Time-like electromagnetic form factors from PANDA

Y. Ma,

Hadron Physics 2,
GSI, Darmstadt
Hirschegg 2011

Outline

- Overview of EM form factors
- EM form factors in time-like region
- Unpolarized cross section (Rosenbluth)
- Polarization effect
- Existing data
- Impact from PANDA
- Improvements in precision
- Panda vs two photon exchange (TPE)
- Possibility of polarization
- Summary

Overview of EM form factors

EM form factors: different reactions

EM form factors: same matrix element

$q^{2}<0$
space-like region

$$
q^{2}>0
$$

$$
J_{\mu}=i e\left[F_{1}\left(q^{2}\right) \gamma_{\mu}+\frac{\kappa}{2 M} F_{2}\left(q^{2}\right) i \sigma_{\mu \nu} q^{\nu}\right]
$$

$$
\left\langle\bar{u}_{p^{\prime}}\right| J_{\mu}\left|u_{p}\right\rangle \frac{1}{q^{2}}\left\langle\bar{u}_{e^{\prime}}\right| j_{\mu}\left|u_{e}\right\rangle \underset{\substack{\text { crossing symmetry }}}{\longrightarrow}\left\langle\bar{u}_{p^{\prime}} u_{p}\right| J_{\mu}|0\rangle \frac{1}{q^{2}}\langle 0| j_{\mu}\left|\bar{u}_{e^{\prime}} u_{e}\right\rangle
$$

EM form factors: dispersion relation

$$
q^{2}<0
$$

space-like region

dispersion relation
real value:
EM field distribution
complex value: particle annihilation

EM from factors: asymptotic behavior

QCD counting rules:

$$
\begin{aligned}
q^{2} & \rightarrow-\infty \\
F_{i}\left(q^{2}\right) & \rightarrow\left(-q^{2}\right)^{-(i+1)} \\
i=1 \text { DiracFF } & \\
G_{E, M} & \rightarrow\left(-q^{2}\right)^{-2}
\end{aligned}
$$

Analyticity:

$$
\begin{aligned}
q^{2} & \rightarrow \pm \infty \text { (Phragmen Lindeloef) } \\
G_{E, M}(-\infty) & =G_{E, M}(+\infty)
\end{aligned}
$$

EM from factors: experimental data

- rich data for space-like region
- feed to time-like region with dispersion relation
- new polarization data inspires intense study
- low statics for time-like region data

EM form factors in time-like region

Time-like EM form factors: Rosenbluth cross section

$$
\frac{d \sigma}{d \cos \theta}=\frac{\pi \alpha^{2}}{8 M^{2} \sqrt{\tau(\tau-1)}}\left[\left|G_{M}\right|^{2}\left(1+\cos ^{2} \theta\right)+\frac{\left|G_{E}\right|^{2}}{\tau}\left(1-\cos ^{2} \theta\right)\right], \quad \tau=\frac{-q^{2}}{4 M^{2}}
$$

Time-like EM form factors:

Rosenbluth cross section

$$
\frac{d \sigma}{d \cos \theta}=\frac{\pi \alpha^{2}}{8 M^{2} \sqrt{\tau(\tau-1)}}\left[\left|G_{M}\right|^{2}\left(1+\cos ^{2} \theta\right)+\frac{\left|G_{E}\right|^{2}}{\tau}\left(1-\cos ^{2} \theta\right)\right], \quad \tau=\frac{-q^{2}}{4 M^{2}}
$$

Time-like EM form factors: polarization

Px: perpendicular to beam (inside scattering plane)

Py: normal to scattering plane
Pz: beam direction

Time-like EM form factors:

 single polarization

Py : perpendicular to scattering plane, either target or outgoing baryon

$$
P_{y} \propto \sin (2 \theta) I m G_{E}^{*} G_{M},
$$

- doesn't require electron polarization
- contains Im part of relative phase
- good selection of different fitting

