Scan experiments at

 PANDAMiriam Fritsch

Institut für Kernphysik

Hirschegg 2011
January 19, 2011

JG|U

X(3872) discovery

$X(3872) \rightarrow \mathrm{J} / \Psi \pi^{+} \pi^{-}$ 2003 in B \rightarrow X K

X(3872) - PDG

$X(3872)$ MASS FROM $J / \psi \pi \pi$ MODE

VALUE (MQV)	EVTS	DQCUMENT ID	TECN	COMMENT
3871.56士 0.22 OUR AVERAGE				
$3871.61 \pm 0.16 \pm 0.19$	6k	1,2 AALTONEN	Q9AU CDF2	$p \bar{p}-J / \psi \pi^{+} \pi^{-} X$
$3871.4 \pm 0.6 \pm 0.1$	93.4	AUBERT	$08 Y$ BABR	$\mathrm{B}^{+}-K^{+} \mathrm{J} / \psi \pi^{+} \pi^{-}$
$3868.7 \pm 1.5 \pm 0.4$	9.4	AUBERT	$08 Y$ BABR	$B^{0}-K_{S}^{0} J / \psi \pi^{+} \pi^{-}$
$3871.8 \pm 3.1 \pm 3.0$	522	2,3 ABAZOV	Q4F D0	$p \bar{p}-J / \psi \pi^{+} \pi^{-} X$
$3872.0 \pm 0.6 \pm 0.5$	36	CHOI	03 BELL	$B-K \pi^{+} \pi^{-J / \psi}$

- - We do not use the following data for averages, fits, limits, etc. - -
$3868.6 \pm 1.2 \pm 0.2$
$3871.3 \pm 0.6 \pm 0.1$

X(3872) mass measurements

$\mathrm{X}(3872)$ properties

A charmonium(-like) state found in $\mathrm{X}(3872) \rightarrow \mathrm{J} / \psi \pi^{+} \pi^{-}$

Not found in formation in $\mathrm{e}^{+} \mathrm{e}^{-}$collision
\rightarrow Not JPC $=1^{--}$
Observation of decay into $\mathrm{J} / \Psi \mathrm{Y}$
$\rightarrow \mathrm{C}=+1$

Mass of $\mathrm{X}(3872) \rightarrow \mathrm{D}^{0} \bar{D}^{*} 0$ shifted by $\sim 3 \mathrm{MeV} / \mathrm{c}^{2}$
\rightarrow S-wave molecular state?
Interesting properties:
breaks isospin in the decays $\mathrm{J} / \psi \rho\left(\rightarrow \pi^{+} \pi^{-}\right), \mathrm{J} / \psi \omega\left(\rightarrow \pi^{+} \pi^{-} \pi^{0}\right)$
\rightarrow is it charmonium?
Width is unknown lower limit $\Gamma<2.3 \mathrm{MeV} / \mathrm{c}^{2}$ (Belle)
Helicity amplitude analysis from CDF
\rightarrow E.g. $\mathrm{JPC}^{\mathrm{PC}}=1^{++}$or 2^{-+}
Properties and nature of the resonance still unclear !

Charmonium production with $\overline{\mathrm{p}} \mathrm{p}$ reactions

Formation

Determination of quantum numbers:
\rightarrow angular distributions

X(3872) line shape

FAIR

HESR - High Energy Storage Ring

Injection of \bar{p} at

 3.7 GeVStorage ring for internal target operation

Mode	High Resolution	High Luminosity
Momentum range Stored antiprotons Luminosity Mom. Resol. (rms) Beam cooling	$\begin{gathered} 1.5-8.9 \mathrm{GeV} / \mathrm{c} \\ 10^{10} \\ 2 \cdot 10^{31} \mathrm{~cm}^{-2} \mathrm{~s}^{-1} \\ \Delta \mathrm{p} / \mathrm{p} \leq 4 \cdot 10^{-5} \\ \text { Electron }(\leq 8.9 \mathrm{GeV} / \mathrm{c}) \end{gathered}$	$\begin{gathered} 1.5-15 \mathrm{GeV} / \mathrm{c} \\ 10^{11} \\ 2 \cdot 10^{32} \mathrm{~cm}^{-2} \mathrm{~s}^{-1} \\ \Delta \mathrm{p} / \mathrm{p}=1 \cdot 10^{-4} \\ \text { Stochastic }(\geq 3.8 \mathrm{GeV} / \mathrm{c}) \end{gathered}$

