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Matter is made of bound states

• Electromagnetic bound states: atoms, molecules, ...

• Strong-interaction bound states: hadrons, nuclei, ...
(At low T and ρ, confinement only allows for bound states!)
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... many of them non-relativistic

• atoms, molecules, ...

• baryonium, pionium, ...

• quarkonium (charmonium, bottomonium, top-antitop pairs, ... )



Non-relativistic quantum theory of bound states

Non-relativistic bound states accompanied the history of the quantum theory from its
inception to the establishing of the quantum theory of fields:

• 1926 Schrödinger equation:
(

p2

2m
+ V

)

φ = Eφ

g = g0 + g0(−iV )g = +

x
g0 = i

E−p2/(2m)

{

• 1927 Pauli equation:
(

(p− eA)2

2m
+ V −

σ · eB

2m

)

φ = Eφ

The relevant scales of the non-relativistic bound state dynamics are

• E ∼
p2

2m
∼ V ∼ mv2, • p ∼ 1/r ∼ mv;

a crucial observation: if v(elocity)≪ 1, then m≫ mv ≫ mv2.



Relativistic quantum theory of bound states

• 1928 Dirac equation: (iD/−m)ψ = 0

gD = gD0 + gD0 (−ieA/)gD = +

gD0 = i
p/−m

{
• 1951 Bethe–Salpeter equation:

G = G0 +G0KG
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= +G K G

G0 = gD0 (p1)⊗ gD0 (p2)
{

which reduces to the Schrödinger equation in the non-relativistic limit,E(ext) ∼ mv2,p(ext) ∼ mv:

+ + + ... = + ... =   −iV + ...K  =  

gD0 (fermion/anti-fermion) =
i

±p0 + E/2− p2/2m+ iǫ

1± γ0

2
+ ...



The Bethe–Salpeter equation for non-relativistic states ...

The non-relativistic expansion may be implemented systematically at the level of the
Bethe–Salpeter equation:

K = KV + δK where KV ≈ −iV and GV = G0 +G0KV GV can be solved

G = GV +GV δKG

◦ Lepage PRA 16 (1977) 863, Barbieri Remiddi NPB 141 (1978) 413



... and its problems

• cumbersome in perturbation theory;

• very poorly suited to achieve factorization (specially important in QCD).

Ex.

• It shows the difficulty of the approach the fact that going from the calculation of the
mα5 correction in the hyperfine splitting of the positronium ground state to the
mα6 lnα term took twenty-five years!
◦ Karplus Klein PR 87 (1952) 848, Caswell Lepage PRA (20)(79)3 6

Bodwin Yennie PR 43 (1978) 267

• With few exceptions no applications to QCD and quarkonium physics.
◦ M̈odritsch Kummer ZPC 66 (1995) 225



... and its problems

• cumbersome in perturbation theory;

• very poorly suited to achieve factorization (specially important in QCD).

Why?

• All energy scales of the full dynamics contribute:
each diagram has a complicated power counting and contributes to all orders in
the coupling and velocity.

• Another way of saying is that the non-relativistic bound state dynamics, described
by the Schrödinger equation at the soft scale p ∼ 1/r ∼ mv, gets entangled with
the relativistic dynamics at the scale m (e.g. radiative corrections) and the
low-energy dynamics at the ultrasoft scale mv2 (e.g. the Lamb shift).



Effective Field Theories

Whenever a system H, described by a Lagrangian L, is characterized by 2 scales
Λ ≫ λ, observables may be calculated by expanding one scale with respect to the other.
An effective field theory makes the expansion in λ/Λ explicit at the Lagrangian level.

The EFT Lagrangian, LEFT , suitable to describe H at scales lower than Λ is defined by
(1) a cut off Λ ≫ µ≫ λ;
(2) by some degrees of freedom that exist at scales lower than µ

⇒ LEFT is made of all operators On that may be built from the effective degrees

of freedom and are consistent with the symmetries of L.



Effective Field Theories

LEFT =
∑

n

cn(Λ/µ)
On(µ, λ)

Λn

• Since at µ ∼ λ, 〈On〉 ∼ λn, the EFT is organized as an expansion in λ/Λ.

• The EFT is renormalizable order by order in λ/Λ.

