

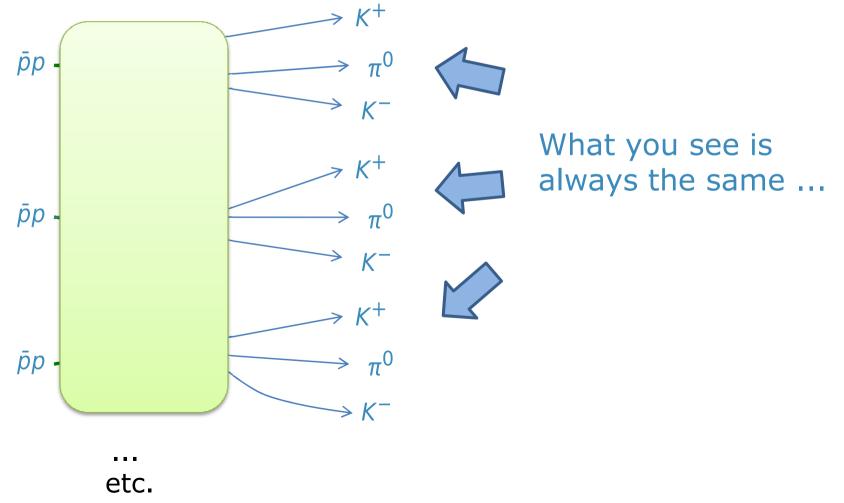
Generalized Partial² Wave Analysis²⁷⁰ Software for PANDA⁽⁹⁸⁰⁾

*39. International Workshop on the Gross Properties of Nuclei and Nuclear Excitations*⁰

The Structure and Dynamics of Hadrons

Hirschegg, January 2011

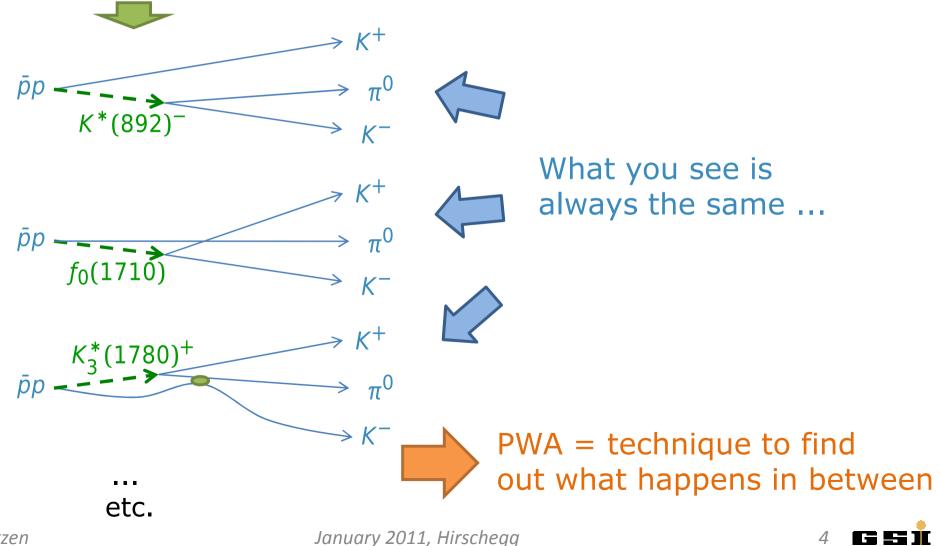
Klaus Götzen GSI Darmstadt



- The Need for Partial Wave Analysis
- Challenges & Requirements for PANDA
- General Software Concept
- Status of Project

The Need for Partial Wave Analysis

• *Example:* Consider reaction $\bar{p}p \rightarrow K^+K^-\pi^0$

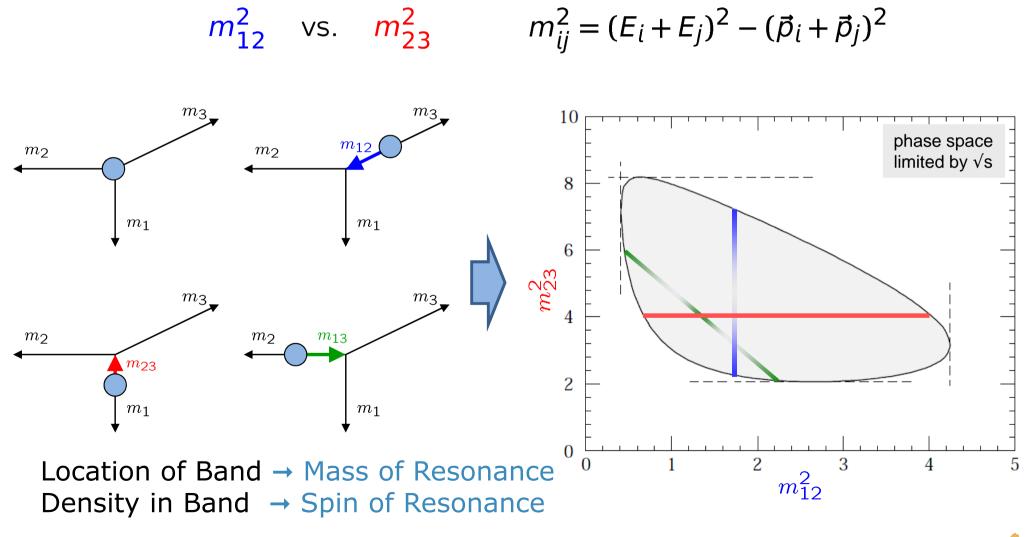

January 2011, Hirschegg

3

The Need for Partial Wave Analysis

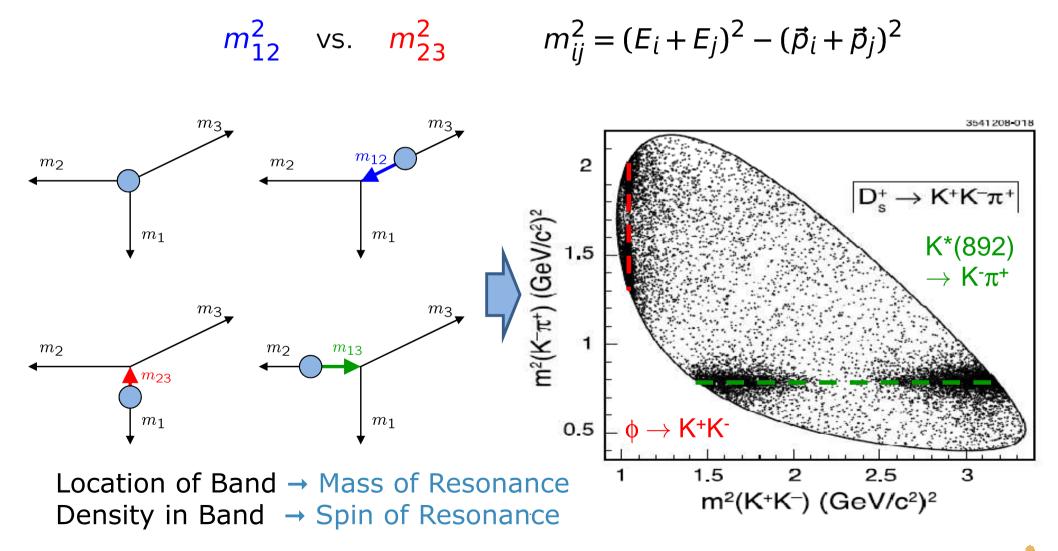
• *Example:* Consider reaction $\bar{p}p \rightarrow K^+K^-\pi^0$

