

I Connection between resonances and QCD

2 Connection between real (data) and imaginary (resonances) worlds

Hybrid Mesons

Adam Szczepaniak Indiana University

* (Selected) aspects on theory and phenomenology
 * Structure of gluonic excitations

* (Selected) aspects of PWA

* $1_{S_{Q\bar{Q}}=1}^{-+} = \frac{0^{++}}{2} + \rho \sim 0.8 \text{ GeV} + 0.77 \text{ MeV} \sim 1.6 \text{ GeV}$

 $J^{PC} = 1^{-+}$ lowest state

Higher masses have also been resolved

Chiral extrapolations 100-200 MeV (Thomas, APS)

In large-Nc same as for ordinary mesons O(1/Nc) (Cohen)

Preliminary (toy) lattice computation of widths agrees with models (Michael, McNeile) (Burns, Close)

*

more on widths

1 ⁻⁺ (1.8 GeV)	b1 π	f ₁ π	ρπ	
P55	573 D1	S 9 D 0.04	P 13	Γ MeV
IKP	S 51 D 11	514 D7	P 12	

Isgur, Kokosky, Paton (85) Close, Page (95) Page, Swanson, Szczepaniak (99) Close, Dudek (04)

Bali (00)

• Low lying states expected below string breaking !

• Unusual decay modes in the flux tube model

more on widths

1 ⁻⁺ (1.8 GeV)	b1 π	f1 π	ρπ	
P55	573 D1	S 9 D 0.04	P 13	Γ MeV
IKP	S 51 D 11	514 D7	P 12	

Isgur, Kokosky, Paton (85) Close, Page (95) Page, Swanson, Szczepaniak (99) Close, Dudek (04)

Bali (00)

- Low lying states expected below string breaking !
- In large- N_c same as for ordinary mesons $O(1/N_c)$
- Unusual decay modes in the flux tube model

Structure

normal meson spectrum seems to be very quark model-like !

J.Dudek at al. Phys.Rev.D82:0345 08,2010

 $\bar{q}(x)\Gamma^{i}q(x) \sim b^{\dagger}(k)\sigma^{i}d(-k)$ $\bar{q}(x)F_{ij}(x)q(x) \sim b^{\dagger}(k)\vec{k}\times\vec{a}(q)d(-q-k)$

to determine structure study

 $\langle Vacuum | O[q,g] | Meson \rangle$

in unquenched lattice lowest energies correspond to continuum states

On finite volume multi-meson state and single hadron states are discrete.

If there are single hadron states, use volume dependence to disentangle

Continuum states can have any J,P,C but not single hadron states

The choice of operators minimizes overlap with multi-meson states

ж

* state of the art full spectrum

Gluon structure models

Bag Model

Flux tube model

Gluon structure models

And The Winer Is !

Quasi-particles

 $\begin{array}{c} m \text{ nodes} \Leftrightarrow momentum}{\text{oscillations y } \pm \text{ i } x \Leftrightarrow \text{ helicity }} & \textbf{y} \uparrow \\ \textbf{Z} & \textbf{I} \end{array}$

X

$$\begin{split} n_{\pm}(m) &= number \text{ of }m\text{-momentum modes of helicity }\pm\\ N &= \sum_{m} m \left[n_{+}(m) + n_{-}(m)\right] \text{ total momentum}\\ \Lambda &= \sum_{m} \left[n_{+}(m) - n_{-}(m)\right] \text{ spin projection on the z axis} \end{split}$$

for example the lowest energy mode N=1 $|\Lambda|=1$ (0-nodes)

