

Physics Channels	Energy (GeV)	Luminosity $(10^{33} \text{ cm}^{-2} \text{ s}^{-1})$	Events/year
J/Ψ	3.10	0.6	$1.0 imes 10^{10}$
au	3.67	1.0	$1.2 imes 10^7$
Ψ(2 <i>S</i>)	3.69	1.0	$3.0 imes10^9$
D *	3.77	1.0	$2.5 imes 10^7$
Ds	4.03	0.6	1.0 × 10 ⁶
Ds	4.14	0.6	$2.0 imes10^{6}$

BESIII/BEPCII current status

Hirschegg 2011 anuary 16th - 22nd, 2011

BEPCII: e^+e^- double ring collider

		KF SK CK	F. 88%	1
Real Providence		2010 STATU	S	and the second s
Parameter		Design	Achieved	
			BER	BPR
10 10	Energy (GEV)	1.89	1.89	1.89
	Beam curr. (mA)	910	660	700
	Bunch curr. (mA)	9.8	> 10	> 10
	Bunch number	93	93	93 ₍₎ ()
	RF voltage	1.5	1.5	1.5 **
	∗ <i>v_s</i> @ 1.5 MV	0.033	0.032	0.032
	eta_x^*/eta_y^* (m)	1.0/0.015	\sim 1.0/0.016	\sim 1.0/0.016 $rac{00}{22}$
	Inj. Rate (mA/min)	200 e ⁻ / 50 e ⁺	> 200	> 50
Lum. $(10^{33} cm^{-2} s^{-1})$		1	0.	57 🍂
			Ast	
	and the second s			A Star

Hirschegg 2011 🎒 January 16th - 22nd, 2011

BEPCII / BESIII milestones

Mar. 2008:	Collisions at 500 mA \times 500 mA,
	Luminosity: $1 \times 10^{32} cm^{-2} s^{-1}$
Apr. 30, 2008:	Move BESIII to IP
July 18, 2008:	First e ⁺ e ⁻ collision event in BESIII
Apr. 14, 2009:	\sim 106 M Ψ (2 <i>S</i>) events (150 pb^{-1})
	$(\sim 42 p b^{-1} \text{ at } 3.65 \text{ GeV})$
July 28, 2009:	\sim 226 M J/ Ψ events (65pb ⁻¹)
June 1, 2010:	$\sim 930 \rho b^{-1}$ at $\Psi(3770)$
-	(-70 + 1)

 $(\sim 70 pb^{-1} \text{ scanning in the } \Psi(3770) \text{ energy region})$

 $\begin{array}{c} \textbf{Record Luminosity}\\ \textbf{on Jan 12, 2011}\\ \textbf{5.7}\times 10^{32}\textit{cm}^{-2}\textit{s}^{-1}\\ \textbf{or}\\ \textbf{8}\times \textbf{CESRc}\\ \textbf{45}\times \textbf{BEPC} \end{array}$

8

World J/Ψ and $\Psi(2S)$ Samples (×10⁶)

Pointlike Baryons?

Hirschegg 2011 🔯 January 16th - 22nd, 2011

Nucleon form factors and cross sections

Nucleon current operator (Dirac & Pauli)

$$\overline{\Gamma^{\mu}(q)} = \gamma^{\mu}F_{1}(q^{2}) + \frac{i}{2M_{B}}\sigma^{\mu\nu}q_{\nu}F_{2}(q^{2})$$
Electric and Magnetic Form Factors

$$\overline{G_{E}(q^{2})} = F_{1}(q^{2}) + \tau F_{2}(q^{2})} \quad \tau = \frac{q^{2}}{4M_{B}^{2}}$$

Pointlike fermions : $\frac{d\sigma}{d\Omega} = \frac{\alpha^2 \beta_\mu C}{4q^2} \left(2 - \beta_\mu^2 \sin^2 \theta \right) \implies |G_E| = |G_M| \equiv 1$