Phenomenological fitting based on VMD model; JLab polarization data fitting;
E. Tomasi-Gustafsson, et al. Eur. Phys. J. A 24, 419-430 (2005)
S. Brodsky, et al. Phys. Rev. D 69054022 (2004)

Time-like EM form factors:

 double polarization$$
\begin{gathered}
P_{z z} \propto\left(1+\cos ^{2} \theta\right)\left|G_{M}\right|^{2}-\frac{1}{\tau} \sin ^{2} \theta\left|G_{E}\right|^{2} \\
P_{x x} \propto \sin ^{2} \theta\left(\left|G_{M}\right|^{2}+\frac{1}{\tau}\left|G_{E}\right|^{2}\right) \\
P_{y y} \propto-\sin ^{2} \theta\left(\left|G_{M}\right|^{2}-\frac{1}{\tau}\left|G_{E}\right|^{2}\right) \\
P_{z x}=P_{x z} \propto \frac{1}{\sqrt{\tau}} \sin 2 \theta \operatorname{Re} G_{E} G_{M}^{*}
\end{gathered}
$$

$P_{z x}$:Sensitive to the real part of $G_{E} G_{M}$; Together with P_{y}, a complete measurement of G_{E} and G_{M} in time like region can be made.
E. Tomasi-Gustafsson, et al. Eur. Phys. J. A 24, 419-430 (2005)

Time-like EM form factors: existing data

Time-like EM form factors: existing data

All data: absolute cross section, assume

$G_{E}=G_{M}$

Time-like EM form factors: dispersion relation approach

Input for the space-like region: recent data from JLAB; green band: fit result for PS170 data in the time-like region; yellow band: fit result for the BABAR data.

Impact from PANDA

PANDA experiment at FAIR: layout of the future facility

PANDA experiment at FAIR:

layout of the future facility

PANDA experiment at FAIR:

layout of the future facility

PANDA experiment at FAIR: collaboration list

Basel, Beijing, Bochum, Bonn, IFIN Bucharest, Brescia, Catania, Cracow, Dresden, Edinburg, Erlangen, Ferrara, Frankfurt, Genova, Giessen, Glasgow, GSI, KVI Groningen, Inst. of Physics Helsinki, FZ Jülich, JINR Dubna, Katowice, Lanzhou, LNF, Mainz, Milano, Minsk, TU München, Münster, Northwestern, BINP Novosibirsk, Pavia, Piemonte Orientale, IPN Orsay, IHEP Protvino, PNPI St. Petersburg, KTH Stockholm, Stockholm, Dep. A. Avogadro Torino, Dep. Fis. Sperimentale Torino, Torino Politecnico, Trieste, TSL Uppsala, Tübingen, Uppsala, Valencia, SINS Warsaw, TU Warsaw, AAS Wien

PANDA experiment at FAIR: spectrometer

(2) Good tracking capability;
(2) High luminosity $\mathrm{L}=1.6 \times 10^{32} \mathrm{~cm}^{-2} \mathrm{~s}^{-1}$;
(2) Wide momentum range: $1.5 \mathrm{GeV} / \mathrm{c}$ ~ $15 \mathrm{GeV} / \mathrm{c}$

PANDA experiment at FAIR:

simulation

(2) large collaboration framework: computing resources, software package development
© parametrization of detector response, digitization, reconstruction, high level tools
(2) 100 CPUs in Orsay, 300 CPUs Lyon: $\pi^{+} \pi^{-}$background ($<10^{9}$ events)
e 200 CPUs at GSI: all other signals
e particle identification, just include $d E / d x$
(2) full material budget, radiative corrections, kinematical fits
M. Sudol, et al. Eur. Phys. J. A 44, 373-384 (2010)

PANDA experiment at FAIR:

simulation

(2) Reactions with at least 3 particles produced: ($\left.e^{+} e^{-} \times, \pi^{+} \pi^{-} \times, \ldots.\right)$