 $\Lambda = n_{+} = I$

 $\Lambda = -n_{-} = -1$

Solving for hadrons QCD

Solving for hadrons QCD $H_{QCD}[p,q]\Psi_n(q) = E_n\Psi_n(q)$ $q \to \vec{A}_T^a(\vec{x}) \quad a = 1 \cdots N_C^2 - 1 \quad \Psi_n(q) \to \Psi_n(A)$ $\begin{array}{ll} \text{Solving for hadrons QCD} & H_{QCD}[p,q]\Psi_n(q) = E_n\Psi_n(q) \\ q \to \vec{A}_T^a(\vec{x}) & a = 1 \cdots N_C^2 - 1 & \Psi_n(q) \to \Psi_n(A) \\ \Psi_{vac}(q) = e^{-\frac{1}{2}\int B(x)K(x,y)B(y)} \to e^{-\frac{1}{2}\int B\frac{1}{\sqrt{\vec{\nabla}^2}}B} & \begin{array}{c} \text{AS (Indiana)} \\ \text{H.Reinhard (Tuebingen)} \end{array} \end{array}$

$$\begin{array}{ll} \mbox{Solving for hadrons QCD} & H_{QCD}[p,q]\Psi_n(q) = E_n\Psi_n(q) \\ q \to \vec{A}_T^a(\vec{x}) & a = 1 \cdots N_C^2 - 1 & \Psi_n(q) \to \Psi_n(A) \\ & \Psi_{vac}(q) = e^{-\frac{1}{2}\int B(x)K(x,y)B(y)} \to e^{-\frac{1}{2}\int B\frac{1}{\sqrt{\nabla^2}}B} & \mbox{AS (Indiana)} \\ & \text{H.Reinhard (Tuebingen)} \\ & \text{in QCD gauge invariant variables are Wilson} \\ & \text{lines => periodicity (center symmetry)} & \overbrace{Q}^{Q} P_l e^{ig\int d\vec{l}\vec{A}^a(l)T^a} \\ & \bar{Q} \end{array}$$

B. Mile Summer, Actually Alter - States

Solving for hadrons QCD
$$H_{QCD}[p,q]\Psi_n(q) = E_n\Psi_n(q)$$

 $q \rightarrow \vec{A}_T^a(\vec{x}) \quad a = 1 \cdots N_C^2 - 1 \quad \Psi_n(q) \rightarrow \Psi_n(A)$
 $\Psi_{vac}(q) = e^{-\frac{1}{2}\int B(x)K(x,y)B(y)} \rightarrow e^{-\frac{1}{2}\int B\frac{1}{\sqrt{\nabla^2}}B} \quad \stackrel{\text{AS (Indiana)}}{\text{H.Reinhard (Tuebingen)}}$
in QCD gauge invariant variables are Wilson
lines => periodicity (center symmetry)
tunneling between
equivalent potential minima
instantons -> vortices,
monopoles
vacuum = monopole gas
quark and gluons propagate
in a monopole background
 $P_1e^{ig \int d\vec{t} \vec{A}^a(t)T^a}$

confinement

the monopole gas is!)

a da ar - da -

Thursday, January 27, 2011

-> screening

(H.Metevosyan, AS)

Solving for hadrons QCD
$$H_{QCD}[p,q]\Psi_{n}(q) = E_{n}\Psi_{n}(q)$$
$$= (p + \vec{A}_{T}^{T}(\vec{x}) - (q + 1) + N_{C}^{2} - 1 - \Psi_{n}(q) + \Psi_{n}(q)$$
$$= (p + \vec{A}_{T}^{T}(\vec{x}) - (q + 1) + N_{C}^{2} - 1 - \Psi_{n}(q) + \Psi_{n}(q)$$
$$= (p + \vec{A}_{T}^{T}(\vec{x}) - (q + 1) + N_{C}^{2} + (q + 1) + (q$$

Solving for hadrons QCD
$$H_{QCD}[p,q]\Psi_{n}(q) = E_{n}\Psi_{n}(q)$$
$$q \rightarrow \tilde{A}_{T}^{n}(\vec{x}) \quad a = 1 \cdots N_{C}^{2} - 1 \quad \Psi_{n}(q) \rightarrow \Psi_{n}(A)$$
$$\Psi_{vac}(q) = e^{-\frac{1}{2}\int B(x)K(x,y)B(y)} \rightarrow e^{-\frac{1}{2}\int B(\frac{1}{\sqrt{\nabla^{2}}}B} \quad A_{C}(ndian)$$
$$H_{Reinhard}(Tuebingen)$$
$$H_{uncling} between equivalent potential minima instantons -> vortices, monopoles$$
$$P_{1}e^{ig\int d\vec{d}\cdot\vec{A}\cdot u(t)T^{a}} = 0$$
$$Q\bar{Q}g_{1}true = \sum_{k=1}^{2} \int B(x) B(x) \int B(x) \int B(x)$$