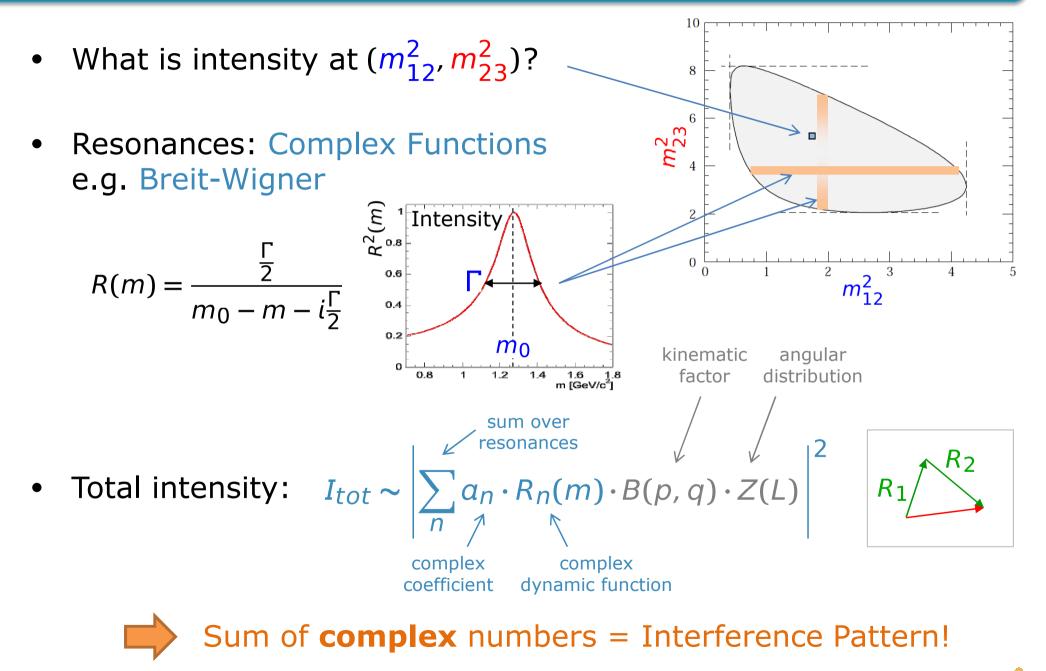
What really happened...


Primary goal: Learn about intermediate states

- Choose final state, so that
 - → Resonances of interest have high probability to appear
- Discovery of new resonances!
- Precise determination of resonance properties like
 - Mass
 - Width
 - Spin-Parity
 - Relativ production strength
 - Relativ phases

3-Body Case: Dalitz Plot Analysis


- 3-body-decay: Dalitz-Plot-Analysis for $\bar{p}p \rightarrow m_1m_2m_3$
- Dynamics fully described by two quantities:



3-Body Case: Dalitz Plot Analysis

- 3-body-decay: Dalitz-Plot-Analysis for $\bar{p}p \rightarrow m_1m_2m_3$
- Dynamics fully described by two quantities:

3-Body Case: Dalitz Plot Analysis

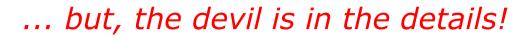
K. Götzen

January 2011, Hirschegg

8 G S İ

PWA – Simple Recipe

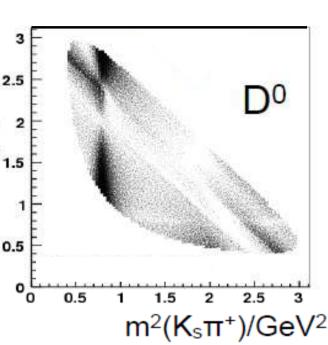
In principle simple straightforward strategy:


- 1. Reconstruct/measure the channel of interest experimentally
- 2. Create an appropriate fit model
 - choice of formalism
 - the contributing resonances
 - the according dynamic functions
- 3. Fit the model to the data
 - Maximum-Likelihood or binned approach
- 4. Extract the physical parameters of interest
 - Masses, widths, spin-parities of resonances
 - fit fractions

PWA – Simple Recipe

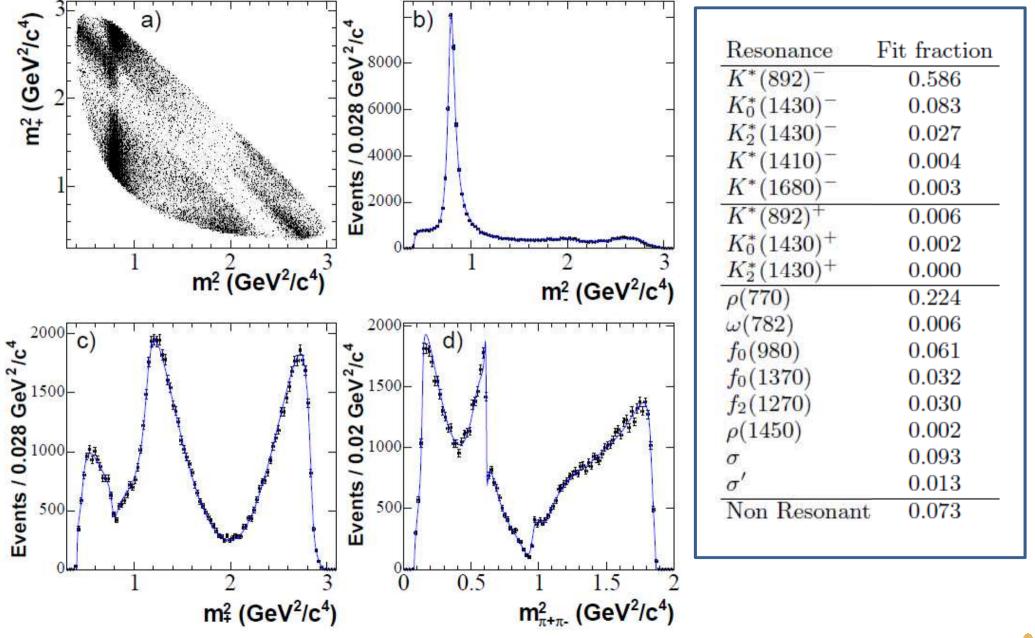
In principle simple straightforward strategy:

- 1. Reconstruct/measure the channel of interest experimentally
- 2. Create an appropriate fit model
 - choice of formalism
 - the contributing resonances
 - the according dynamic functions
- 3. Fit the model to the data
 - Maximum-Likelihood or binned approach
- 4. Extract the physical parameters of interest
 - Masses, widths, spin-parities of resonances
 - fit fractions

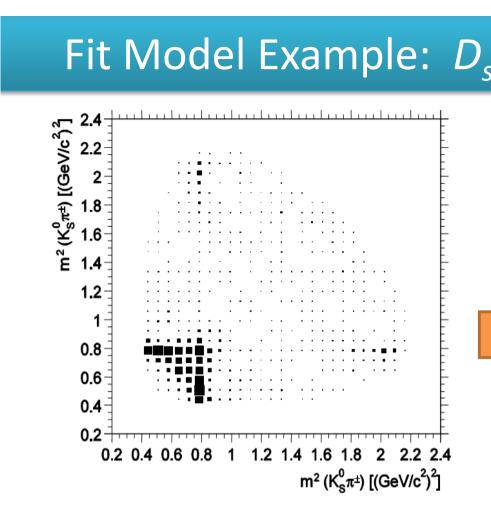

10

K. Götzen

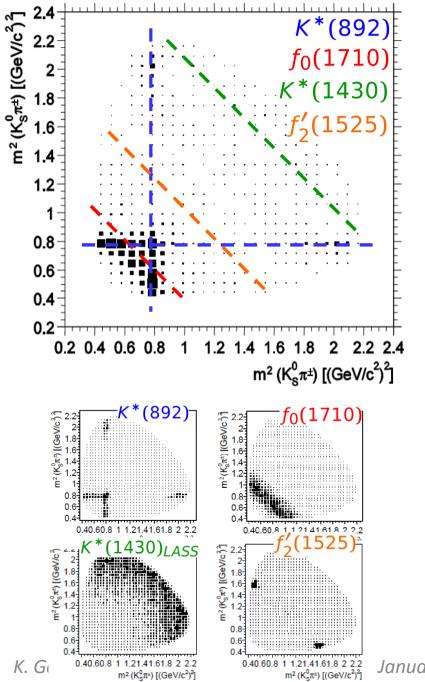
Appropriate Fit Model


Challenges

- Setup of the Amplitude
 - what is appropriate formalism?
 → helicity, canonical, covariant tensor
- Educated guess of contributing resonances 0.5
 - can be a hard job need to try many combinations
 - initial state might produce restrictions to final states or vice versa
- Appropriate choice of dynamic functions
 - myriads of Breit-Wigner like functions exist
 - complicated things like e.g. K-Matrix or Flatté approach taking into account coupled channels or thresholds

