... after an intense discussion

I Connection between resonances and QCD

2 Connection between real (data) and imaginary (resonances) worlds

Hybrid Mesons

* (Selected) aspects on theory and phenomenology * Structure of gluonic excitations
* (Selected) aspects of PWA
* $1_{S_{Q \bar{Q}}=1}^{+}=\frac{0^{++}}{2}+\rho \sim 0.8 \mathrm{GeV}+0.77 \mathrm{MeV} \sim 1.6 \mathrm{GeV}$

JPC $=1^{-+}$lowest state
Higher masses have also been resolved
Chiral extrapolations 100-200 MeV (Thomas,APS)
In large-Nc same as for ordinary mesons $\mathrm{O}(1 / \mathrm{Nc})$ (Cohen)

Charmonium 1^{-+}
Ref. Method $\Delta M(\mathrm{GeV})$
MILC 97 W 1.34(8)(20)
MILC 99 SW 1.22(15)
CP-PACS 99 NR 1.323(13)
JKM 99
LBO
1.19

Excitations in excess of 1 GeV

Preliminary (toy) lattice compuation of widths agrees with models (Michael,McNeile) (Burns,Close)

more on widths

$1^{-+}(1.8 \mathrm{GeV})$	$b_{1} \pi$	$f_{1} \pi$	$\rho \pi$	
PSS	$S 73$	S	9	$P 13$
$D 1$	$D 0.04$		$\Gamma \mathrm{MeV}$	
IKP	$S 51$	$S 14$	$P 12$	
	$D 11$	$D 7$		

Isgur, Kokosky, Paton (85)
Close, Page (95)
Page, Swanson, Szczepaniak (99)
Close, Dudek (04)

Bali (00)

- Low lying states expected below string breaking!
- Unusual decay modes in the flux tube model

more on widths

$1^{-+}(1.8 \mathrm{GeV})$	$b_{1} \pi$	$f_{1} \pi$	$\rho \pi$	
PSS	$S 73$	S	9	$P 13$
	$\Gamma 1$	$D 0.04$		
IKP	$S 51$	$S 14$	$P 12$	
	$D 11$	$D 7$		

Isgur, Kokosky, Paton (85)
Close, Page (95)
Page, Swanson, Szczepaniak (99)
Close, Dudek (04)

Bali (00)

- Low lying states expected below string breaking!
- In large- N_{c} same as for ordinary mesons $\mathrm{O}\left(1 / \mathrm{N}_{\mathrm{c}}\right)$
- Unusual decay modes in the flux tube model

Structure

J.Dudek at al. Phys.Rev.D82:0345 08,2010

to determine structure study

$$
\begin{aligned}
& \bar{q}(x) \Gamma^{i} q(x) \sim b^{\dagger}(k) \sigma^{i} d(-k) \\
& \bar{q}(x) F_{i j}(x) q(x) \sim b^{\dagger}(k) \vec{k} \times \vec{a}(q) d(-q-k)
\end{aligned}
$$

$\langle\operatorname{Vacuum}| O[q, g] \mid$ Meson〉

in unquenched lattice lowest energies correspond to continuum states

* On finite volume multi-meson state and single hadron states are discrete.
* If there are single hadron states, use volume dependence to disentangle
* Continuum states can have any J,P,C but not single hadron states
* The choice of operators minimizes overlap with multi-meson states

* state of the art full spectrum

Gluon structure models

Bag Model

Flux tube model

Gluon structure models

And The Winer Is !

Quasi-particles

A "good" gluon structure model should describe all these :

I? exotic and crypto-exotic mesons
\& adiabatic potentials (axial symmetry)

\&) glue lump (rotational symmetry)

$\Lambda_{P C}^{Y}=(\Sigma, \Pi, \Delta, \cdots)_{u, g}^{ \pm}$

$a=1 \mathrm{fm}$	$q \bar{q}\left(J^{P}=1^{-}\right)$	$\mathrm{g}, J^{P C}=1^{+-}$	$\mathrm{g}, J^{P C}=1^{--}$
E	810 MeV	550 MeV	900 MeV

shifts the energy scale

$E_{q \bar{q}}+E_{g}+E_{\mathrm{Bag}}+E_{\mathrm{Vac}}+E_{\mathrm{QCD}}$	$\pi_{0} / \eta_{0}\left(0^{-+}\right)$	$\pi_{1} / \eta_{1}\left(1^{+-}\right)$	$\rho_{1} / \omega_{1}\left(1^{--}\right)$	$\pi_{2} / \eta_{2}\left(2^{-+}\right)$
Barnes, Close far ${ }^{\text {d }}$	1.1	1.3		
Chanowitz,Sharp [GeV]	1.4	1.8	1.6	2.0
$\begin{array}{lll} \pi(1300) / \eta(1300) & \rho(1450), \rho(1700) & \pi_{2}(1670) \\ & \omega(1420), \omega(1650) & \pi_{2}(2100) \end{array}$				