-0.5

Greensite and Oleinik 10

Solving for hadrons QCD
$$H_{QCD}[p,q]\Psi_n(q) = E_n\Psi_n(q)$$

$$q \to \vec{A}_T^q(\vec{x}) \quad a = 1 \cdots N_C^2 - 1 \quad \Psi_n(q) \to \Psi_n(A)$$

$$\Psi_{vac}(q) = e^{-\frac{1}{2}\int B(x)K(x,y)B(y)} \to e^{-\frac{1}{2}\int B \frac{1}{\sqrt{\nabla^2}}B} \quad \underset{\text{H.einhard (Tuebingen)}}{\text{AS (Indiana)}}$$

$$\Psi_{vac}(q) = e^{-\frac{1}{2}\int B(x)K(x,y)B(y)} \to e^{-\frac{1}{2}\int B \frac{1}{\sqrt{\nabla^2}}B} \quad \underset{\text{H.einhard (Tuebingen)}}{\text{AS (Indiana)}}$$

$$\Pi_{\text{Reinhard (Tuebingen)}}$$

$$\Pi_{\text{restriction}} = P_{1}e^{igf d\vec{t}\vec{A}^a(t)T^a}$$

$$Q\bar{Q}g|_{true} = \sum_{k=1}^{2} \int B(x) \int$$

Gluon propagator and Monopoles

$$\langle A(\vec{k})A(-\vec{k})\rangle = D(|\vec{k}|) \rightarrow \frac{1}{2|\vec{k}|}$$

IR suppression from monopole screening

FIG. 1: Comparison of our gluon propagator with that obtained from lattice computations [52]

(H.Metevosyan, AS)

non-relativistic hybrids

expected degeneracies

not every bump is a resonance (and even if, it may not be a BW)

it is important to understand production mechanisms

 $\pi^- p \to \eta' \pi^- p$

(other signals identified by E852, CB,VES)

Fitting the E852 the $\eta\pi$ and $\eta'\pi$ spectra using eft give a good description of the exotic wave (APS et al.)