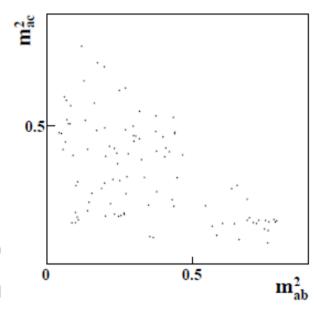

Example: $D_s \rightarrow K_S \pi^+ \pi^-$

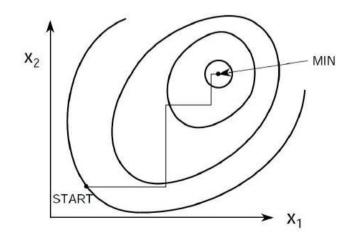
January 2011, Hirschegg


Fit Model Example: $D_s^{\pm} \rightarrow K_S K_S \pi^{\pm}$

			$-\ln \mathcal{L}$ +303	7,8		
	Massen und Breiten:					Investigated
Нуро-			Nur	Nur	Nur	Investigated
these	Alle	Alle	$f_J(17xx)$	$f_J(17xx)$	$f_J(17xx)$	here a three second
	frei	fixiert	frei	$K^{*}(892)$	$f_0(980)$	hypotheses
	<i>(a)</i>	10 11		frei	frei	
	(free-A)	(fix-A)	(free-f)	(free-fk)	(free-ff)	
H-1	1845.3	2380.8	1845.3	1845.3	1845.3	$f_2(1710)$
H-2	827.5	1386.7	827.5	827.5	827.5	$f_0(1710)$
H-3	439.9	510.7	510.7	439.9	510.7	K*(892)
H-4	281.1	422.6	395.3	281.1	395.3	$K^*(892) f_2(1710)$
H-5		330.5	311.1	231.9	189.9	$K^{*}(892) f_{2}(1710) f_{0,Flatte}(980)$
H-6		377.6	369.4	273.5	236.2	$K^{*}(892) f_{2}(1710) f_{0,BW}(980)$
H-7		416.2	400.6	272.8	400.6	$K^{*}(892) f_{2}(1710) f_{2}(1525)$
H-8 H-9		406.2 202.2	367.9	242.1	367.9	$K^*(892) f_2(1710) f_0(1500)$
	58.8		175.3	139.7	175.3	$K^{*}(892) f_{2}(1710) K^{*}_{0,LASS}(1430)$
H-10	10.4	136.7	111.2	99.5	7.5	$K^{*}(892) f_{2}(1710) K^{*}_{0,LASS}(1430) f_{0,Flatte}(980)$
H-11	1.7	182.0	159.2	130.5	116.6	$K^*(892) f_2(1710) K^*_{0,LASS}(1430) f_{0,BW}(980)$
H-12		175.9	135.9	109.5	135.9	$K^*(892) f_2(1710) K^*_{0,LASS}(1430) f_2(1525)$
H-13	to the second	120.4	112.9	90.1	112.9	$K^*(892) f_2(1710) K^*_{0,LASS}(1430) f_0(1500)$
H-14	-14.5	52.9	0.0	-2.8	0.0	$K^*(892) f_2(1710) K^*_{0,LASS}(1430) f_0(1710)$
H-15	222	166.4	146.7	116.7	146.7	$K^{*}(892) f_{2}(1710) K^{*}_{0,LASS}(1430) K^{*}_{2}(1430)$
H-16		410.6	353.3	244.4	353.3	$K^*(892) f_2(1710) K^*_2(1430)$
H-17		199.9	186.4	115.4	186.4	$K^{*}(892) f_{2}(1710) K^{*}_{0,BW}(1430)$
H-18	71.3	237.7	88.3	71.3	88,3	$K^*(892) f_0(1710)$
H-19		142.6	41.4	40.5	34.1	$K^*(892) \ f_0(1710) \ f_{0,Flatte}(980)$
H-20		189.8	68.9	61.2	35.0	$K^{*}(892) f_{0}(1710) f_{0,BW}(980)$
H-21		203.5	75.9	57.0	75.9	$K^*(892) f_0(1710) f_2(1525)$
H-22		226.2	68.5	62.5	68.5	$K^*(892) f_0(1710) f_0(1500)$
H-23	68.0	186.9	69.3	68.0	69.3	$K^*(892) f_0(1710) f_2(1710)$
H-24	3.5	89.8	22.2	17.1	22.2	$K^{*}(892) f_{0}(1710) K^{*}_{0,LASS}(1430)$
H-25	-7.1	51.3	14.7	11.2	6.5	$K^{*}(892) f_{0}(1710) K^{*}_{0,LASS}(1430) f_{0,Flatte}(980)$
H-26	-3.8	79.7	21.6	15.6	4.2	$K^*(892) f_0(1710) K^*_{0,LASS}(1430) f_{0,BW}(980)$
H-27		79.7	4.0	1.1	4.0	$K^{*}(892) f_{0}(1710) K^{*}_{0,LASS}(1430) f_{2}(1525)$
H-28		60.6	21.4	16.3	21.4	$K^{*}(892) f_{0}(1710) K^{*}_{0,LASS}(1430) f_{0}(1500)$
H-29	-14.5	52.9	0.0	-2.8	0.0	$K^{*}(892) f_{0}(1710) K^{*}_{0,LASS}(1430) f_{2}(1710)$
$H_{-}30$		80.6	15.6	9.9	15.6	$K^{*}(892) f_{0}(1710) K^{*}_{0,LASS}(1430) K^{*}_{2}(1430)$
H-31	_	217.3	88.3	71.2	88.3	$K^{*}(892) f_{0}(1710) K^{*}_{2}(1430)$
H-32	15.8	90.8	37.6	33.3	37.6	$K^*(892) f_0(1710) K^*_{0,BW}(1430)$
H-33	-9.5	68.6	21.9	13.6	21.9	$K^{*}(892) f_{0}(1710) K^{*}_{0,BW}(1430) f_{2}(1710)$
H-34	83.4	267.7	267.7	215.5	267.7	$K^*(892) K^*_{0,LASS}(1430)$
H-35		508.0	508.0	438.8	508.0	$K^{*}(892) K^{*}_{2}(1430)$
H-36		297.7	297.7	232.6	297.7	$K^{*}(892) K^{2}_{0,BW}(1430)$

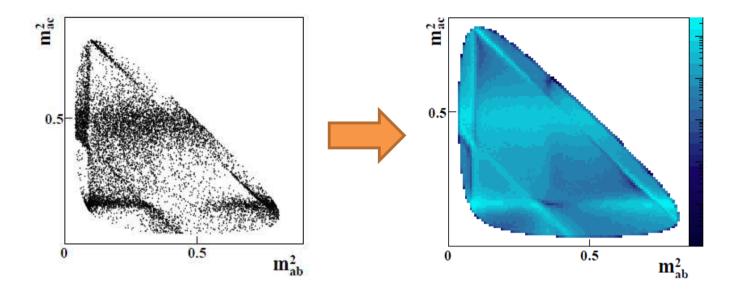
Fit Model Example: $D_s^{\pm} \rightarrow K_S K_S \pi^{\pm}$