• The matching coefficients cn(Λ/µ) encode the non-analytic behaviour in Λ. They
are calculated by imposing that LEFT and L describe the same physics at any
finite order in the expansion: matching procedure.

• In QCD, if Λ ≫ ΛQCD then cn(Λ/µ) may be calculated in perturbation theory.



EFTs for systems made of two heavy quarks/fermions
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∼ mv

p ∼ m

E ∼ mv2

• They exploit the expansion in v/ factorization of low and high energy contributions.
• They are renormalizable order by order in v.
• In perturbation theory, RG techniques provide resummation of large logs.



EFTs for systems made of two heavy quarks/fermions

mv2

µ

mv

m

µ

perturbative matching perturbative matching

perturbative matching

QCD/QED

NRQCD/NRQED

pNRQCD/pNRQED

SHORT−RANGELONG−RANGE
QUARKONIUM QUARKONIUM  /  QED

non−perturbative
matching

◦ Caswell Lepage PLB 167 (1986) 437
◦ Lepage Thacker NP PS 4 (1988) 199
◦ Bodwin et al PRD 51 (1995) 1125, . . .

◦ Pineda Soto NP PS 64 (1998) 428
◦ Brambilla et al PRD 60 (1999)091502
◦ Brambilla et al NPB 566 (2000) 275
◦ Kniehl et al NPB 563 (1999) 200
◦ Luke Manohar PRD 55 (1997) 4129
◦ Luke Savage PRD 57 (1998) 413
◦ Grinstein et al PRD 57 (1998) 78
◦ Labelle PRD 58 (1998) 093013
◦ Griesshammer NPB 579 (2000) 313
◦ Luke et al PRD 61 (2000) 074025
◦ Hoang et al PRD 67 (2003)114020, . . .

◦ for a review Brambilla Pineda Soto Vairo RMP 77 (2004) 1423



EFTs for systems made of two heavy quarks/fermions
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perturbative matching perturbative matching
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A potential picture arises at the level of pNRQCD:
• the potential is perturbative if mv ≫ ΛQCD

• the potential is non-perturbative if mv ∼ ΛQCD



NRQCD

NRQCD is obtained by integrating out modes associated with the scale m
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...    ...   ... ...

QCD NRQCDQCD

×c(µ/m)

• The matching is perturbative.

• The Lagrangian is organized as an expansion in 1/m and αs(m):

LNRQCD =
∑

n

c(αs(m/µ))×On(µ, λ)/m
n

Suitable to describe annihilation and production of quarkonium.



pNRQCD

pNRQCD is obtained by integrating out modes associated with the scale
1

r
∼ mv

+ + ...
...    ...   ...

+ ...++ ...

NRQCD pNRQCD

1

E − p2/m− V (r)

• The Lagrangian is organized as an expansion in 1/m , r, and αs(m):

LpNRQCD =
∑

k

∑

n

1

mk
× ck(αs(m/µ))× V (rµ′, rµ)×On(µ

′, λ) rn



Case 1: pNRQCD formv ≫ ΛQCD

• Degrees of freedom:

Q-Q̄ states, with energy ∼ ΛQCD, mv2 and momentum <
∼
mv

⇒ (i) singlet S (ii) octet O

Gluons with energy and momentum ∼ ΛQCD, mv2

• Power counting:

p ∼
1

r
∼ mv;

all gauge fields are multipole expanded: A(R, r, t) = A(R, t) + r ·∇A(R, t) + . . .

and scale like (ΛQCD or mv2)dimension.

Non-analytic behaviour in r → matching coefficients V



Case 1: pNRQCD formv ≫ ΛQCD

L = −
1

4
Fa
µνF

µν a +Tr

{

S†
(

i∂0 −
p2

m
− Vs

)

S

+ O†

(

iD0 −
p2

m
− Vo

)

O

} LO in r

Feynman graphs

• The equation of motion of the singlet,
(

i∂0 −
p2

m
− Vs

)

S = 0,

is the Schrödinger equation!



Case 1: pNRQCD formv ≫ ΛQCD

L = −
1

4
Fa
µνF

µν a +Tr

{

S†
(

i∂0 −
p2

m
− Vs

)

S

+ O†

(

iD0 −
p2

m
− Vo

)

O

}

+VATr
{

O†r · gE S + S†r · gEO
}

+
VB

2
Tr

{

O†r · gEO+O†Or · gE
}

+ · · ·

LO in r

NLO in r

Feynman graphs

• Higher-order terms correct the leading Schrödinger equation (e.g. higher order
terms are responsible for the Lamb shift).