P-wave

P -wave $\eta \pi$, $\eta' \pi$ 2 coupled channels

S, D -wave KK, $\eta\pi$, $\eta'\pi$ 3 coupled channels

$$t(s) = \frac{1}{\operatorname{Re} V^{-1} - i\rho}$$

there are no long range forces in between η and π

to fit the data V needs to have short range interactions

Moving $\pi_2($	1670)	peak
-----------------	-------	------

1672.4± 3.2 OUR AVERAGE Error includes scale factor of 1.4. See the ideogram below. 1749 ±10 ± 100 145k LU 05 E852 18 $\pi^- p \rightarrow u\pi^- \pi^0 p$ 1676 ± 3 ± 8 ¹ CHUNG 02 E852 18.3 $\pi^- p \rightarrow u\pi^- \pi^0 p$ 1685 ±10 ± 30 ² BARBERIS 01 450 $pp \rightarrow pr p\pi^0 p_3$ 1687 ± 9 ± 15 AMELIN 99 VES $37 \pi^- A \rightarrow u\pi^- \pi^0 A^+$ 1669 ± 4 BARBERIS 98E 450 $pp \rightarrow pr p\pi p_3$ 1670 ± 4 BARBERIS 98E 450 $pp \rightarrow pr p\pi p_3$ 1670 ± 4 BARBERIS 98E 450 $pp \rightarrow pr p\pi p_3$ 1730 ±0 ³ AMELIN 95B VES $36 \pi^- A \rightarrow \pi^+ \pi^- A \rightarrow K^+ K^- \pi^- A$ 1700 ±10 700 ANTIPOV 87 SIGM - 50 $\pi^- Cu \rightarrow \mu^+ \mu^- \pi^- Cu$ 1676 ± 6 ⁴ EVANGELISTA 81 OMEG - 12 $\pi^- p \rightarrow 3\pi p$ 1657 ±14 4.5 DAUM 800 SPEC - 63-94 $\pi p \rightarrow 3\pi X$ 1662 ±10 2000 ⁴ BALTAY 77 HBC + 15 $\pi^+ p \rightarrow p 3\pi$ 1662 ±10 2000 ⁴ BALTAY 77 HBC + 15 $\pi^+ p \rightarrow p 3\pi$ 1674 ± 4.9 ANTREASYAN 90 CBAL $e^+ e^- \rightarrow e^+ e^- \pi^0 \pi^0 \pi^0 \pi^0$ 1624 ±21 ¹ BELLINI 85 SPEC 40 $\pi^- A \rightarrow \pi^- \pi^- \pi^- \pi^- A$ 1710 ±0 ⁸ DAUM 81B SPEC - 63.94 $\pi^- p \rightarrow \pi^- \pi^- \pi^- A$ 1710 ±0 ⁸ DAUM 81B SPEC - 63.94 $\pi^- p \rightarrow p\pi_2$	VALUE	(MeV)		EVTS	DOCUMENT ID		TECN	CHG	COMMENT	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	1672	L± 3.2	2 OUR A	VERAGE	Error includes sca	ıle fa	ctor of 1	1.4. Se	e the ideogram below.	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	1749	±10	±100	145k	LU	05	E852		$18 \pi^- p \rightarrow \omega \pi^- \pi^0 p$	
1685 ±10 ± 30 1685 ±10 ± 30 1687 ± 9 ± 15 1687 ± 9 ± 15 1669 ± 4 1669 ± 4 1669 ± 4 1669 ± 4 1669 ± 4 1730 ±10 1730 ±10 1742 ±31 ± 49 1742 ± 49 1744 ± 49 1744 ± 49 1744 ± 49 1744 ± 4	1676	± 3	± 8		¹ CHUNG	02	E852		$18.3 \pi^- p \rightarrow$	
$\begin{array}{c} p_{7} 3\pi^{-}p_{5} \\ 1687 \pm 9 \pm 15 \\ 1669 \pm 4 \\ 1669 \pm 4 \\ 1669 \pm 4 \\ 1730 \pm 0 \\ 1742 \pm 3 \\ 1821 \\ 182$	1685	±10	± 30		² BARBERIS	01			$450 pp \rightarrow$	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	1687	± 9	± 15		AMELIN	99	VES		$p_f 3\pi^{\circ} p_s$ $37 \pi^- A \rightarrow 0 A^*$	
1670 ± 4 BARBERIS 98B 1730 ± 0 1730 ± 0 1740 ± 0 1750 ± 0 175	1669	± 4			BARBERIS	98B			$450 pp \rightarrow p_f \rho \pi p_s$	
1730 ± 0 1730 ± 0 1730 ± 0 1730 ± 0 1730 ± 14 1730 ± 10 1690 ± 14 1710 ± 10 1700 ANTIPOV 87 SIGM - 50 $\pi^- Cu \rightarrow \mu^+ \mu^- \pi^- Cu$ 1676 ± 6 1700 ANTIPOV 87 SIGM - 50 $\pi^- Cu \rightarrow \mu^+ \mu^- \pi^- Cu$ 1676 ± 6 1700 ANTIPOV 87 SIGM - 50 $\pi^- Cu \rightarrow \mu^+ \mu^- \pi^- Cu$ 1676 ± 6 1742 ± 30 1624 ± 21 1624 ± 21 1624 ± 21 1624 ± 21 1624 ± 21 1624 ± 21 1624 ± 21 1700 BELLINI 85 SPEC 1710 ± 28 1710 ± 28 1710 ± 28 1710 ± 28 1710 ± 28 1710 ± 28 1710 ± 10 1710 ± 100 1710 ± 100 171	1670	± 4			BARBERIS	98B			$p_{f} p_{f} \rightarrow p_{f} f_{2}(1270) \pi p_{s}$	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	1730	±:0			³ AMELIN	95B	VES		$36 \pi^- A \rightarrow \pi^+ \pi^- \pi^- A$	