$\overline{\text { PanANDA Detector }}$

Target
Spectrometer

Detector requirements

Nearly 4π solid angle for PWA
High rate capability: $2 \cdot 10^{7} \mathrm{~s}^{-1}$ interactions
Efficient event selection
Good momentum resolution
Vertex info for $D, K_{S}, \Sigma, \Lambda\left(C \tau=317 \mu \mathrm{~m}\right.$ for $\left.D^{ \pm}\right)$
Good PID ($\gamma, e, \mu, \pi, K, p)$
Photon detection 1 MeV - 10 GeV

Energy scan technique

\rightarrow Line shape measurement

Selection of the events
Normalization
Beamtime planning

Event selection e.g. $\mathrm{X}(3872) \rightarrow \mathrm{J} / \psi \pi^{+} \pi^{-}$

Formation

Simulation at $\sqrt{\mathrm{s}}=3872 \mathrm{MeV} / \mathrm{c}^{2}$ and $\Gamma=0 \mathrm{MeV} / \mathrm{c}^{2}$
$\mathrm{J} / \Psi \rightarrow \mathrm{e}^{+} \mathrm{e}^{-}$or $\mu^{+} \mu^{-}$
Cut round inv. J/ Ψ-mass
Combination with $\pi^{+} \pi^{-}$

Energy scan

$\mathrm{X}(3872)$ input: $\mathrm{m}=3872 \mathrm{MeV} / \mathrm{c}^{2}, \Gamma=1 \mathrm{MeV} / \mathrm{c}^{2}, \mathrm{RMS}: 8.3 \mathrm{MeV} / \mathrm{c}^{2}$ $S / B=2 / 1$ (background argus function)

$$
\begin{aligned}
& 10 \text { steps a } 400 \mathrm{keV} / \mathrm{c}^{2} \\
& 3870.2-3873.8 \mathrm{MeV} / \mathrm{c}^{2} \\
& \Delta \mathrm{p} / \mathrm{p}=3 \cdot 10^{-5}
\end{aligned}
$$

Energy scan

Fit with Gauss + Argus Function

Energy scan

Fit with Gauss + Argus Function

Luminosity measurement at PANDA

Elastic antiproton-proton scattering

only few
measurements available !!

At small $|t|$ and therefore small θ :
Coulomb scattering dominates
\rightarrow Differential cross section can be calculated

Elastic $\overline{\mathrm{p}} \mathrm{p}$ scattering

$\mathrm{d} \sigma / \mathrm{d} \theta($ Coulomb $)=\mathrm{d} \sigma / \mathrm{d} \theta$ (Hadronic)

3 mrad:
Limit from the HESR
8 mrad:
Certain region of θ needed
\rightarrow Smearing effects

- coulomb scattering
- magnets
- beam and target

Method

- Measurement of the θ distribution in Luminosity monitor
- Subtract background
- Calculation of the |t| distribution
- Fit of the model to the data
\rightarrow Luminosity

Precise measurement of
θ distribution necessary !!

Luminosity measurement at PANDA

Luminosity design (by now)

- 4 planes of 8 silicon trapezoids, 10 cm inbetween
- 45 deg stereo angle
- starting at 11.0 m behind the IP
- 3-8 mrad within the beampipe (vacuum)
- 150/300 $\mu \mathrm{m}$ thick

$\overline{\text { PanANDA Detector }}$

Target
Spectrometer

$\overline{\text { PanANDA Detector }}$

Luminosity monitor

Energy scan

Fit with Gauss + Argus Function

Energy scan

Fit results

$\Gamma_{\text {input }}=1 \mathrm{MeV}$

$$
\begin{aligned}
\mathrm{m} & =3872.01 \pm 0.03 \mathrm{MeV} / \mathrm{c}^{2} \\
\Gamma & =1.11 \pm 0.08 \mathrm{MeV} / \mathrm{c}^{2}
\end{aligned}
$$