• The potential, Vs, emerges as a Wilson coefficient of the EFT: it undergoes
renormalization, develops scale dependence and satisfies renormalization group
equations, which allow to resum large logarithms.



The static potential in perturbation theory

=

NRQCD

+   

pNRQCD

+   ...eig
∮

dzµAµ

lim
T→∞

i

T
ln = Vs(r, µ)− i

g2

Nc
V 2
A

∫ ∞

0
dt e−it(Vo−Vs) 〈Tr(r · E(t) r · E(0))〉(µ) + . . .

ultrasoft contribution



The static potential in perturbation theory

=

NRQCD

+   

pNRQCD

+   ...eig
∮

dzµAµ

lim
T→∞

i

T
ln = Vs(r, µ)− i

g2

Nc
V 2
A

∫ ∞

0
dt e−it(Vo−Vs) 〈Tr(r · E(t) r · E(0))〉(µ) + . . .

ultrasoft contribution

The µ dependence cancels between the two terms in the right-hand side:

• Vs ∼ ln rµ, ln2 rµ, ...

• ultrasoft contribution ∼ ln(Vo − Vs)/µ, ln
2(Vo − Vs)/µ, ... ln rµ, ln

2 rµ, ...



• The static Wilson loop is known up to N3LO.

◦ Schr öder PLB 447 (1999) 321

Brambilla Pineda Soto Vairo PRD 60 (1999) 091502

Brambilla Garcia Soto Vairo PLB 647 (2007) 185

Smirnov Smirnov Steinhauser PLB 668 (2008) 293

Anzai Kiyo Sumino PRL 104 (2010) 112003

Smirnov Smirnov Steinhauser PRL 104 (2010) 112002

• The octet potential is known up to NNLO.

◦ Kniehl Penin Schr öder Smirnov Steinhauser PLB 607 (2005) 96

• VA = 1 +O(α2
s ).

◦ Brambilla Garcia Soto Vairo PLB 647 (2007) 185

• The chromoelectric correlator 〈Tr(r · E(t) r · E(0))〉 is known up to NLO.

◦ Eidem üller Jamin PLB 416 (1998) 415



The static potential at N4LO

Vs(r, µ) = −CF
αs(1/r)

r

[

1 + a1
αs(1/r)

4π
+ a2

(

αs(1/r)

4π

)2

+

(

16π2

3
C3

A ln rµ+ a3

) (

αs(1/r)

4π

)3

+

(

aL2
4 ln2 rµ+

(

aL4 +
16

9
π2 C3

Aβ0(−5 + 6 ln 2)

)

ln rµ+ a4

)(

αs(1/r)

4π

)4
]

• The logarithmic contribution at N3LO may be extracted from the one-loop
calculation of the ultrasoft contribution;

• the single logarithmic contribution at N4LO may be extracted from the two-loop
calculation of the ultrasoft contribution.



The static potential at N3LL

Vs(r, µ) = Vs(r, 1/r) +
2

3
CF r

2 [Vo(r, 1/r)− Vs(r, 1/r)]
3

×

(

2

β0
ln

αs(µ)

αs(1/r)
+ η0 [αs(µ)− αs(1/r)]

)

η0 =
1

π

[

−
β1

2β2
0

+
12

β0

(

−5nf + CA(6π2 + 47)

108

)]

• The leading logarithmic contribution has been resummed using RG equations at
LL accuracy.

◦ Pineda Soto PLB 495 (2000) 323

• The next-to-leading logarithmic contribution has been resummed using RG
equations at NLL accuracy.