1710 ± 0 1710	1690	±14			⁴ BERDNIKOV	94	VES		${}^{37}\pi^-A \rightarrow K^+K^-\pi^-A$	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	1710	±30		700	ANTIPOV	87	SIGM	-	$50 \pi^- Cu \rightarrow \mu^+ \mu^- \pi^- Cu$	
1057 ± 14 1055 SPEC 107 ± 16 1055 SPEC $1055 S$	1676	± 6		4	⁴ EVANGELISTA	81	OMEG	-	$12 \pi^- p \rightarrow 3\pi p$	
••• We do not use the following data for averages, fits, limits, etc. ••• 1742 ± 3) ± 49 ANTREASYAN 90 CBAL $e^+e^- \rightarrow e^+e^- n_0 n_0 n_0^0$ 1624 ± 21 ¹ BELLINI 85 SPEC 40 $\pi^- A \rightarrow \pi^- n_1^+ n_2^- A$ 1622 ± 35 ⁶ BELLINI 85 SPEC 40 $\pi^- A \rightarrow \pi^- n_1^+ n_2^- A$ 1693 ± 28 ⁷ BELLINI 85 SPEC 40 $\pi^- A \rightarrow \pi^- n_1^+ n_2^- A$ 1710 ± 10 ⁸ DAUM 81B SPEC - 63,94 $\pi^- p$ 1660 ± 10 ⁴ ASCOLI 73 HBC - 5-25 $\pi^- p \rightarrow p \pi_2$ $\pi^- n_1^+ n_2^- A \rightarrow \pi^- n_2^+ n_2^- A$	1662	±14 ±10		2000	⁴ BALTAY	800 77	HBC	+	$15 \pi^+ p \rightarrow p 3\pi$	
1742 ±3) ± 49 ANTREASYAN 90 CBAL $e^+e^- \rightarrow e^+e^-\pi^0\pi^0\pi^0$ 1624 ±21 ¹ BELLINI 85 SPEC 40 $\pi^-A \rightarrow \pi^-\pi^+\pi^-A$ 1622 ±35 ⁶ BELLINI 85 SPEC 40 $\pi^-A \rightarrow \pi^-\pi^+\pi^-A$ 1693 ±28 ⁷ BELLINI 85 SPEC 40 $\pi^-A \rightarrow \pi^-\pi^+\pi^-A$ 1710 ±0 ⁸ DAUM 81B SPEC - 63,94 π^-p 1660 ±10 ⁴ ASCOLI 73 HBC - 5-25 $\pi^-p \rightarrow p\pi_2$		We do) not use	the follow	ing data for averag	ges, f	fits, limit	ts, etc.	• • •	
1624 ±21 1624 ±21 1622 ±35 1622 ±35 1622 ±35 1623 ±28 1693 ±28 17 BELLINI 1693 ±28 17 D ±0 1660 ±10 1660	1742	±31	± 49		ANTREASYAN	90	CBAL		$e^+e^- \rightarrow e^-\pi^0\pi^0\pi^0$	
1622 ±35 1622 ±35 1693 ±28 170 ±20 1660 ±10 1660 ±	1624	±21			¹ BELLINI	85	SPEC		$\begin{array}{c}40 \pi^{-}A \rightarrow \\ \pi^{-}\pi^{+}\pi^{-}A\end{array}$	
1693 ±28 1710 ±20 1600 ±10 7 BELLINI 85 SPEC 40 $\pi^-A \rightarrow \pi^-\pi^+\pi^-A$ $\pi^-\pi^+\pi^-A$ 8 DAUM 81B SPEC - 63,94 π^-p 4 ASCOLI 73 HBC - 5-25 $\pi^-p \rightarrow p\pi_2$ $\pi^-\pi^-\pi^-\pi^-\pi^-\pi^-\pi^-\pi^-\mu^-\mu^-\mu^-\mu^-\mu^-\mu^-\mu^-\mu^-\mu^-\mu^-\mu^-\mu^-\mu^$	1622	±35			⁶ BELLINI	85	SPEC		$\begin{array}{c} 40 \pi^- A \rightarrow \\ \pi^- \pi^+ \pi^- A \end{array}$	
1710 ± 10 1660 ± 10 1660 ± 10 8 DAUM 4 ASCOLI 73 HBC - $5-25 \pi^- p \rightarrow p \pi_2$ $\pi^- p^- p \pi_2$ $\pi^- p^- p \pi_2$ $\pi^- p^- p \pi_2$	1693	±28			⁷ BELLINI	85	SPEC		$\begin{array}{c} 40 \ \pi^- A \rightarrow \\ \pi^- \pi^+ \pi^- A \end{array}$	
$\frac{\pi}{P} = \frac{p}{\pi} + \frac{\pi}{P} + \frac{\pi}$	1710	±20			⁸ DAUM 4 ASCOLL	81B 72	SPEC	-	63,94 π p	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	1000	±10			ABCOLI	15	HBC	-	$p \rightarrow p\pi_2$	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$			7	ρ			0		* 0	ρ
Provide N N N N N N N N N N N N N N N N N N N			~	\int		Z	π			Į.
N N N N N				PS T		IP	~		· P 5	-
			N	Ž.N		N	<u>}</u> ,	N	NNN	