- PID and kinematics constraints: no problem
(2) Reactions with 2 charged particles

$$
\begin{aligned}
& \text { - } \sigma\left(\pi^{+} \pi^{-}\right) / \sigma\left(e^{+} e^{-}\right) \approx 10^{6} \quad\left(2 \mu b / 8 \mathrm{pb} \text { at } q^{2}=9.0(\mathrm{GeV} / \mathrm{c})^{2}\right) \text { need } \\
& \text { rejection of pp } \rightarrow \pi^{+} \pi^{-} \text {by } 10^{-8} \text { binary event, mean } \\
& \text { reject. of } 10^{-4} \text { per } \pi^{+} \text {and per } \pi^{-} \\
& \text {- very close kinematics } \\
& \text { - PID is crucial, EMC, DIRC, } \mathrm{dE} / \mathrm{dx} \text { of straw tube }
\end{aligned}
$$

PANDA experiment at FAIR:

 simulation

$q^{2}\left[\mathrm{GeV}^{2}\right]$	$e^{+} e^{-}$	$\mu^{+} \mu^{-}$	$\pi^{+} \pi^{-}$	$\pi^{0} \pi^{0}$
5.4	4×10^{6}	4×10^{6}	-	-
7.21	4×10^{6}	4×10^{6}	-	-
8.21	4×10^{6}	4×10^{6}	10^{8}	3×10^{6}
11.03	4×10^{6}	4×10^{6}	-	-
12.9	4×10^{6}	4×10^{6}	10^{8}	3×10^{6}
16.7	4×10^{6}	4×10^{6}	2.10^{8}	3×10^{6}
22.3	4×10^{6}	-	-	-

(a) $\pi^{+} \pi^{-}$background distribution
(2) number of events simulated M. Sudol, et al. Eur. Phys. J. A 44, 373-384 (2010)

PANDA experiment at FAIR:

 simulation: background suppression

M. Sudol, et al. Eur. Phys. J. A 44, 373-384 (2010)

PANDA experiment at FAIR:

 simulation: PANDA precision
M. Sudol, et al. Eur. Phys. J. A 44, 373-384 (2010)

PANDA experiment at FAIR: simulation: PANDA vs. TPE

$$
\frac{d \sigma}{d \cos \theta}=\sigma_{0}\left(1+A \cos ^{2} \theta\right)
$$

A: asymmetry due to TPE interference

$$
q^{2}=5.4(\mathrm{GeV} / \mathrm{c})^{2}
$$

forward lepton backward lepton
M. Sudol, et al. Eur. Phys. J. A 44, 373-384 (2010)

PANDA experiment at FAIR:

 possibility of polarization(2) Feasibility study (physics simulations \& finite element analysis) PANDA: modular, exchange inner part in later stage

Summary:

Panda can ...

- essentially improve data in TL region
- possibility to measure relative phase (G_{E}, G_{M})
- determine contribution of TPE
- Other interesting EM processes

end

- matrix element
- space-like, time-like cross section (1 gamma)
- complex, dispersion relation
- two photon exchange
- polarization, spin observables, relative phase
- other physics: Drell Yan, transverse spin, GPD, TDA
- polarized target: physics, technique
- tau decay

ISR method

Mass spectrum of pp system in the $e^{+} e^{-} \rightarrow p p \gamma$ reaction is related to cross section of $e^{+} e^{-} \rightarrow p p$ reaction at $E=m$.

$$
\begin{gathered}
\frac{d \sigma\left(e^{+} e^{-} \rightarrow p \bar{p} \gamma\right)}{d m d \cos \theta}=\frac{2 m}{s} W(s, x, \theta) \sigma\left(e^{+} e^{-} \rightarrow \bar{p}\right)(m), \quad x=\frac{2 E_{\gamma}}{\sqrt{s}}=1-\frac{m^{2}}{s}, \\
W(s, x, \theta)=\frac{\alpha}{\pi x}\left(\frac{2-2 x+x^{2}}{\sin ^{2} \theta}-\frac{x^{2}}{2} \frac{)}{\dot{j}}, \quad \theta \gg \frac{m_{e}}{\sqrt{s}} .\right.
\end{gathered}
$$