◦ Brambilla Garcia Soto Vairo PRD 80 (2009) 034016



Static quark-antiquark energy at N3LL

E0(r) = Vs(r, µ) + Λs(r, µ) + δUS(r, µ)

Λs(r, µ) = NsΛ + 2CF (No −Ns)Λ r
2 [Vo(r, 1/r)− Vs(r, 1/r)]

2

×

(

2

β0
ln

αs(µ)

αs(1/r)
+ η0 [αs(µ)− αs(1/r)]

)

δUS(r, µ) = CF
C3

A

24

1

r

αs(µ)

π
α3
s (1/r)

(

−2 ln
αs(1/r)Nc

2r µ
+

5

3
− 2 ln 2

)

Ns, No are two arbitrary scale-invariant dimensionless constants
Λ is an arbitrary scale-invariant quantity of dimension one



Static quark-antiquark energy at N3LL vs lattice
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◦ Brambilla Garcia Soto Vairo PRL 105 (2010) 212001

quenched lattice data from Necco Sommer NPB 622 (2002) 328

• Perturbation theory (known up to NNNLO) + renormalon subtraction describes well
the static potential up to about 0.25 fm (r0 ≈ 0.5 fm).

• Indeed one can use this to extract ΛMSr0 and in perspective r0 (high precision
unquenched lattice data is needed).



Applications to quarkonium physics

• c and b masses at NNLO, N3LO∗, NNLL∗;

• Bc mass at NNLO;

• B∗
c , ηc, ηb masses at NLL;

• Quarkonium 1P fine splittings at NLO;

• Υ(1S), ηb electromagnetic decays at NNLL;

• Υ(1S) and J/ψ radiative decays at NLO;

• Υ(1S) → γηb, J/ψ → γηc at NNLO;

• tt̄ cross section at NNLL;

• QQq and QQQ baryons: potentials at NNLO, masses, hyperfine splitting, ... ;

• Thermal effects on quarkonium in medium: potential, masses (at mα5
s ), widths, ...;

• ...

◦ for reviews QWG coll. Heavy Quarkonium Physics CERN Yellow Report CERN-2005-005
QWG coll. arXiv:1010.5827
Vairo EPJA 31 (2007) 728, IJMPA 22 (2007) 5481



αs fromΥ(1S) decay

• New CLEO data on Υ(1S) → γ X,
• new lattice determinations of NRQCD matrix elements,

have led to an improved NLO analysis of Γ(Υ(1S) → γ X)/Γ(Υ(1S) → X)

and to an improved determination of αs at the Υ-mass scale:

αs(MΥ(1S)) = 0.184+0.015
−0.014, αs(MZ) = 0.119+0.006

−0.005

◦ Brambilla Garcia Soto Vairo PRD 75 (2007) 074014
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Electromagnetic decays ofΥ(1S) andηb

Rb =
Γ(Υ(1S)→e+e−)

Γ(ηb→γγ)

µ (GeV)

ℜ
b
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Γ(ηb(1S) → γγ) = 0.659± 0.089(th.)+0.019
−0.018(δαs)± 0.015(exp.) keV

◦ Penin et al NPB 699 (2004) 183, Pineda Signer NPB 762 (2007) 67



Υ(1S) → γ X
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Photon spectrum at NLO (continuous lines, pNRQCD + SCET) vs CLEOdata

◦ Garcia Soto PRD 72 (2005)054014, Fleming Leibovich PRD 67 (2 003)074035



Applications to QED bound states

Many QED calculations have remarkably benefitted from the EFT approach and
corrections of very high order in perturbation theory have been calculated in the last
years for many observables after decades of very slow or no progress ...

... just to mention that

• for the hyperfine splitting of the positronium ground state the terms of order mα6,
mα7 ln2 α and mα7 lnα are now available!

◦ for reviews on positronium Karshenboim IJMPA 19 (2004) 3879

Penin IJMPA 19 (2004) 3897



Case 2: pNRQCD formv ∼ ΛQCD

• All scales above mv2 are integrated out (including ΛQCD).



Case 2: pNRQCD formv ∼ ΛQCD

• All scales above mv2 are integrated out (including ΛQCD).

• All gluonic excitations between heavy quarks are integrated out since they develop
a gap of order ΛQCD with the static QQ̄ energy.
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(r0 ≃ 0.5 fm)E
(0)
0

E
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1

⇒ The singlet quarkonium field S of energy mv2 is the only degree of freedom of
pNRQCD (up to ultrasoft hadrons, e.g. pions).