Hirschegg 2011 🧱 January 16th - 22nd, 2011 Hadron Structure at BESIII

Analyticity of baryon form factors

QCD counting rule constrains the asymptotic behaviour

Matveev, Muradyan, Tevkheldize, Brodsky, Farrar

Counting rule:
$$q^2 \to -\infty$$

 $i = 1$ Dirac, $i = 2$ Pauli FF
Analyticity: $q^2 \to \pm\infty$
(Phragmèn Lindelöf)
 $F_i(q^2) \propto (-q^2)^{-(i+1)} \Rightarrow G_{E,M} \propto (-q^2)^{-2}$
 $G_{E,M}(-\infty) = G_{E,M}(+\infty)$

Hirschegg 2011 Danuary 16th - 22nd, 2011

Space-like G_E^p/G_M^p measurements

$$G_E^p = F_1^p + \frac{q^2}{4M_p^2}F_2^p$$
$$G_M^p = F_1^p + F_2^p$$

Space-like $F_1 ext{ and } rac{q^2}{4M_p^2}F_2 ext{ cancellation}$ $rac{G_E^p(q^2)}{G_M^p(q^2)} < 1$

Time-like

$$egin{array}{l} F_1 ext{ and } rac{q^2}{4M_p^2}F_2 ext{ enhancement} \ \left|rac{G_E^p(q^2)}{G_M^p(q^2)}
ight|>1 \end{array}$$

$e^+e^- \rightarrow p\overline{p}$ angular distribution (*BABAR*)

PRD73, 012005

$\cos \theta_{p}$ distributions form threshold up to 3 GeV [intervals in $E_{CM} \equiv q$ (GeV)]

Time-like $|G_E^p/G_M^p|$ measurements

16

$\gamma\gamma$ exchange from $e^+e^-\!\! ightarrow p\overline{p}\gamma$ **BABAR** data

PLB659, 197

Hirschegg 2011 🧱 January 16th - 22nd, 2011 Hadron Structure at BESIII

$|G^{ ho}_{E}(q^{2})|$ and $|G^{ ho}_{M}(q^{2})|$ from $\sigma_{ ho\overline{ ho}}$ and DR

$$|G_{ ext{eff}}(q^2)|^2 = rac{\sigma_{
ho\overline{
ho}}(q^2)}{rac{4\pilpha^2eta\mathcal{C}}{3s}}\left(1+rac{1}{2 au}
ight)^{-1}$$

- Usually what is extracted from the cross section $\sigma(e^+e^- \rightarrow p\overline{p})$ is the effective time-like form factor $|G^p_{eff}|$ obtained assuming $|G^p_E| = |G^p_M|$ i.e. $|R| = \mu_p$
- Using DR's to parameterize *R* and the *BABAR* data on $\sigma(e^+e^-\leftrightarrow p\overline{p})$, $|G_E^p|$ and $|G_M^p|$ may be disentangled

BESIII can measure separately $|G_E^p|$ and $|G_M^p|$

Cfr. talk by Simone Pacetti: Dispersion Relations and Nucleon Form Factors

Hirschegg 2011 anuary 16th - 22nd, 2011

$|G^{ ho}_{E}(q^{2})|$ and $|G^{ ho}_{M}(q^{2})|$ from $\sigma_{ ho\overline{ ho}}$ and DR

$$|G_{\mathcal{M}}(q^2)|^2 = rac{\sigma_{
ho\overline{
ho}}(q^2)}{rac{4\pilpha^2eta \mathcal{C}}{3s}}\left(1+rac{|\mathcal{R}(q^2)|}{2\mu_{
ho} au}
ight)^{-1}$$

- Usually what is extracted from the cross section $\sigma(e^+e^- \rightarrow p\overline{p})$ is the effective time-like form factor $|G^{\rho}_{eff}|$ obtained assuming $|G^{\rho}_{E}| = |G^{\rho}_{M}|$ i.e. $|R| = \mu_{\rho}$
- Using DR's to parameterize *R* and the *BABAR* data on $\sigma(e^+e^-\leftrightarrow p\overline{p})$, $|G_E^p|$ and $|G_M^p|$ may be disentangled