resonances

Resonances do not have to show up as peaks or can be skewed

(S-wave)

Figure 11: Fit to the 1⁺ $\rho\pi$ intensity from $\pi^- p \rightarrow \pi^- \pi^- \pi^+ p$ at $E_{\pi} = 25$ and $E_{\pi} = 40$ GeV, CERN data [70], with (left) both long-range production from one pion exchange and short-range direct production and (right) short-range direct production only [63].

ŀ

General idea

$ImA(s) = R(s)\rho(s)|A(s)|^2$

 $A(s) = \frac{1}{\pi} \int_{-\infty}^{0} ds' \frac{ImA(s')}{s'-s} + \frac{1}{\pi} \int_{s_{th}}^{\infty} ds' \frac{ImA(s')}{s'-s}$

integral equation for the amplitude

ж

*

output : through unitarity related to measured x-section

input ("potential") : through crossing lhc is related to other physical amplitudes

caveats

- c potential not known everywhere
- in principle many (∞) channels contribute
 - x-sections known over limited energy range

recent improvements and (1960's vs 2000)

chiral symmetry: low energy constraints

From dispersion relations

CDD pole required

FIG. 1: *P*-wave phase shift (upper panel) and inelasticity (lower panel). Data from [34–36], dahsed-dotted (solid) line solution of dispersion relation without (with) a CDD pole. Dashed line is the fit of the quark model from Eq.(33).

bootstrap failed

M.Battaglieri, R.de Vita, P.Guo, AS

resonances are not generated dynamically from interactions between other resonances

or as lattice suggests there are single hadron states in the spectrum

From dispersion relations

CDD pole required

FIG. 1: *P*-wave phase shift (upper panel) and inelasticity (lower panel). Data from [34–36], dahsed-dotted (solid) line solution of dispersion relation without (with) a CDD pole. Dashed line is the fit of the quark model from Eq.(33).

bootstrap failed

M.Battaglieri, R.de Vita, P.Guo, AS

resonances are not generated dynamically from interactions between other resonances

or as lattice suggests there are single hadron states in the spectrum

how does it fit in with the success of dynamicaly generated resonance program from a unitarized chi-PT approach ?

do the Uch-PT poles move?

* Lattice : solid evidence for single-hadron QCD states (CDD poles) including hybrids

* Lattice : solid evidence for single-hadron QCD states (CDD poles) including hybrids

solid evidence for Mandelstam, Nambu,t'Hooft,Polyakov superconductor model of QCD vacuum

"dressed" gluon exchange does not generate hadrons

but a correct phenomenology can be developed including hybrids

* Lattice : solid evidence for single-hadron QCD states (CDD poles) including hybrids

solid evidence for Mandelstam, Nambu,t'Hooft,Polyakov superconductor model of QCD vacuum

"dressed" gluon exchange does not generate hadrons

but a correct phenomenology can be developed including hybrids

bootstrap was abandoned because it discovered hadrons are not dynamically generated, S-matrix was abandoned because CDD poles could not be excluded

these, however, are based on model-independent constrains which should not be forgotten in modern amplitude analyses.