$n_{ \pm}(m)=$ number of m-momentum modes of helicity \pm
for example the lowest energy
mode $N=1|\Lambda|=1$ (0-nodes)
$N=\sum_{m} m\left[n_{+}(m)+n-(m)\right]$ total momentum
$\Lambda=\sum_{m}\left[n_{+}(m)-n_{-}(m)\right]$ spin projection on the z axis

$\mathrm{n}_{ \pm}(\mathrm{m})=$ number of m -momentum modes of helicity \pm $N=\sum_{m} m\left[n_{+}(m)+n .(m)\right]$ total momentum $\Lambda=\sum_{m}\left[n_{+}(m)-n_{-}(m)\right]$ spin projection on the z axis

$$
\begin{aligned}
& \text { degenerate in FT } \\
& P=+1 C=-1 \\
& P=-1 C=+1
\end{aligned}
$$

for example the lowest energy mode $N=1|\Lambda|=1$ (0 -nodes)
$\Lambda=\mathrm{n}_{+}=1$

$\begin{aligned} & S=0 \\ & S=1\end{aligned} \quad J^{P C}=(0,1,2)^{-+} \quad \begin{aligned} & 1^{--} \\ & (0,1,2)^{+-}\end{aligned}$

lattice and FT
do not agree!
problem with the rigid
rotor

Bottom two states have the same energy,

Solving for hadrons QCD

Solving for hadrons QCD $\quad H_{Q C D}[p, q] \Psi_{n}(q)=E_{n} \Psi_{n}(q)$

$$
q \rightarrow \vec{A}_{T}^{a}(\vec{x}) \quad a=1 \cdots N_{C}^{2}-1 \quad \Psi_{n}(q) \rightarrow \Psi_{n}(A)
$$

Solving for hadrons QCD $\quad H_{Q C D}[p, q] \Psi_{n}(q)=E_{n} \Psi_{n}(q)$

$$
\begin{aligned}
q \rightarrow \vec{A}_{T}^{a}(\vec{x}) \quad a & =1 \cdots N_{C}^{2}-1 \quad \Psi_{n}(q) \rightarrow \Psi_{n}(A) \\
\Psi_{v a c}(q) & =e^{-\frac{1}{2} \int B(x) K(x, y) B(y)} \rightarrow e^{-\frac{1}{2} \int B \frac{1}{\sqrt{\vec{v}^{2}} B} \quad \text { H.Reinhard (Tuebingen) }} \text { AS (Indiana) }
\end{aligned}
$$

Solving for hadrons QCD $\quad H_{Q C D}[p, q] \Psi_{n}(q)=E_{n} \Psi_{n}(q)$

$$
\begin{aligned}
q \rightarrow \vec{A}_{T}^{a}(\vec{x}) \quad a & =1 \cdots N_{C}^{2}-1 \quad \Psi_{n}(q) \rightarrow \Psi_{n}(A) \\
\Psi_{v a c}(q) & =e^{-\frac{1}{2} \int B(x) K(x, y) B(y)} \rightarrow e^{-\frac{1}{2} \int B \frac{1}{\sqrt{\vec{\nabla}^{2}}} B}
\end{aligned}
$$

AS (Indiana)
H.Reinhard (Tuebingen)
in QCD gauge invariant variables are Wilson lines => periodicity (center symmetry)

Solving for hadrons QCD $\quad H_{Q C D}[p, q] \Psi_{n}(q)=E_{n} \Psi_{n}(q)$

$$
q \rightarrow \vec{A}_{T}^{a}(\vec{x}) \quad a=1 \cdots N_{C}^{2}-1 \quad \Psi_{n}(q) \rightarrow \Psi_{n}(A)
$$

$$
\Psi_{v a c}(q)=e^{-\frac{1}{2} \int B(x) K(x, y) B(y)} \rightarrow e^{-\frac{1}{2} \int B \frac{1}{\sqrt{\nabla^{2}}} B} \quad \text { H.Reinhard (Tuebingen) }
$$

in QCD gauge invariant variables are Wilson
 equivalent potential minima instantons -> vortices, monopoles
vacuum = monopole gas
quark and gluons propagate
in a monopole background
-> screening
(H.Metevosyan, AS)