		М	$-\ln \mathcal{L}$ +303 assen und B			
Hypo-		191	assen und D.	Nur	Nur	Investigated
these	Alle	Alle	Nur	$f_J(17xx)$	$f_J(17xx)$	
11000	frei	fixiert	$f_J(17xx)$	$K^{*}(892)$	$f_0(980)$	hypothococ
	ner	if x lef t	frei	frei	70(900) frei	hypotheses
	(free-A)	(fix-A)	(free-f)	(free-fk)	(free-ff)	
H-1	1845.3	2380.8	1845.3	1845.3	1845.3	$f_2(1710)$
H-2	827.5	1386.7	827.5	827.5	827.5	$f_0(1710)$
H-3	439.9	510.7	510.7	439.9	510.7	K*(892)
H-4	281.1	422.6	395.3	281.1	395.3	$K^*(892) f_2(1710)$
H-5		330.5	311.1	231.9	189,9	$K^{*}(892) f_{2}(1710) f_{0,Flatte}(980)$
H-6		377.6	369.4	273.5	236.2	$K^{*}(892) f_{2}(1710) f_{0,BW}(980)$
H_{-7}		416.2	400.6	272.8	400.6	$K^{*}(892) f_{2}(1710) f_{2}(1525)$
H-8		406.2	367.9	242.1	367.9	$K^*(892) f_2(1710) f_0(1500)$
H-9	58.8	202.2	175.3	139.7	175.3	$K^{*}(892) f_{2}(1710) K^{*}_{0,LASS}(1430)$
H-10	10.4	136.7	111.2	99.5	7.5	$K^{*}(892) f_{2}(1710) K^{*}_{0 LASS}(1430) f_{0,Flatte}(98)$
H-11	1.7	182.0	159.2	130.5	116.6	$K^{*}(892) f_{2}(1710) K^{*}_{0,LASS}(1430) f_{0,BW}(980)$
H-12		175.9	135.9	109.5	135.9	$K^{*}(892) f_{2}(1710) K^{*}_{0,LASS}(1430) f_{2}(1525)$
H-13		120.4	112.9	90.1	112.9	$K^{*}(892) f_{2}(1710) K^{*}_{0 LASS}(1430) f_{0}(1500)$
H-14	-14.5	52.9	0.0	-2.8	0.0	$K^{*}(892) f_{2}(1710) K^{*}_{0,LASS}(1430) f_{0}(1710)$
H-15	1	166.4	146.7	116.7	146.7	$K^{*}(892) f_{2}(1710) K^{*}_{0,LASS}(1430) K^{*}_{2}(1430)$
H-16		410.6	353.3	244.4	353.3	$K^{*}(892) f_{2}(1710) K^{*}_{2}(1430)$
H-17		199.9	186.4	115.4	186.4	$K^{*}(892) f_{2}(1710) K^{2}_{0 BW}(1430)$
H-18	71.3	237.7	88.3	71.3	88.3	$K^{*}(892) f_{0}(1710)$
H-19		142.6	41.4	40.5	34.1	$K^{*}(892) f_{0}(1710) f_{0,Flatte}(980)$
H-20		189.8	68.9	61.2	35.0	$K^*(892) f_0(1710) f_{0,BW}(980)$
H-21		203.5	75.9	57.0	75.9	$K^{*}(892) f_{0}(1710) f_{2}(1525)$
H-22		226.2	68.5	62.5	68.5	$K^*(892) f_0(1710) f_0(1500)$
H-23	68.0	186.9	69.3	68.0	69.3	$K^*(892) f_0(1710) f_2(1710)$
H-24	3.5	89.8	22.2	17.1	22.2	$K^{*}(892) f_{0}(1710) K^{*}_{0,LASS}(1430)$
H-25	-7.1	51.3	14.7	11.2	6.5	$K^{*}(892) f_{0}(1710) K^{*}_{0,LASS}(1430) f_{0,Flatte}(98)$
H-26	-3.8	79.7	21.6	15.6	4.2	$K^{*}(892) f_{0}(1710) K^{*}_{5,\pm,\lambda,\sigma,\sigma}(1430) f_{0,BW}(980)$
H-27		79.7	4.0	1.1	4.0	$K^{*}(892) f_{0}(1710) K^{*}_{0 LASS}(1430) f_{2}(1525)$
H-28		60.6	21.4	16.3	21.4	$K^{*}(892) f_{0}(1710) K^{*}_{0,LASS}(1430) f_{0}(1500)$
H-29	-14.5	52.9	0.0	-2.8	0.0	$K^{*}(892) f_{0}(1710) K^{*}_{0,LASS}(1430) f_{2}(1710)$
$H_{-}30$		80.6	15.6	9.9	15.6	$K^{*}(892) f_{0}(1710) K^{*}_{0,LASS}(1430) K^{*}_{2}(1430)$
H-31		217.3	88.3	71.2	88.3	$K^{*}(892) f_{0}(1710) K_{2}^{*}(1430)$
H-32	15.8	90.8	37.6	33.3	37.6	$K^{*}(892) f_{0}(1710) K^{*}_{0,BW}(1430)$
H-33	-9.5	68.6	21.9	13.6	21.9	$K^{*}(892) f_{0}(1710) K^{*}_{0,BW}(1430) f_{2}(1710)$
H-34	83.4	267.7	267.7	215.5	267.7	$K^*(892) K^*_{0,LASS}(1430)$
H-35		508.0	508.0	438.8	508.0	$K^*(892) K^*_2(1430)$
H-36		297.7	297.7	232.6	297.7	$K^{*}(892) \ K^{*}_{0,BW}(1430)$



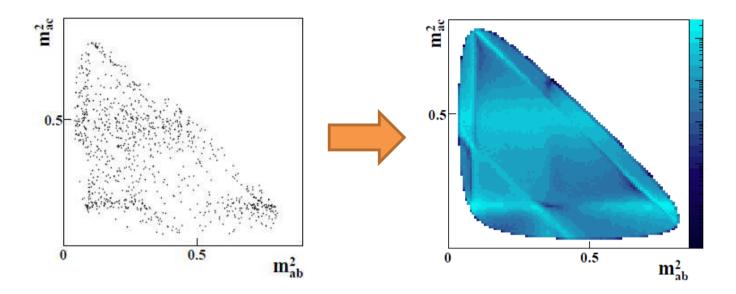
Fit Model to Data

Challenges


- Data
 - Low statistics
 - Inhomogeneous efficiency distribution
 - Finite resolution effects
 - \rightarrow how to treat shifts in phase space?
- Parameter space (typical >50 parameters)
 - Problem: getting stuck in local extrema
 - How to achieve fast convergence?
- Goodness of fit
 - Significance of parameters
 - Sensitivity to noise effects
 - Sensitivity of model composition
- Demand in Computing
 - Many MC validation fits necessary

Statistics and Goodness of Fit Validation

Daughters	J^P	Mass	Width	Fit Fraction
a,b	0^{+}	0.3	0.025	6%
a,b	2+	0.6	0.05	2%
a, c	1-	0.4	0.0 <mark>4</mark>	18%
<i>a</i> , <i>c</i>	0^{+}	0.7	0.1	43%
b, c	1-	0.35	0.01	10%
b, c	0^{+}	0.75	0.02	17%
a,b,c	non-resonant			1%

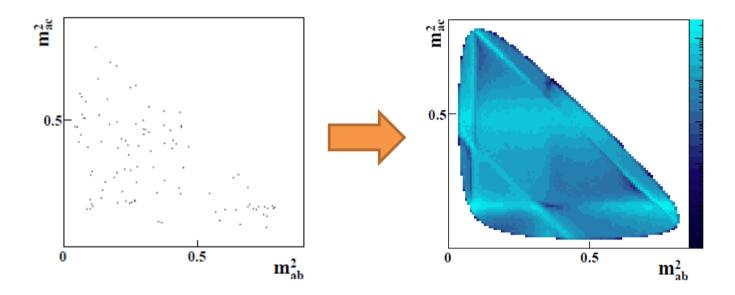

How reliable is the fit result?