BESIII can measure separately $|G_E^p|$ and $|G_M^p|$

Cfr. talk by Simone Pacetti: Dispersion Relations and Nucleon Form Factors

Hirschegg 2011 anuary 16th - 22nd, 2011

Hirschegg 2011 🧱 January 16th - 22nd, 2011

Hirschegg 2011 🧱 January 16th - 22nd, 2011

The Coulomb Factor

Hirschegg 2011 anuary 16th - 22nd, 2011

Initial State Radiation

•
$$\frac{d^{2}\sigma}{dE_{\gamma}d\theta_{\gamma}} = W(E_{\gamma},\theta_{\gamma}) \cdot \sigma_{e^{+}e^{-} \to X_{had}}(s)$$

•
$$W(E_{\gamma},\theta_{\gamma}) = \frac{\alpha}{\pi x} \left(\frac{2-2x+x^{2}}{\sin^{2}\theta_{\gamma}}\right)$$

•
$$s = q^{2}, q \dots X_{had} \text{ momentum}$$

•
$$E_{\gamma}, \theta_{\gamma} \dots CM \gamma \text{ energy, scatt. ang.}$$

•
$$E_{CM} \dots CM e^{+}e^{-} \text{ energy}$$

•
$$x = E_{\gamma}/2E_{CM}$$

Advantages

ISR: BESIII vs BABAR

 $e^+e^-
ightarrow \overline{p}\overline{p}$

24

Hirschegg 2011 🎒 January 16th - 22nd, 2011 Hadron Structure at BESIII

$e^+e^- \rightarrow n\overline{n}$

BESIII has the unique possibility to measure this cross section

- $J/\Psi \rightarrow n\overline{n}$ (BR $\simeq 2 \cdot 10^{-3}$) $\geq 10^4$ events
- $\Psi(2S) \rightarrow n\overline{n}$ (BR $\simeq 3 \cdot 10^{-4}$) $\geq 10^3$ events
- At threshold by means of ISR (boost)

• n, \overline{n} detection efficiency and pattern by means of: $J/\Psi \rightarrow n(\overline{p}\pi^+)$ and $J/\Psi \rightarrow \overline{n}(p\pi^-)$ ($\geq 10^5$ events)

Only at the J/Ψ mass BESIII can increase the BABAR statistics at least by a factor of two because of a better Λ reconstruction resolution (only one Λ reconstructed)

A polarization for free $\Rightarrow G_E^{\wedge} - G_M^{\wedge}$ relative phase

$\Sigma^0\overline{\Sigma^0}$ and $\Lambda\overline{\Sigma^0}$ channels

27

Hirschegg 2011 🧱 January 16th - 22nd, 2011

Λ_c^+ form factor

28

ISR: Physics Motivations

• Existing results, obtained by **BABAR** (ISR), show interesting and unexpected behaviors, mainly at thresholds, for

There are physical limits in reaching the threshold of many of these channels via energy scan (stable hadrons produced at rest can not be detected)

The Initial State Radiation technique provides a unique tool to access threshold regions working at higher resonances

BESIII Zero-Degree Detector

- J/Ψ , $\Psi(2S)$, $\psi(3770)$ resonances decay with high BR's to final states with π^0 and γ_{FS} (final state)
- At BESIII these decay channels represent severe backgrounds for typical ISR final states with $\gamma_{\rm IS}$ detected at wide angle

 π^{0} and final γ angular distributions are isotropic

ISR angular distribution is peaked at small angles

A zero-degree radiative photon tagger will suppress most of these backgrounds

The BESIII Collaboration has accepted an upgrade (July 2011?) of the present luminosity monitor with a new zero-degree detector (ZDD), with a better energy resolution, to tag ISR photons as well as to measure the luminosity