\rightarrow Unfolding beam profile $\left(\Delta \mathrm{p} / \mathrm{p}=3 \cdot 10^{-5}\right)$

Mass resolution ~ $50 \mathrm{keV} / \mathrm{c}^{2}$ Width precision ~ 10\%

Old Energy Scan results for J / ψ and $\psi(2 S)$

E760/E835 at Fermilab
$\Gamma(\mathrm{J} / \Psi)=99 \pm 12 \pm 6 \mathrm{keV} / \mathrm{c}^{2}$
$\Gamma(\Psi(2 \mathrm{~S}))=306 \pm 36 \pm 16 \mathrm{keV} / \mathrm{c}^{2}$
(B-factories: > 2.3 MeV/c²)

Beam momentum resolution $\Delta \mathrm{p} / \mathrm{p}=2 \cdot 10^{-4}$
$\rightarrow \sqrt{\mathrm{s}}$ FWHM resolution $\simeq 0.5 \mathrm{MeV}$
$\sigma \times \mathrm{BR}(\mathrm{J} / \Psi) \simeq 630 \mathrm{nb}$

PANDA

Luminosity (x 10)
Momentum resolution (x 1/10)
Angular coverage and magnetic field

Beamtime Planning for narrow resonances

Resonance with unknown width ($\Gamma=100 \mathrm{keV} / \mathrm{c}^{2}$)
If we use:
Step size $400 \mathrm{keV} / \mathrm{c}^{2}$
Beam width $50 \mathrm{keV} / \mathrm{c}^{2}$
\rightarrow Big chance to miss the resonance!

Beamtime Planning for narrow resonances

Resonance with unknown width ($\Gamma=100 \mathrm{keV} / \mathrm{c}^{2}$)
Start with detuned beam (e.g. width $250 \mathrm{keV} / \mathrm{c}^{2}$)
Overlapping beam profiles necessary (~ 4 steps)
\rightarrow Rough estimate of the mass

Beamtime Planning for narrow resonances

Resonance with unknown width ($\Gamma=100 \mathrm{keV} / \mathrm{c}^{2}$)
Design of final scan

Beamtime Planning for narrow resonances

Resonance with unknown width ($\Gamma=100 \mathrm{keV} / \mathrm{c}^{2}$)
Design of final scan
Overlapping beam profiles (10 steps, step size $150 \mathrm{keV} / \mathrm{c}^{2}$)

Beamtime Planning for narrow resonances

Resonance with unknown width ($\Gamma=100 \mathrm{keV} / \mathrm{c}^{2}$)
Design of final scan
Overlapping beam profiles (step size $150 \mathrm{keV} / \mathrm{c}^{2}$)
Extract measured rate, unfold of the beam profile
\rightarrow Line shape of the narrow resonance

Beamtime Planning for narrow resonances

For every single resonance
Optimization of the scan, especially by simultaneous measurements
Number of scans with different beam profiles
Number of steps and step size
Variation of step size close to thresholds

$X(3872)$ in $\bar{p} p$ measurements

Example X(3872)
peak ~ 50 nb (E. Braaten)
$\rightarrow \mathrm{J} / \psi \pi \pi \quad 250 \mathrm{pb}$ (ee and $\mu \mu$)
$\rightarrow \mathrm{D} \overline{\mathrm{D}} \pi \quad 500 \mathrm{pb}$ (mult. channels)
includes eff. and BR
$\mathrm{L}=2 \cdot 10^{31} \mathrm{~cm}^{-2} \mathrm{~s}^{-1}$
peak ~ $400 \mathrm{ev} . \mathrm{J} / \Psi \pi \pi$ $\sim 800 \mathrm{ev} . \mathrm{D} \overline{\mathrm{D}} \pi 2$ days

20 points $\rightarrow 40$ days

Conclusion and next steps

Energy scans at PANDA
\rightarrow Extraction of the line shape
\rightarrow Luminosity measurement

Trigger simulation
\rightarrow Event overlap
\rightarrow Temporal structure
\rightarrow Combinatorial background