- χ^2 method for binned case inappropriate for low statistics.
- Reliable goodness-of-fit method for unbinned case?
- Need to do many validation fits on MC generated data
 - → Fluctuations in fit parameters tell about significance

K. Götzen

Statistics and Goodness of Fit Validation

Daughters	J^P	Mass	Width	Fit Fraction
a,b	0^{+}	0.3	0.025	6%
a,b	2+	0.6	0.05	2%
a, c	1-	0.4	0.0 <mark>4</mark>	18%
a, c	0^{+}	0.7	0.1	43%
b, c	1-	0.35	0.01	10%
b,c	0^{+}	0.75	0.02	17%
a,b,c	non-resonant			1%

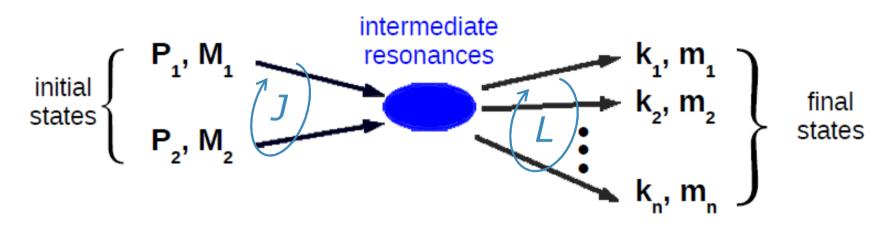

How reliable is the fit result?

- χ^2 method for binned case inappropriate for low statistics.
- Reliable goodness-of-fit method for unbinned case?
- Need to do many validation fits on MC generated data
 - \rightarrow Fluctuations in fit parameters tell about significance

K. Götzen

Statistics and Goodness of Fit Validation

Daughters	J^P	Mass	Width	Fit Fraction
a,b	0^{+}	0.3	0.025	6%
a,b	2+	0.6	0.05	2%
a, c	1-	0.4	0.0 <mark>4</mark>	18%
a, c	0^{+}	0.7	0.1	43%
b, c	1-	0.35	0.01	10%
b,c	0^{+}	0.75	0.02	17%
a,b,c	non-resonant			1%


How reliable is the fit result?

- χ^2 method for binned case inappropriate for low statistics.
- Reliable goodness-of-fit method for unbinned case?
- Need to do many validation fits on MC generated data
 - → Fluctuations in fit parameters tell about significance

K. Götzen

PWA Challenges for PANDA

L_{max} depends on available phase space *p_{cms}*

- LEAR @ 1.94 GeV/c: $p_{cms,\bar{p}p} \approx 1 \text{ GeV/c}$ $\rightarrow L_{max} \approx p_{cms}/200 \text{ MeV/c} \approx 5$ HESR @ 15 GeV/c: $L_{max} \approx 13 \text{ for } \bar{p}p$ $L_{max} \approx 10 \text{ for } D^*\bar{D}^*$ $L_{max} \approx 5 \text{ for } \tilde{\eta}_{c1}\eta$
- High angular momenta
 - → many waves can contribute
 - → dramatic increase of number of fit parameters!

Example channel: $\bar{p}p \rightarrow \omega \pi^0$

• Example analysis: Highest initial J^{PC} in channel

$$\bar{p}p \rightarrow \omega \pi^0$$
, $\omega \rightarrow \pi^0 \gamma$

			Number of parameters
J ^{PC}	λ (pp)	$L(\omega \pi^{0})$	increases very quickly!
1-	-1, 0, +1	1	5
1+-	0	0, 2	*
2	-1, +1	1, 3	9
3	-1, 0, +1	3	17
3+-	0	2, 4	17
4	-1, +1	3, 5	21
5	-1, 0, +1	5	
5+-	0	4,6	29
5 ⁺⁻ 6	-1, +1	5, 7	33
7	-1, 0, +1	7	
7*-	0	6,8	41

PWA Challenges for PANDA

• Number of final state particles @ PANDA

e.g.
$$\bar{p}p \to D^{*+}D^{*-} \to D^0\pi^+\bar{D}^0\pi^- \to 2K^{\pm}8\pi^{\pm}$$

has 10 particles in final state

Need reliable reco. at high multiplicities

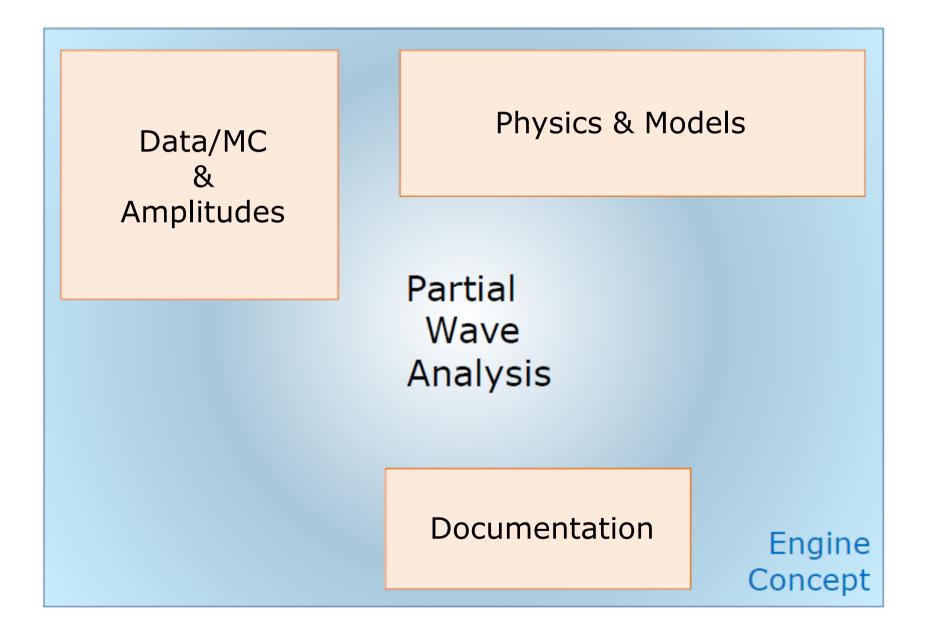
 Statistics @ PANDA Channels of interest have low cross-section (pb ... nb), and low branching ratios involved

Example: Charmed hybrid candidate $\tilde{\eta}_{c1}$ in

$$\bar{p}p \rightarrow \tilde{\eta}_{c1}\eta \rightarrow DD^*\eta \rightarrow 2K^{\pm}2\pi^{\pm}8\gamma$$

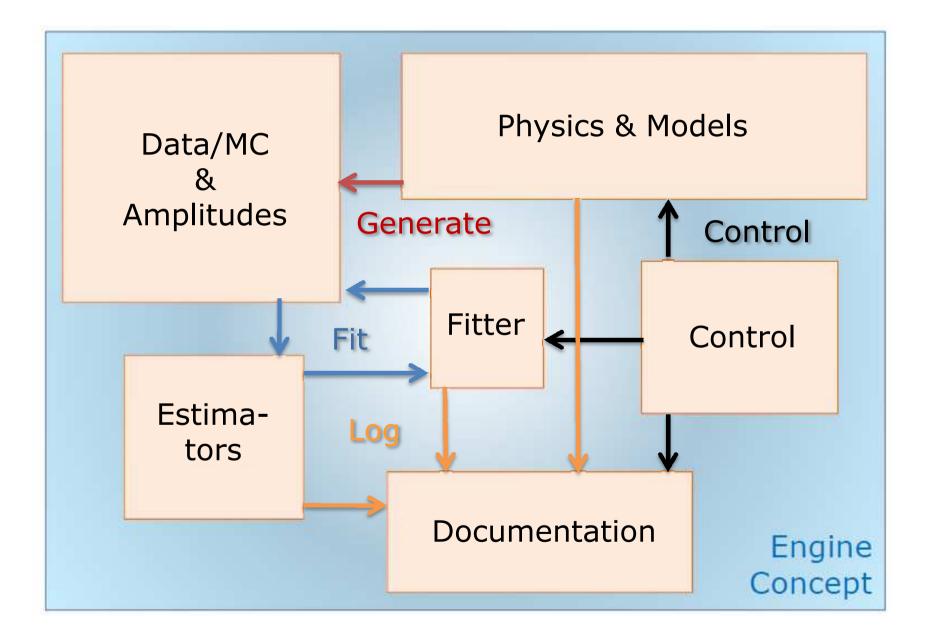
- Estimate: $\sigma \cdot BR \approx 0.06$ pb