Summary

An exciting scenario allow for the investigation of Form Factors at BESIII: • $e^+e^- \rightarrow p\overline{p}$ • $e^+e^- \rightarrow \Sigma^0\overline{\Sigma^0}$ • $e^+e^- \rightarrow n\overline{n}$ • $e^+e^- \rightarrow \Lambda\overline{\Sigma^0}$ • $e^+e^- \rightarrow \Lambda\overline{\Lambda}$ • $e^+e^- \rightarrow \Lambda_c^+\overline{\Lambda}_c^-$ • Time-Like $|G_E^p/G_M^p|$, $|G_E^p|$ and $|G_M^p|$ • $|G_E^\Lambda|$ - $|G_M^\Lambda|$ relative phase

BACK-UP SLIDES

Hirschegg 2011 🔊 January 16th - 22nd, 2011

BESIII main features

Drift Chamnber

- Low gas misture (60% He, 40% Propane)
- Carbon filter cylindres: $R_{in} = 6.3$ cm, $T_{in} = 1$ mm, $R_{out} = 81$ cm $T_{out} = 1$ cm
- 6 Al stepped flanges: T = 1.8 cm
- 43 layers: 7000 25 μm gold-plated sense wires, 22000 Al field-shaping wires

• $\sigma_{x,y} \sim 130 \ \mu m, \ \sigma(De/dx) \sim 6\%$

Csl Calorimeter

- 6240 CsI(TI): 5280 Barrel, 960 Endcaps, 13000 photodiodes
 28 × 5.2² cm³
- ho $\Delta E/E\sim$ 2.5% at 1 GeV, noise \sim 220 keV

Superconducting Magnet: 1 T

RPC μ Chambers

9/8 layers Barrel/Endcaps, Strip x, y 4cm Plastic foil instead linseed oil: noise \sim 0.1 Hz/cm², $\epsilon \sim$ 95%

Neutral Baryons puzzle (BABAR)

PRD76, 092006

Baryon octet and U-spin

arXiv:0812.3283

Indirect relation: $G^{\Sigma^0} - G^{\Lambda} + \frac{2}{\sqrt{3}}G^{\Lambda\Sigma^0} = 0$

 $\mathit{M}_{\Sigma^{0}}\sqrt{\sigma_{\Sigma^{0}\overline{\Sigma^{0}}}}-\mathit{M}_{\Lambda}\sqrt{\sigma_{\Lambda\overline{\Lambda}}}+\frac{2}{\sqrt{3}}\overline{\mathit{M}_{\Lambda\Sigma^{0}}}\sqrt{\sigma_{\Lambda\overline{\Sigma^{0}}}}=(-0.06\pm6.0)\times10^{-4}$

Hirschegg 2011 🧱 January 16th - 22nd, 2011 Hadron Structure at BESIII

Baryon octet and U-spin

arXiv:0812.3283

$$M_{\Sigma^0}\sqrt{\sigma_{\Sigma^0\overline{\Sigma^0}}} - M_{\Lambda}\sqrt{\sigma_{\Lambda\overline{\Lambda}}} + \frac{2}{\sqrt{3}}\overline{M_{\Lambda\Sigma^0}}\sqrt{\sigma_{\Lambda\overline{\Sigma^0}}} = (-0.06 \pm 6.0) \times 10^{-4}$$

35

Hirschegg 2011 🧾 January 16th - 22nd, 2011 Hadron Structure at BESIII

Data and U-spin predictions at threshold

$$M_{\Sigma^0} \sqrt{\sigma_{\Sigma^0} \overline{\Sigma^0}} - M_{\Lambda} \sqrt{\sigma_{\Lambda \overline{\Lambda}}} + \frac{2}{\sqrt{3}} \overline{M_{\Lambda \Sigma^0}} \sqrt{\sigma_{\Lambda \Sigma^0}} = (-0.06 \pm 6.0) \times 10^{-4}$$

$$\sigma(e^+ e^- \rightarrow n\overline{n}) = \frac{1}{4} (3 \sqrt{\sigma_{\Lambda \overline{\Lambda}}} M_{\Lambda} - \sqrt{\sigma_{\Sigma^0} \overline{\Sigma^0}} M_{\Sigma})^2 \frac{1}{M_n^2} = 0.5 \pm 0.2 \text{ nb}$$

Hirschegg 2011 anuary 16th - 22nd, 2011 Hadron Structure at BESIII