Unpolarized cross section

dapnia

$$
\frac{d \sigma}{d \Omega}=\frac{\alpha^{2}}{4 q^{2}} \sqrt{\frac{\tau}{\tau-1}} D
$$

saclay

$$
\begin{aligned}
D= & \left(1+\cos ^{2} \theta\right)\left(\left|G_{M}\right|^{2}+2 \operatorname{Re} G_{M} \Delta G_{M}^{*}\right)+\frac{1}{\tau} \sin ^{2} \theta\left(\left|G_{E}\right|^{2}+2 \operatorname{Re} G_{E} \Delta G_{E}^{*}\right)+ \\
& 2 \sqrt{\tau(\tau-1)} \cos \theta \sin ^{2} \theta \operatorname{Re}\left(\frac{1}{\tau} G_{E}-G_{M}\right) F_{3}^{*} .
\end{aligned}
$$

2γ-contribution:

- Induces four new terms
- Odd function of θ :
- Does not contribute at $\theta=90^{\circ}$

$\gamma \gamma$ exchange from $e^{+} e^{-} \rightarrow p \bar{p} \gamma$ BABAR data

$$
\mathcal{A}\left(\cos \theta, M_{p \bar{p}}\right)=\frac{\frac{d \sigma}{d \Omega}\left(\cos \theta, M_{p \bar{p}}\right)-\frac{d \sigma}{d \Omega}\left(-\cos \theta, M_{p \bar{p}}\right)}{\frac{d \sigma}{d \Omega}\left(\cos \theta, M_{p \bar{p}}\right)+\frac{d \sigma}{d \Omega}\left(-\cos \theta, M_{p \bar{p}}\right)}
$$

ECT* - Trento, February 25, 2008

Time-like EM form factors: existing data

$\boldsymbol{e}^{+} \boldsymbol{e}^{-} \rightarrow p \bar{p}$ angular distribution

Histograms show contributions from

- G_{E}
- G_{M}

At low q
$\sin ^{2} \theta_{p}>1+\cos ^{2} \theta_{p}$
\Rightarrow
\Rightarrow
First observation!

$$
\left|G_{E}^{p}\right|>\left|G_{M}^{p}\right|
$$

At higher $q,\left|G_{E}^{p}\right| \rightarrow\left|G_{M}^{p}\right|$

PANDA experiment at FAIR:

simulation

PANDA experiment at FAIR:

 simulation

PANDA experiment at FAIR:

 simulation

Table 1. Cross section $\sigma\left(\sigma_{Q C D}\right)$ and number of counts, N ($N_{Q C D}$) from eq. 7 (eq. 8) corresponding to an integrated luminosity of $\mathcal{L}=2 \mathrm{fb}^{-1}$, for different values of $q^{2}=s$ and of the antiproton momentum, x

EM form factors: basic facts

- Assuming P, T invariance, a particle with spin S has 2S+1 form factors: Dirac (F1) \& Pauli (F2)
- $E M$ form factors: $G_{E} \& G_{M}$ space-like ($q^{2}<0$), distribution of EM field, real value; time-like $\left(q^{2}>0\right)$, particle annihilation, complex value
- Space-like region and time-like region are connected by dispersion relations
- Constraints from QCD power counting

PANDA experiment at FAIR:

M. Sudol, et al. Eur. Phys. J. A 44, 373-384 (2010)

PANDA experiment at FAIR: other interesting EM processes

Timelike Axial Formfactor

Wide angle TL Compton scattering

Deeply Virtual TL Compton Scattering