Solving for hadrons QCD $\quad H_{Q C D}[p, q] \Psi_{n}(q)=E_{n} \Psi_{n}(q)$

$$
q \rightarrow \vec{A}_{T}^{a}(\vec{x}) \quad a=1 \cdots N_{C}^{2}-1 \quad \Psi_{n}(q) \rightarrow \Psi_{n}(A)
$$

$$
\Psi_{v a c}(q)=e^{-\frac{1}{2} \int B(x) K(x, y) B(y)} \rightarrow e^{-\frac{1}{2} \int B \frac{1}{\sqrt{\nabla^{2}}} B} \quad \text { H.Reinhard (Tuebingen) }
$$

in QCD gauge invariant variables are Wilson
 equivalent potential minima instantons -> vortices, monopoles
vacuum = monopole gas
quark and gluons propagate in a monopole background -> screening
(H.Metevosyan,AS)
(btw:"one gluon exchange kernel" is not
responsible for confinement the monopole gas is!)

Solving for hadrons QCD $\quad H_{Q C D}[p, q] \Psi_{n}(q)=E_{n} \Psi_{n}(q)$

$$
q \rightarrow \vec{A}_{T}^{a}(\vec{x}) \quad a=1 \cdots N_{C}^{2}-1 \quad \Psi_{n}(q) \rightarrow \Psi_{n}(A)
$$

$$
\Psi_{v a c}(q)=e^{-\frac{1}{2} \int B(x) K(x, y) B(y)} \rightarrow e^{-\frac{1}{2} \int B \frac{1}{\sqrt{\vec{\nabla}^{2}}} B} \quad \text { H.Reinhard (Tuebingen) }
$$

in QCD gauge invariant variables are Wilson lines => periodicity (center symmetry)

tunneling between equivalent potential minima instantons -> vortices, monopoles
vacuum = monopole gas
quark and gluons propagate in a monopole background -> screening

from interaction between
string an monopoles (dual super conductor)
(H.Metevosyan, AS)

Solving for hadrons QCD $\quad H_{Q C D}[p, q] \Psi_{n}(q)=E_{n} \Psi_{n}(q)$

$$
q \rightarrow \vec{A}_{T}^{a}(\vec{x}) \quad a=1 \cdots N_{C}^{2}-1 \quad \Psi_{n}(q) \rightarrow \Psi_{n}(A)
$$

$$
\Psi_{v a c}(q)=e^{-\frac{1}{2} \int B(x) K(x, y) B(y)} \rightarrow e^{-\frac{1}{2} \int B \frac{1}{\sqrt{\vec{\nabla}^{2}}} B} \quad \text { H.Reinhard (Tuebingen) }
$$

in QCD gauge invariant variables are Wilson lines => periodicity (center symmetry)
tunneling between equivalent potential minima instantons -> vortices, monopoles
vacuum = monopole gas
quark and gluons propagate
 in a monopole background -> screening
(H.Metevosyan, AS)

Solving for hadrons QCD $\quad H_{Q C D}[p, q] \Psi_{n}(q)=E_{n} \Psi_{n}(q)$

$$
q \rightarrow \vec{A}_{T}^{a}(\vec{x}) \quad a=1 \cdots N_{C}^{2}-1 \quad \Psi_{n}(q) \rightarrow \Psi_{n}(A)
$$

$$
\Psi_{v a c}(q)=e^{-\frac{1}{2} \int B(x) K(x, y) B(y)} \rightarrow e^{-\frac{1}{2} \int B \frac{1}{\sqrt{\nabla^{2}}} B} \quad \text { H.Reinhard (Tuebingen) }
$$

in QCD gauge invariant variables are Wilson lines => periodicity (center symmetry)

tunneling between equivalent potential minima instantons -> vortices, monopoles
vacuum = monopole gas
quark and gluons propagate
 in a monopole background -> screening
(H.Metevosyan,AS)

$$
|Q \bar{Q}\rangle_{v a r}=\left|\begin{array}{c}
Q \\
\bar{Q}
\end{array}\right\rangle
$$

Coulomb energy is overconfining and it also because of the monopole gas.

