

RUHR UNIVERSITÄT BOCHUM

Measuring $\eta \to \pi^+ \pi^- e^+ e^-$ with WASA at COSY

Daniel Coderre Hirschegg 2010

- Internal experiment at COSY ring, Jülich, Germany
- Hydrogen/deuterium pellet target
- Forward detector \rightarrow measurement of low-angle particles for accurate meson tagging
- Central detector \rightarrow measurement of *both charged* and *neutral* decay products

Meson Production at WASA-at-COSY JÜLICH

- + Unbiased data sample (all decays of η present)
 + Clean η tagging via missing mass technique
- + Low multi-π background
- Lower statistics, very rare decays unreachable

Spring 2010 pp \rightarrow ppŋ

8 Weeks

~1x10⁷ $\eta \rightarrow \pi^{+}\pi^{-}\pi^{0}$ reconstructed

- Trigger conditions \rightarrow bias towards charged decays
- Higher level cuts needed to see η signal at all
- Very high multi-π background
- + Much higher statistics for rare decays

PPMM CutPPG

Meson Production at WASA-at-COSY JÜLICH

Major Production Runs

Fall 2 Fall 2	Decay mode	Fraction Γ _i /Γ _{total} (pdg)	issue		
+ Ur	$\eta \rightarrow \pi^0 \pi^0 \pi^0$	(32.57 ± 0.23) x 10 ⁻²	Dalitz plot parameter	nmHe3 1.420244e+08 0.5157 0.05086	
+ Cl + Lo	$\eta \rightarrow \pi^+ \pi^- \pi^0$	(22.74 ± 0.28) x 10 ⁻²			
- Lov	$\eta \to \pi^+ \pi^- \gamma$	(4.60 ± 0.16) x 10 ⁻²	Box anomaly		
	η → γe⁺e⁻	(7.0 ± 0.7) x 10 ⁻³	Transition form factor	eV1	
Spring	$\eta \to \pi^0 \gamma \gamma$	(2.7 ± 0.5) x 10 ⁻⁴	ChPT		
- Tric	η → π⁺π⁻e⁺e⁻	(2.68 ± 0.11) x 10 ⁻⁴	СР	PPMM_CutPPC Entries 157 Mean 0.5 RMS 0.0189	
- Hig - Ver	η → e⁺e⁻e⁺e⁻	< 6.9 x 10 ⁻⁵	Transition form factors	nts are from t 30	
+ Mu	$\eta \rightarrow \pi^0 e^+ e^-$	< 4 x 10 ⁻⁵	С		
	η → e⁺e⁻	< 2.7 x 10 ⁻⁵	New physics?		
Spring 2011 pd \rightarrow ³ He ω Starts in a few weeks!					

$\label{eq:states} \eta \to \pi^+ \pi^- e^+ e^- \quad \text{Motivation (1)}$

Branching ratio measurement:

Discrepancy exists between modern theory and modern experiment

Former Experimental Results

- **1966 –** 1 Candidate Event (bubble chamber) Grossman, Price, Crawford Phys.Rev.146:933,1966
- 2001 4 Candidate Events (.5 event background) CMD-2 Experiment Phys.Lett.B501:191-199,2001c
- 2007 24 Events (8 event background) WASA-CELSIUS Phys.Lett.B644:299-303,2007
- 2009 1555 events KLOE Collaboration Phys.Lett.B675:293-288,2009

- [1] Petri, T. Master's Thesis.(2010) arXiv:1010.2378v1
- [2] R.Borasoy and R.Nissler, Eur.Phys.J. A 33 (2007) 95.
- [3] A. Faessler, C. Fuchs, and M.I. Krivoruchenko, Phys.Rev. C 61 (2000) 035206.
- [4] C.Piccioto and S. Richardson, Phys.Rec. D 48 (1993) 3395.

$\eta \rightarrow \pi^+ \pi^- e^+ e^-$ Motivation (2)

 $\eta \rightarrow \pi^+\pi^-$ violates CP directly

Geng¹, **2002** – Possible flavor conserving CP violation in $\eta \rightarrow \pi^{+}\pi^{-}\gamma$ could cause a "sizeable" linear photon polarization."

Gao², 2002 – If such a linear polarization were to exist, it could create an observable for non-SM CP violation in the asymmetry of the electron and pion decay planes.