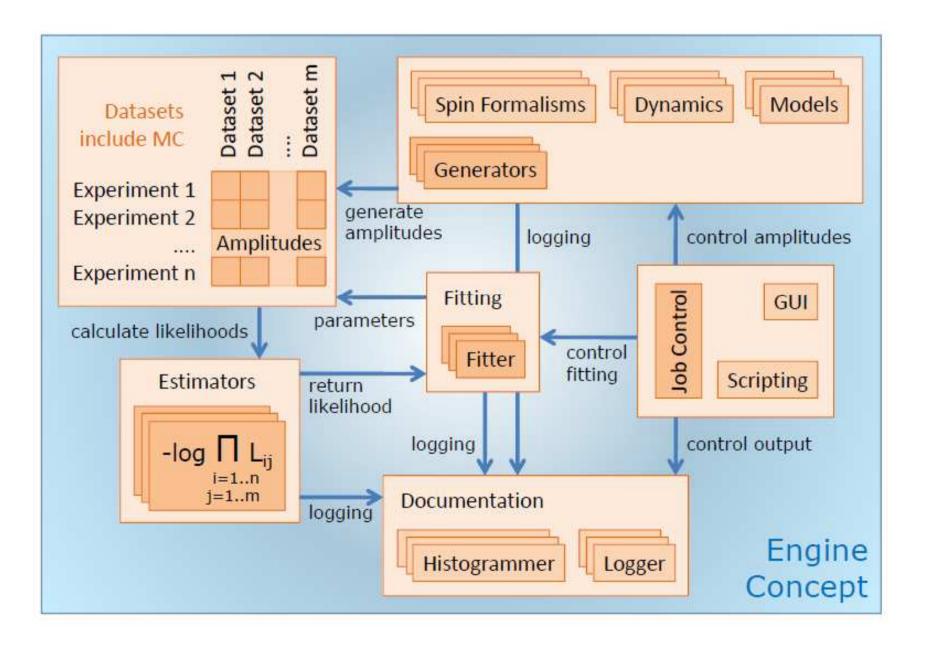
Need sensitivity also with low statistics



Partial Wave Analysis Software Package

Wish list for Software


- Experiment independent (as far as possible)
- Modular design
 - Generators, fitters, dynamic function lib., estimators
- Simultaneous treatment of multiple datasets
 - Coupled channel analysis
 - Simultaneous treatment of data from different experiments
- Performant algorithms
 - Parallel (GPU/CPU)
 - Caching techniques
- Automatic documentation
 - Histograms, fit hypothesis etc.



PWA-Framework Concept

PWA-Framework Concept

25 **G S 1**

Software Project has been initiated by PANDA groups from Bochum, GSI and Mainz

- Computation of Amplitudes & Intensities
 - qft++ package (Quantum Field Theory in C++)
- Minimization
 - MINUIT2 (gradient descent)
 - GenEvA (genetic & evolutionary algorithms)
- Miscellaneous Tools
 - Particle Database
 - Data reader interface
- Wiki Page for Documentation

... and a bit analysis (BES3 data)

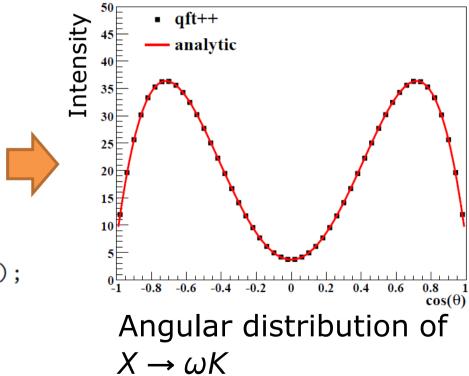
qft++ Package

- qft++ = Numerical Object Oriented Quantum Field Theory (by Mike Williams, Carnegie Mellon Univ.)
- Calculation of the matrices, tensors, spinors, angular momentum tensors etc. with C++ classes

qft++ Class	\mathbf{Symbol}	Concept	
Matrix <t></t>	a_{ij}	matrices of any dimension	
Tensor <t></t>	x_{μ}	tensors of any rank	
MetricTensor	$g_{\mu u}$	Minkowski metric	
LeviCivitaTensor	$\epsilon_{\mu ulphaeta}$	totally anti-symmetric Levi-Civita tensor	
DiracSpinor	$u_{\mu_1\dots\mu_{J-1/2}}(p,m)$	half-integral spin wave functions	
DiracAntiSpinor	v(p,m)	spin- $1/2$ anti-particle wave functions	
DiracGamma	γ^{μ}		
DiracGamma5	γ^5	Dirac matrices	
DiracSigma	$\sigma^{\mu u}$		
PolVector	$\epsilon_{\mu_1\mu_J}(p,m)$	integral spin wave functions	
OrbitalTensor	$L^{(\ell)}_{\mu_1\dots\mu_\ell}$	orbital angular momentum tensors	

K. Götzen

qft++ Package


- Example: $X(2^-) \rightarrow \omega K \rightarrow \pi^+ \pi^- \pi^0 K$
- Amplitude and Intensity given by

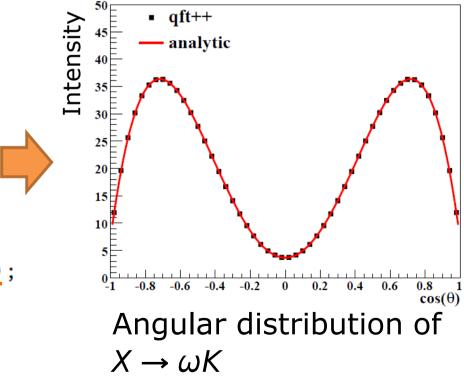
 $\mathcal{A} \propto \epsilon^*_{\mu}(p_{\omega}, m_{\omega}) L^{(3)\mu\nu\alpha}(p_{\omega K}) \epsilon_{\nu\alpha}(P, M)$ ar

nd
$$\mathcal{I} \propto \sum_{M=\pm 1} \sum_{m_\omega=\pm 1,0} |\mathcal{A}|^2$$

• qft++: Declaration and Calculation

PolVector epso; // omega
PolVector epsx(2); // X
OrbitalTensor orb3(3); // L^3
Tensor<complex<double> > amp;
Vector4<double> p40,p4k,p4x;

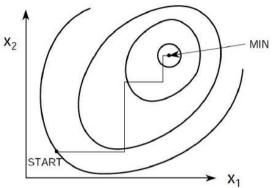
qft++ Package

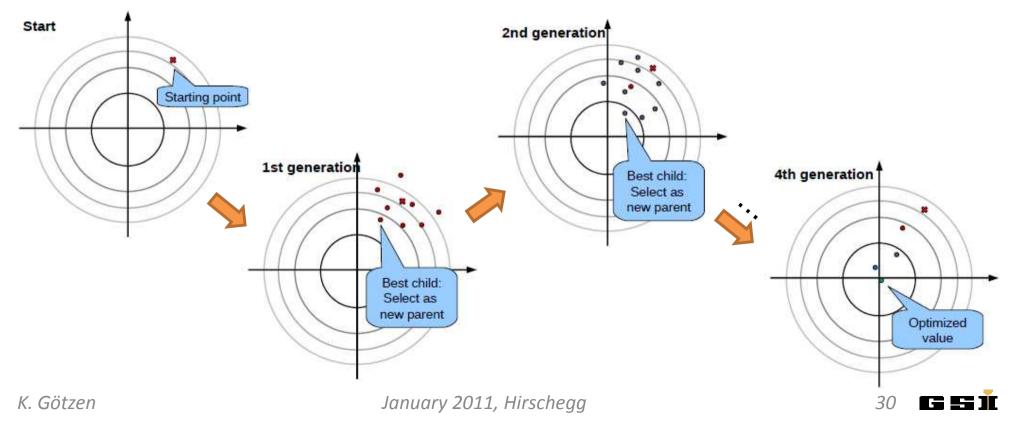

- Example: $X(2^-) \rightarrow \omega K \rightarrow \pi^+ \pi^- \pi^0 K$
- Amplitude and Intensity given by

 $\mathcal{A} \propto \epsilon^*_{\mu}(p_{\omega}, m_{\omega}) L^{(3)\mu\nu\alpha}(p_{\omega K}) \epsilon_{\nu\alpha}(P, M)$ a