Solving for hadrons QCD $\quad H_{Q C D}[p, q] \Psi_{n}(q)=E_{n} \Psi_{n}(q)$

$$
q \rightarrow \vec{A}_{T}^{a}(\vec{x}) \quad a=1 \cdots N_{C}^{2}-1 \quad \Psi_{n}(q) \rightarrow \Psi_{n}(A)
$$

$$
\Psi_{v a c}(q)=e^{-\frac{1}{2} \int B(x) K(x, y) B(y)} \rightarrow e^{-\frac{1}{2} \int B \frac{1}{\sqrt{\nabla^{2}}} B} \quad \text { H.Reinhard (Tuebingen) }
$$

in QCD gauge invariant variables are Wilson lines => periodicity (center symmetry)
tunneling between equivalent potential minima instantons -> vortices, monopoles
vacuum = monopole gas
quark and gluons propagate
 in a monopole background -> screening
(H.Metevosyan, AS)

$$
|Q \bar{Q} g\rangle_{v a r}=\left|\begin{array}{c}
Q \\
g \bigcirc \\
\bar{Q}
\end{array}\right\rangle
$$

Gluon propagator and Monopoles

$\langle A(\vec{k}) A(-\vec{k})\rangle=D(|\vec{k}|) \rightarrow \frac{1}{2|\vec{k}|}$

IR suppression from monopole screening

FIG. 1: Comparison of our gluon propagator with that obtained from lattice computations [52]

Coulomb Gauge

$$
\begin{aligned}
& H=H_{D}+H_{Y M}+H_{C} \\
& H_{C}=\int d \mathbf{x} d \mathbf{y} \rho^{a}(\mathbf{x}) K[\mathbf{x}, \mathbf{y}, \mathbf{A}]_{a b} \rho^{b}(\mathbf{y})
\end{aligned}
$$

$$
K=\frac{1}{2} \frac{g}{\nabla \cdot D}\left(-\nabla^{2}\right) \frac{g}{\nabla \cdot D}
$$

and using variational states

one-body Schrodinger eq.

non-relativistic hybrids

expected degeneracies

* $Q \bar{Q}$ in $\mathrm{L}=0, \mathrm{~S}=0,1$
* coupled to I^{--}glue in the relative
$L=1$ state $=>\int_{g} P C=1^{+-}$
JPC glue

$1^{+-} \times 1_{S_{Q \bar{Q}}=1}^{--}=$

* experiment Y(4260) (Belle,BaBar)

observed lattice pattern in perfect agreement with QCD CG even for light quarks

Exotic story

$$
\begin{array}{r}
\pi^{-} p->\eta \pi^{0} N \quad\left(\eta \pi^{0}\right) \text { in P-wave has } J^{P C}=1+! \\
\rightarrow \eta \pi^{-} p
\end{array}
$$

$$
\pi^{-} p \rightarrow \eta \pi^{-} p
$$

$\mathrm{M}=1370 \pm 16_{-30}^{+50} \mathrm{MeV} / \mathrm{c}^{2}$
$\Gamma=385 \pm 40_{-105}^{+65} \mathrm{MeV} / \mathrm{c}^{2}$

$$
\pi^{-} \mathrm{p} \rightarrow \eta \pi^{0} \mathrm{n}
$$

New results: No consistent B-W interpretation possible but a weak $\eta \pi$ interaction exists and can reproduce the exotic wave

$$
\pi^{-} p \rightarrow \eta^{\prime} \pi^{-} p
$$

$$
\begin{aligned}
& \mathrm{M}=1597 \pm 10_{-10}^{+45} \mathrm{MeV} / \mathrm{c}^{2} \\
& \Gamma=340 \pm 40_{-50}^{+50} \mathrm{MeV} / \mathrm{c}^{2}
\end{aligned}
$$

$$
\begin{array}{l|l}
\pi^{-} p \rightarrow \rho^{0} \pi^{-} p & \begin{array}{l}
\mathrm{M}=1593 \pm 8_{-4}^{+29} \mathrm{MeV} / \mathrm{c}^{2} \\
\Gamma=168 \pm 20_{-12}^{+150} \mathrm{MeV} / \mathrm{c}^{2}
\end{array}
\end{array}
$$