 $\frac{Count (\varphi > 90) - Count (\varphi < 90)}{Count (\varphi > 90) + Count (\varphi < 90)}$ theoretical upper limit ~10⁻²

Experimental upper limit from KLOE: $A_{\phi} = (-0.6 \pm 2.5_{stat} \pm 1.8_{svst}) \times 10^{-2}$ Phys.Lett.B675:283-288,2009

C.Q. Geng, J.N. Ng, and T.H. Wu, Mod. Phys. Lett. A 17 (2002) 1489. 2. D.N. Gao, Mod. Phys. Lett. A 17 (2002) 1583.

Analysis 1: Particle Identification

Forward Detector Particle Identification

Central Detector Particle Identification

- Clean ³He identification via. E/dE method (simple graphical cut)
- Protons selected by time difference
- Pions and electrons selected via. E/dE method. Neural networks used to get probability.
- Angular distributions additionally used to identify dilepton pair

Background from Other η Decays

Channel	Branching Ratio	Final State Particles
$\eta \rightarrow \pi^{+}\pi^{-}e^{+}e^{-}$ (signal)	(2.68 ± .11) x 10 ⁻⁴	π ⁺ π ⁻ e ⁺ e ⁻
$\eta \to \pi^+ \pi^- \gamma$	(4.60 ± 0.16) x 10 ⁻²	π ⁺ π ⁻ e ⁺ e ⁻
$\eta ightarrow \pi^{*}\pi^{-}\pi^{0}$ $\pi^{0} ightarrow \gamma\gamma$	(22.74 ± 0.28) x 10 ⁻² x ~99%	π⁺ π⁻ e⁺ e⁻ γ
$\eta ightarrow \pi^{+}\pi^{-}\pi^{0}$ $\pi^{0} ightarrow e^{+}e^{-}\gamma$	(22.74 ± 0.28) x 10 ⁻² x ~1%	π ⁺ π ⁻ e ⁺ e ⁻ γ
$\eta \to \pi^0 \pi^0 \pi^0$	(32.57 ± 0.23) x 10 ⁻²	е⁺е⁻е⁺е⁻үүүү
$\eta \to \gamma \gamma$	(39.31 ± 0.20) x 10 ⁻²	e ⁺ e ⁻ e ⁺ e ⁻

- * Background channels with an extra photon are sensitive to cuts on the missing energy of the photon
- * Background channels coming from conversion are sensitive to cuts on the primary vertex
- * The final two (neutral) channels are not specifically considered as they are automatically suppressed by the other cuts

Cut on primary vertex:

 Tracking information from Mini Drift Chamber

Closest approach of particle helices

 Invariant mass at beam pipe

Remaining Event Samples from p-d UULICH

- After background suppression, around 125 signal events remain from pd data. η content is 80% signal

 Loosening of cut conditions can also yield over 300 signal events, but η content drops to 60% signal

- Work is ongoing to address efficiency of reconstruction

- The decay $\eta \rightarrow \pi^+\pi^-e^+e^-$ has been observed in pd \rightarrow ³He η
- 12 weeks of pd data yields a sample of one to a few hundred events, depending on selectiveness of cuts
- Extension of analysis to proton-proton data \rightarrow already begun
- WASA experiment continues taking data
 - First ω production run starts Feb. 2011
 - Design goal: sensitivity on $\eta \rightarrow e^+e^-$ (>10⁹ η 's)
 - New Trigger board
 - Drift Chamber

Extra slides

Effect on background channels

Particle Identification

Energy/Momentum Identification

Opening Angle Information

 * Identification takes in 2 positive and 2 negative tracks and assumes 2 π and 2 e.

- * Four possible configurations each have starting probability 1/4
- * Probabilities are updated using Bayes' equation with information from E/dE graphs and opening angles
- * Highest probability configuration is chosen

3 Missing Mass of two protons (GeV)

Identifying η-mesons in pd and pp

p-d: E/dE method

p-p: Time Coincidence Method

Particle Identification

Add information recursively, update probabilities every step:

- In MC ~92% of signal events correctly identified
- Algorithm can be easily extended if more ways to discriminate electrons and pions are found

In our MDC

Result: Lower track finding efficiency and higher errors for particles hitting less straws.

How low?

- In pd 17% of events remain after asking for at least 4 charged tracks
- In pp only 8% remain