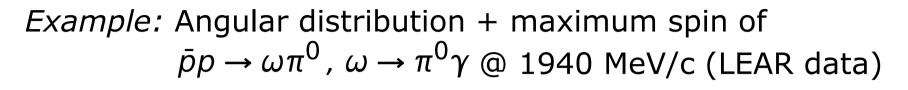
and
$$\mathcal{I} \propto \sum_{M=\pm 1} \sum_{m_\omega=\pm 1,0} rac{|\mathcal{A}|^2}{m_\omega}$$

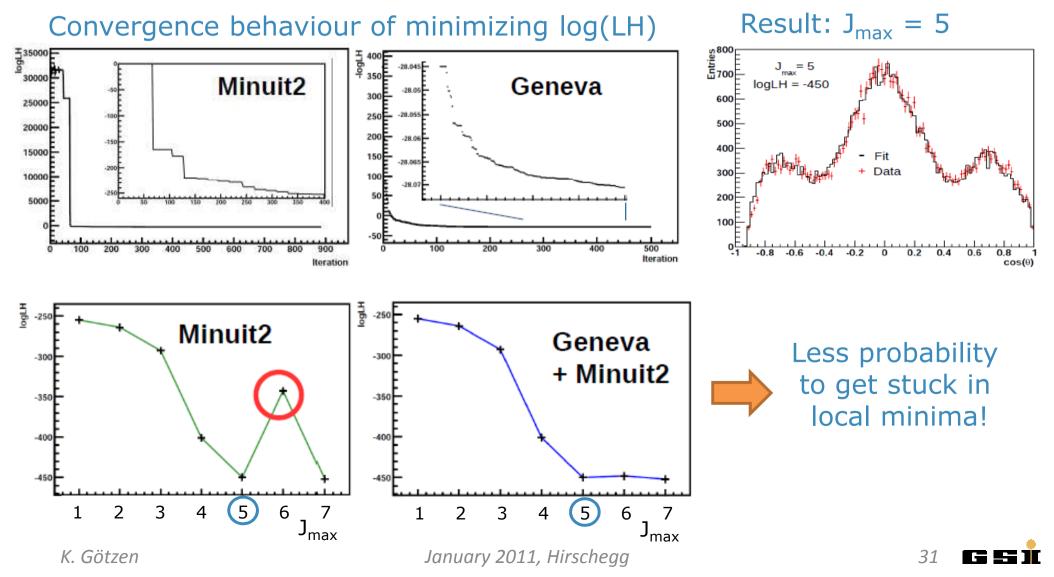
• qft++: Declaration and Calculation


PolVector epso; // omega
PolVector epsx(2); // X
OrbitalTensor orb3(3); // L^3
Tensor<complex<double> > amp;
Vector4<double> p4o,p4k,p4x;

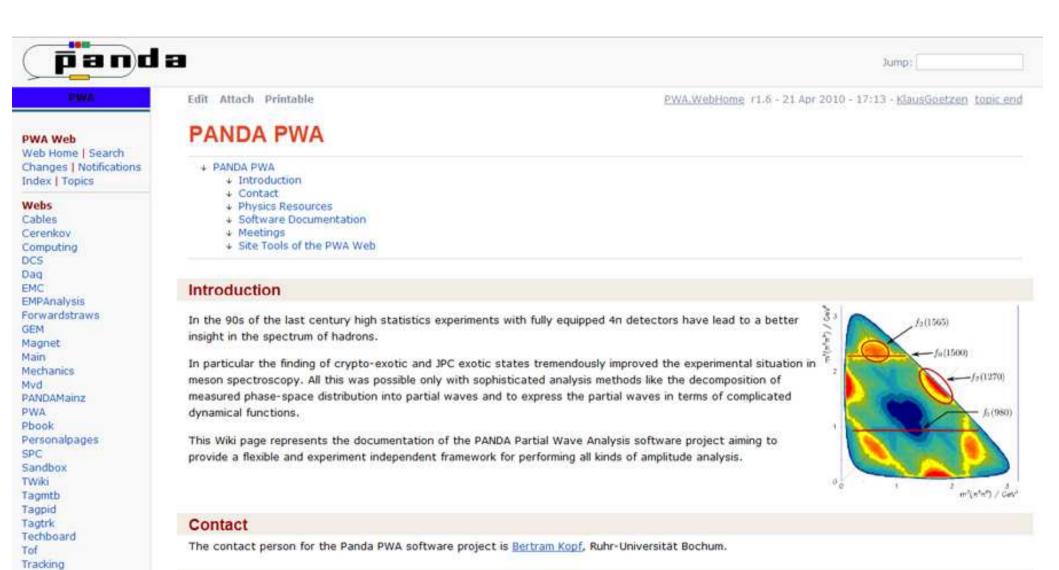

29

Minimization

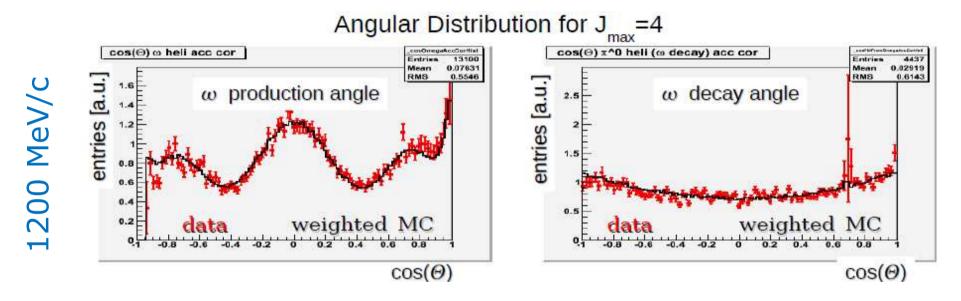

- MINUIT2 = classical gradient descent
- Sometimes gets stuck in local minima

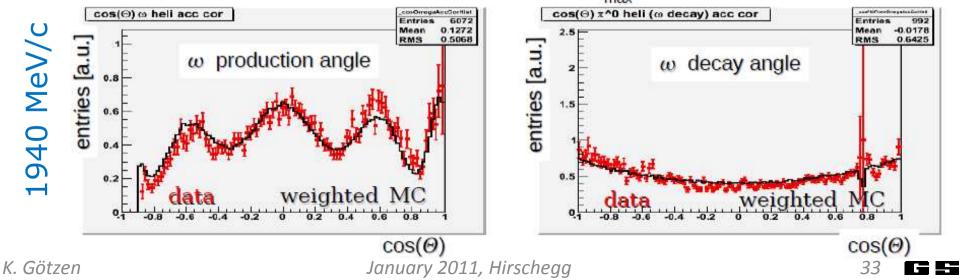


- Alternative: Evolutionary Strategy (GenEvA)
 - → new solutions created from previous ones (offspring)



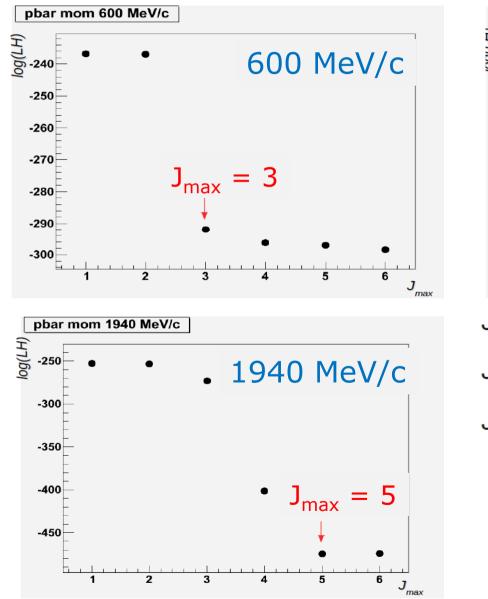
GenEvA Example

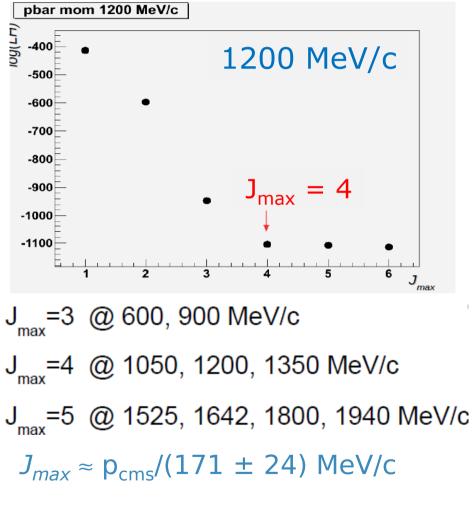

Documentation – PWA Wiki Page



Crystal Barrel Data: $\bar{p}p \rightarrow \omega \pi^0$

• Highest J in channel $\bar{p}p \rightarrow \omega \pi^0$, $\omega \rightarrow \pi^0 \gamma$ at various energies