BNL (E852) new analysis reduces the strength but COMPASS find

$$
\pi_{-}^{-} p \rightarrow b_{1} \pi p
$$ the signal again

not every bump is a resonance (and even if, it may not be a BW)
it is important to understand production mechanisms

$J^{P C}=1^{-+}$exotic wave signals (E852 data)

$$
\pi^{-} p \rightarrow \eta^{\prime} \pi^{-} p
$$

> (other signals identified by E852, CB,VES)

Fitting the E852 the $\eta \pi$ and η ' π spectra using eft give a good description of the exotic wave (APS et al.)

there are no long range forces in
between η and π
to fit the data V needs to have short
range interactions

Moving $\pi_{2}(1670)$ peak

Dudek, Szczepaniak

Duality @ work ?

Isobar-type fits could involve spurious resonances

Resonances do not have to show up as peaks or can be skewed

force $=O P E+C D D$

$$
e^{i \delta(E)} \frac{\sin \delta(E)}{k}
$$

$$
e^{i \delta(E)} \cos \delta(E)
$$

QCD, CDD
Comead source

CDD

Figure 11: Fit to the $1^{+} \rho \pi$ intensity from $\pi^{-} p \rightarrow \pi^{-} \pi^{-} \pi^{+} p$ at $E_{\pi}=25$ and $E_{\pi}=40 \mathrm{GeV}$, CERN data [70], with (left) both long-range production from one pion exchange and short-range direct production and (right) short-range direct production only [63].

P.Guo,R.Mitchel,M.Shepherd,APS

PRELIMINARY

* General idea

$$
\operatorname{Im} A(s)=R(s) \rho(s)|A(s)|^{2}
$$

$$
A(s)=\frac{1}{\pi} \int_{-\infty}^{0} d s^{\prime} \frac{\operatorname{Im} A\left(s^{\prime}\right)}{s^{\prime}-s}+\frac{1}{\pi} \int_{\substack{s_{t h} \\ \text { integral equation for } \\ \text { the amplitude }}}^{\infty} d s^{\prime} \frac{\operatorname{Im} A\left(s^{\prime}\right)}{s^{\prime}-s}
$$

*'s input ("potential") : through crossing the is related to other physical amplitudes
caveats
\$* potential not known everywhere
recent improvements and (1960's vs 2000)

* in principle many (∞) channels contribute
x-sections known over limited energy range
\&* solutions are not unique (CDD)

From dispersion relations

CDD pole required

FIG. 1: $\quad P$-wave phase shift (upper panel) and inelasticity (lower panel). Data from [34-36], dahsed-dotted (solid) line solution of dispersion relation without (with) a CDD pole. Dashed line is the fit of the quark model from Eq.(33).
bootstrap failed
M.Battaglieri,R.de Vita,P.Guo,AS
\qquad resonances are not generated dynamically from interactions between other resonances

2* or as lattice suggests there are single hadron states in the spectrum

CDD pole required

FIG. 1: $\quad P$-wave phase shift (upper panel) and inelasticity (lower panel). Data from [34-36], dahsed-dotted (solid) line solution of dispersion relation without (with) a CDD pole. Dashed line is the fit of the quark model from Eq.(33).
s) bootstrap failed
M.Battaglieri,R.de Vita,P.Guo,AS
*
resonances are not generated dynamically from interactions between other resonances
\& or as lattice suggests there are single hadron states in the spectrum
\& how does it fit in with the success of dynamicaly generated resonance program from a unitarized chi-PT approach ?

> do the Uch-PT poles move?

Summary

Summary

* Lattice : solid evidence for single-hadron QCD states (CDD poles) including hybrids

Summary

* Lattice : solid evidence for single-hadron QCD states (CDD poles) including hybrids
* solid evidence for Mandelstam, Nambu,t'Hooft,Polyakov superconductor model of QCD vacuum
"dressed" gluon exchange does not generate hadrons
but a correct phenomenology can be developed including hybrids

Summary

* Lattice : solid evidence for single-hadron QCD states (CDD poles) including hybrids
* solid evidence for Mandelstam, Nambu,t'Hooft,Polyakov superconductor model of QCD vacuum
"dressed" gluon exchange does not generate hadrons
but a correct phenomenology can be developed including hybrids
* bootstrap was abandoned because it discovered hadrons are not dynamically generated, S-matrix was abandoned because CDD poles could not be excluded
these, however, are based on model-independent constrains which should not be forgotten in modern amplitude analyses.

