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Introduction and Motivation

Recently a novel scheme for studying hadronic interactions beyond
the threshold region was introduced in A. Gasparyan, M.F.M. Lutz,
Nucl.Phys. A848 (2010) 126-182. (applied to γ N and πN scat.)

This scheme includes:
a) Chiral perturbation theory
b) EM-gauge invariance, causality and unitarity
c) Conformal mapping

• The purpose of the present study is an illustration of this method
for a system where the exact solution is known.

• We consider non-relativistic Yukawa interactions of various
strengths and ranges.
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Lippman-Schwinger equation

The nonrelativistic partial-wave Lippman-Schwinger equation

〈k ′| tl (q2)|k〉 = 〈k ′|Vl |k〉+
4m
π

∫ ∞
0

k ′′2 dk ′′
〈k ′|Vl |k ′′〉 〈k ′′| tl (q2)|k〉

q2 − k ′′2 + i ε

The Yukawa potential projected onto angular momentum reads

〈k ′|Vl=0 |k〉 =
g

4 k ′k
log

(k + k ′)2 + µ2

(k − k ′) + µ2

g - characterizes the strength of interaction
µ - characterizes the range of interaction
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Born series

The Lippmann-Schwinger equation can be expanded in powers of
g (n):

〈k ′| tl (q2)|k〉 = t(1)
l + t(2)

l + ...

q2
/μ
2
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|g/gc|
1 1.5 2 2.5

The area of convergence
(white) for the s-wave.
The dashed line locates the
branch point caused by the
2nd order Born term.

The critical coupling constant is

gc ' 1.68
µ

2m
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Born series

The Born series to third order of the scaled on-shell amplitude

t̄l (z) = 2m µ 〈k ′| tl (q2)|k〉
∣∣∣
k ′=k=q

with z =
q2

µ2
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Figure: g = 3 gc/2 (left), g = −3 gc/2 (right); l = 0
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Partial Wave Dispersion relation

Unitarity and Analyticity

Tl (q2) = Ul (q2) +

∫ ∞
0

dq′2

π

q2 + µ2M
q′2 + µ2M

ρ(q′2)

q′2 − q2 − iε
|Tl (q′2)|2

• separate left and right-hand cuts
• the generalized potential Ul (q2) contains all left hand cuts

The unitarity constraint has the simple form

=Tl (q2) = |Tl (q2)|2 ρl (q2) , ρl (q2) =

(
q2

Λ2 + q2

)l+ 1
2

Λ define the scale at which ρ→ 1. Tl=0(q2) = −
√

Λ2+q2

µ t̄l=0(q2)
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The generalized potential

The perturbation series for ūl
(
q2
)

= − µ√
Λ2+q2

Ul (q2)
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Figure: g = 3 gc/2 (left), g = −3 gc/2 (right); µ2
M = 10µ2; l = 0
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N/D technique

The non-linear integral equation can be solved by means of N/D
technique [G.F.Chew, S.Mandelstam, PR 119 (1960) 467-477.]

Tl (q2) = Nl (q2)/Dl (q2)
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Figure: g = 3 gc/2 (left), g = −3 gc/2 (right); µM = 10µ2; l = 0; Λ:
3µ < Λ < 9µ
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Approximation for the generalized potential Ul(q2)

• In χPT one can perform a pert. expansion only for small q2.

• To solve the non-linear integral equation we need Ul (q2) for all
energies above threshold (q2 > 0)

Reliable extrapolation is possible:
We split the contributions from closest and more distant left-hand
cuts

U(q2) = Uinside(q2) + Uoutside(q2)

We calculate exactly Uinside(q2) and extrapolate Uoutside(q2)
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Conformal mapping

Conformal mapping techniques may be used to approximate the
generalized potential Uoutside(q2) for higher energies, based on the
knowledge of the potential only around threshold.

Typical example: Uoutside(w) = ln (w), µE = 1

↪→
∞∑

k=0

f (k)(µE )

k!
[w − µE ]k

↪→
∞∑

k=0

Ck(f (k)(µE )) [ξ(w)]k

1

w

0

ξ

0−1

ξ(w) = 1−
√

w
1+
√

w maps the
cut onto the unit circle
ξ(0) = 0, ξ(1) = 0
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Conformal mapping for Uoutside(w) = ln (w)

ln (w) ↪→
∞∑

k=0

f (k)(µE )

k!
[w − µE ]k ↪→

∞∑
k=0

Ck(f (k)(µE )) [ξ(w)]k

[Exact]
Taylor expansion around w=1 converges for 0<w<2
Taylor expansion around ξ=0 converges for 0<w<∞
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Results
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Figure: g = 3 gc/2 (left), g = −3 gc/2 (right)
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Case of a superposition of strong short-range and weak
long-range forces

In contrast to the Yukawa toy model in a realistic system the
matching scale µM cannot be chosen arbitrarily low (noperturbative
effects from u- or t-channel). We set µ2M = µ2.

A superposition of two Yukawa potentials

〈k ′|V |k〉 = 〈k ′|VL|k〉+ 〈k ′|VS |k〉

where µS >> µL.

t =
[
1− (VL + VS) G

]−1 [VL + VS
]

= tS + (1 + tS G ) VL

∞∑
n=0

[
(G + G tS G ) VL

]n
(1 + G tS) ,
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Renormalization scheme

Left hand cuts start at

q2 = −1
4

(n µL + k µS)2

Thus in the limit µs →∞ the generalized potential takes the
simple form

U(q2) = UL(q2) + C with C = T (−µ2M)− UL(−µ2M) ,

For definiteness we consider:

µs = 12µL, |gS | = 0.95 gc,S , |gL| = 0.5 gc,L, Λ =
1
2
µS
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Results

Case of repulsive short-range force. The l.h.p. and r.h.p.
correspond to repulsive and attractive long-range potential.
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Results

Case of attractive short-range force. The l.h.p. and r.h.p.
correspond to repulsive and attractive long-range potential.
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Binding energy

[Exact]
[ren N/D ξ0]
[ren N/D ξ1]
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2 /2
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]
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Binding energy for the sys-
tem with two attractive
Yukawa interactions as a
function of gL.
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Summary

An approach based on

• causality and unitarity
• analytic extrapolation of generalized potential
was successfully applied to a simple system where the exact
solution is known.

The constraints set by causality and unitarity can be used to arrive
at a quite effective expansion scheme that is suitable for
applications in effective field theories.
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N/D technique

N/D technique
[G.F.Chew, S.Mandelstam, PR 119 (1960) 467-477.]

Tl (q2) = Nl (q2)/Dl (q2)

where

Nl (q2) = Ul (q2) +

∫ ∞
0

dq′2

π

q2 + µ2M
q′2 + µ2M

Nl (q′2) ρ(q′2) (Ul (q′2)− Ul (q2))

q′2 − q2

Dl (q2) = 1−
∫ ∞
0

dq′2

π

q2 + µ2M
q′2 + µ2M

Nl (q′2) ρ(q′2)

q′2 − q2 − iε
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