Angular Distribution for J____=5

Crystal Barrel Data: $\bar{p}p \rightarrow \omega \pi^0$

• Highest J in channel $\bar{p}p \rightarrow \omega \pi^0$, $\omega \rightarrow \pi^0 \gamma$ at various p_{beam}

Studies concerning spin-density matrix are ongoing.

34

January 2011, Hirschegg

K. Götzen

BES3 Analysis: $\psi(2S) \rightarrow \chi_{c1}\gamma \rightarrow (K^+K^-\pi^0)\gamma$

PRELIMINARY

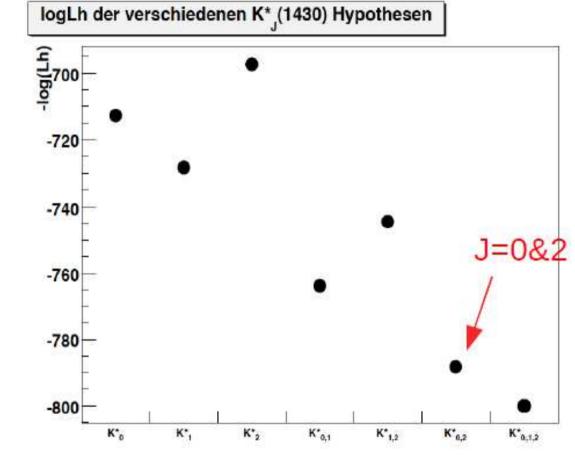
Entries 7890 $m_{K^{\pm}\pi^{0}}^{2}$ vs $m_{K^{\mp}\pi^{0}}^{2}$ (Dalitz plot (χ_{c1})) Integral 7890 10 40 $m^2_{K^{-}\pi^0}$ [GeV $^{2/c}$ ⁴] a (980) 9 35 8 -30 7 -25 6 5 -20 4--15 1 3 -10 K*(1400)2--5 K*(892) 0 7 8 9 10 $m_{K^{+}\pi^{0}}^{2}$ [GeV $^{2}/c^{4}$] 5 10 6 K*(892) K*(1400)

(Patrick Friedel, Bochum)

$$K^{*\pm}(892) \to K^{\pm}\pi^0$$

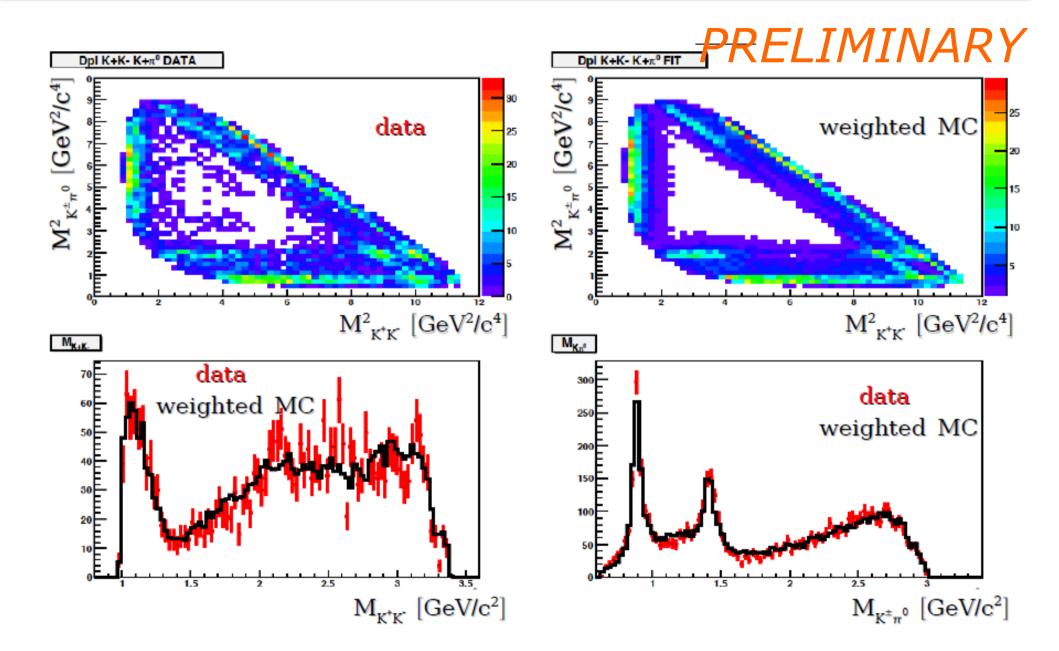
 $K_J^{*\pm}(1430) \to K^{\pm} \pi^0$

$$u_0(980) \to K^+ K^-$$


Determine J of K*

BES3 Analysis: $\psi(2S) \rightarrow \chi_{c1}\gamma \rightarrow (K^+K^-\pi^0)\gamma$

- 2nd step: PWA with four resonances
 - $a_0(980)\pi^0$
 - $K^{*\pm}(892)K^{\mp}$
 - two resonances for $K_J^{*\pm}(1430)K^{\mp}$ with J=0&1, 0&2, 1&2
- Best result with combination J=0&2
 - $K_0^{*\pm}(1430)K^{\mp}$
 - $K_2^{*\pm}(1430)K^{\pm}$
- No significant improvement for combination J=0,1&2


PRELIMINARY

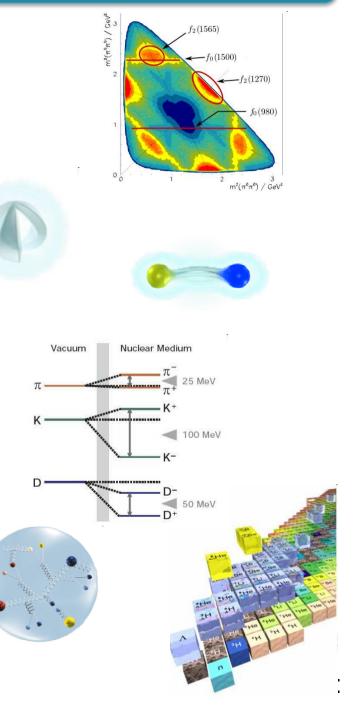
31

36 🖬 🖬 🔟

BES3 Analysis: $\psi(2S) \rightarrow \chi_{c1}\gamma \rightarrow (K^+K^-\pi^0)\gamma$

Summary

- Versatile Partial Wave Analysis Software mandatory for Hadron Spectroscopy @ PANDA
- Many challenges experimental, mathematical, computational have to be faced
- Highly Modular Software Concept for a generalized software package
- Software project has successfully been initiated within PANDA Collaboration


BACKUP

PANDA Physics Programme

- Charmonium/Open Charm Physics
 - Precise Spectroscopy
 - Investigation of Confinement Potential
 - X, Y, Z, $D_{\rm sJ}$ States up to 5.5 GeV
 - D-Mixing & CP-Violation
- Exotic Matter
 - Search for Glueballs and Hybrids
 - Spectroscopy of light Mesons
- Hadrons in Media
 - In-medium Modification of Hadrons
- Nucleon-Structur
 - Generalized Parton Distribution
 - Timelike Form Faktor of the Proton
 - Drell-Yan Processes
- Hypernuclear Physics

K. Götzen