Case 2: pNRQCD formv ∼ ΛQCD

L = Tr

{

S†
(

i∂0 −
p2

m
− Vs

)

S

}

◦ Brambilla Pineda Soto Vairo PRD 63 (2001) 014023

• The potential Vs (ReVs + i ImVs) is non-perturbative:

(a) to be determined from the lattice;
◦ Bali PR 343 (2001) 1

(b) to be determined from QCD vacuum models.
◦ Brambilla Vairo PRD 55 (1997) 3974

• (Without light hadrons) the Schrödinger equation is exact!
... which confirms the physical picture underlying potential models for heavy quarks.



The non-perturbative static potential

V
(0)
s = lim

T→∞

i

T
ln

1.0

0.8

0.6

0.4

0.2

0.0

-0.2

-0.4

-0.6

V
0(

r)
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]
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◦ Koma Koma NPB 769 (2007) 79



The non-perturbative1/m potential

1/m and 1/m2 potentials may be expressed in terms of expectation values of field
insertions in a static Wilson loop.

◦ Brambilla Pineda Soto Vairo PRD 63 (2001) 014023

◦ Pineda Vairo PRD 63 (2001) 054007

Lattice provides a non-perturbative determination of the potentials.
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The non-perturbative spin-independentp2/m2 potentials
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◦ Koma Koma Wittig PoS LAT2007 (2007) 111, PoS LAT2009 (2009) 1 22



The non-perturbative spin-dependent1/m2 potentials
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Mhc
= 3524.4± 0.6± 0.4 MeV

◦ CLEO PRL 95 (2005) 102003

Also

Mhc
= 3525.8± 0.2± 0.2 MeV, Γ < 1 MeV

◦ E835 PRD 72 (2005) 032001

• To be compared with Mc.o.g.(1P ) = 3525.36± 0.2± 0.2 MeV.



Poincaré invariance

Non-relativistic EFTs are equivalent, order by order in v, to the original relativistic
quantum field theory. In particular, this applies also to Poincaré invariance, which is
apparently badly broken, but actually is not.

Poincaré invariance manifests itself in the EFT by constraining the form of the potentials:

• V
(2,0)
LS − V

(1,1)
L2S1

+
V (0)′

2r
= 0

• V
(2,0)

L2 (r) + V
(0,2)

L2 (r)− V
(1,1)

L2 (r) +
r

2
V (0)′(r) = 0

• − 2(V
(2,0)

p2 (r) + V
(0,2)

p2 (r)) + 2V
(1,1)

p2 (r)− V (0)(r) + rV (0)′(r) = 0

• ... ... ...

◦ Dirac RMP 21 (1949) 392, Foldy PR 122 (1961) 275

◦ Gromes ZPC 26 (1984) 401

◦ Barchielli Brambilla Prosperi NCA 103 (1990) 59

◦ Brambilla Gromes Vairo PRD 64 (2001) 076010, PLB 576 (2003) 3 14

◦ Brambilla Mereghetti Vairo PRD 79 (2009) 074002



Constraint on the spin-dependent potentials

A lattice determination of V (2,0)
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Constraint on the spin-independent potentials I

A lattice determination of V (2,0)

L2 (r) + V
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L2 (r)− V
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L2 (r) +
r

2
V (0)′(r) = 0

◦ Koma Koma Wittig PoS LAT2007 (2007) 111



Constraint on the spin-independent potentials II

A lattice determination of −2(V
(2,0)

p2 (r) + V
(0,2)

p2 (r)) + 2V
(1,1)

p2 (r)− V (0)(r) + rV (0)′(r) = 0

◦ Koma Koma Wittig PoS LAT2007 (2007) 111



Conclusions

Non-relativistic bound states have a prominent role in nature, as we know it, because
they are at the basis of human-scale processes. For the same reason, they had a
prominent role in the development of the quantum theory from the Schrödinger equation
of the hydrogen atom to the quantum theory of fields. In face of the enormous difficulties
in treating bound states in field theory, a long journey started in the seventies that
eventually led to a new understanding of the Schrödinger equation.

The Schrödinger equation we have come back encompasses all the complexity and
richness of field theory in the systematic setting of non-relativistic effective field theories.
The counting rules and structure of the EFTs have allowed to perform calculation with
unprecedented precision, where higher-order perturbative calculations were possible,
and to systematically factorize short from long range contributions where observables
were sensitive to the non-perturbative, infrared dynamics of QCD.
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