Recent Results on Nucleon Spin Structure

Jörg Pretz

Int. Workshop on Gross Properties of Nuclei and Nuclear Excitations, Jan. 2011, Hirschegg, Austria

・ロト ・ 日 ・ ・ 日 ・ ・ 日 ・

Proton Structure ...

• ... looks simple in static quark model

æ

・ロン ・四 と ・ ヨン ・ ヨン …

Proton Structure ...

- ... looks simple in static quark model
- ... much more complicated in QCD

э

・ロン ・個 と ・ ヨン ・ ヨン

Motivation	Helicity Distributions	Future Projects	Summary & Outlook
Outline			

Motivation

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

Motivation	Helicity Distributions	Future Projects	Summary & Outlook
Outline			

- Motivation
- Helicity Distribution Δq and ΔG

Motivation	Helicity Distributions	Future Projects	Summary & Outlook
Outline			

- Motivation
- Helicity Distribution Δq and ΔG
 - Method

Motivation	Helicity Distributions	Future Projects	Summary & Outlook
Outline			

- Motivation
- Helicity Distribution Δq and ΔG
 - Method
 - Results

Motivation	Helicity Distributions	Future Projects	Summary & Outlook
Outline			

- Motivation
- Helicity Distribution Δq and ΔG
 - Method
 - Results
- Future Projects:

Polarised Electron Nucleon Collider

Motivation	Helicity Distributions	Future Projects	Summary & Outlook
Outline			

- Motivation
- Helicity Distribution Δq and ΔG
 - Method
 - Results
- Future Projects:

Polarised Electron Nucleon Collider

Summary & Outlook

Motivation

Motivation	Helicity Distributions	Future Projects	Summary & Outlook
Motivation			
$\frac{\text{Motivatio}}{\text{Where does the}}$ Spin come f $\frac{1}{2} = \frac{1}{2} \Delta \Sigma + \Delta G$	$\frac{n \ l:}{rom?}$ + $L_q + L_G$		

◆□ > ◆□ > ◆臣 > ◆臣 > 臣 の < ⊙

Motivation	Helicity Distributions	Future Pr	ojects	Summary & C	Jutlook
Motivation			Motivation		
$\frac{\text{Motivative}}{\text{Where does th}}$ Spin come $\frac{1}{2} = \frac{1}{2} \Delta \Sigma + \Delta C$	<u>on I:</u> e Nucleon from? G + L _q + L _G	Partor • u	n Distribution	Functions x),g(x)	:
	<u>P</u>		< □ > < 🗗 > < 🗄	> < E > E	996
Jörg Pretz	Recent Res	ults on Nucleon Spin Struc	ture		5 / 41

Mo	tiva	ati	on
----	------	-----	----

Future Projects

Summary & Outlook

Motivation

 $\frac{\text{Motivation I:}}{\text{Where does the Nucleon}}$ Spin come from? $\frac{1}{2} = \frac{1}{2} \Delta \Sigma + \Delta G + L_{g} + L_{G}$

Motivation II:

Parton Distribution Functions:

- unpolarized q(x), g(x)
- helicity $\Delta q(x), \Delta g(x)$

Mo	tiva	ati	on
----	------	-----	----

Future Projects

Summary & Outlook

Motivation

 $\frac{\text{Motivation I:}}{\text{Where does the Nucleon}}$ Spin come from? $\frac{1}{2} = \frac{1}{2} \Delta \Sigma + \Delta G + L_g + L_G$

Motivation II:

Parton Distribution Functions:

- unpolarized q(x), g(x)
- helicity $\Delta q(x), \Delta g(x)$
 - transversity $\Delta_T q(x)$

Motivation	
------------	--

Future Projects

Summary & Outlook

Motivation

 $\frac{\text{Motivation I:}}{\text{Where does the Nucleon}}$ Spin come from? $\frac{1}{2} = \frac{1}{2} \Delta \Sigma + \Delta G + L_g + L_G$

Motivation II:

Parton Distribution Functions:

- unpolarized q(x), g(x)
- helicity $\Delta q(x), \Delta g(x)$
 - transversity $\Delta_T q(x)$
- Transverse Momentum dependent (TMD) distributions

イロト イポト イヨト イヨト

Motivation	
------------	--

Future Projects

Summary & Outlook

Motivation

 $\frac{\text{Motivation I:}}{\text{Where does the Nucleon}}$ Spin come from? $= \frac{1}{2} \Delta \Sigma + \Delta G + L_{2} + L_{3}$

$$\frac{1}{2} = \frac{1}{2} \Delta \Sigma + \Delta G + L_q + L_G$$

Motivation II:

Parton Distribution Functions:

- unpolarized q(x), g(x)
- helicity $\Delta q(x), \Delta g(x)$
 - transversity $\Delta_T q(x)$
- Transverse Momentum dependent (TMD) distributions
- Generalized Parton distributions (GPDs

・ロト ・ 一下・ ・ ヨト ・ ヨト

Focus in this talk:

Helicity Distributions of quarks and gluons and quarks: $\Delta q, \Delta g$

Э

Focus in this talk:

Helicity Distributions of quarks and gluons and quarks: $\Delta q, \Delta g$

Other presentation in the workshop related to the field:M. BoglioneTransverse Spin Structure of the NucleonM. GuidalDeep Virtual Compton Scattering: from Data to GPDs

- W. Vogelsang QCD Spin Physics
- A. Deshpande Electron Ion Colliders
- A. Schäfer Nucleon Structure from the Lattice

・ロト ・ 一下・ ・ ヨト ・ ヨト

(ロ) (個) (E) (E) (E)

Motivation	Helicity Distributions	Future Projects	Summary & Outlook
What do v	we know?		

- $\Delta\Sigma \approx 30\%$ But how do the different $\Delta q(\mathbf{x}), q = u, d, s, \bar{u}, \bar{d}, \bar{s}$ look like?
- $\Delta G = \int_0^1 \Delta g(x) dx$ small? But how small? How does $\Delta g(\mathbf{x})$ look like?

How can they by measured?

Find a process where one probes interaction with quark/gluon of a given polarisation with respect to the parent nucleon.

Can be done in two ways, using

● double polarisation in Deep Inelastic Scattering: $\vec{l} + \vec{N} \rightarrow \ell' + hadrons + X$ Proton-Proton Scattering: $\vec{p} + \vec{p} \rightarrow \text{Jet}/\gamma/\text{Hadrons} + X$

② single polarisation & weak interaction
$$\vec{p} + p \rightarrow W^{\pm} \rightarrow e^{\pm} + \nu$$

・ロッ ・雪 ・ ・ ヨ ・ ・ ロ ・

COMPASS Experiment at CERN

 μN scattering at $E_{\mu}=$ 160 GeV ($\sqrt{s}=$ 18 GeV)

・ロト ・雪 ・ ・ ヨ ・ ・ ヨ ・

PHENIX Experiment at BNL

pp collisions at $\sqrt{s}=200,500$ GeV

Jörg Pretz

Polarized Inclusive DIS: $\vec{l} + \vec{N} \rightarrow \ell' + X$

Proton Asymmetry

$$ec{l}(k)+ec{N}(p)
ightarrow l'(k')+X(P_X)$$

Motivation	Helicity Distributions	Future Projects	Summary & Outlook
Results			

using proton, deuteron asymmetries and weak hyperon decay constants F and D:

$$\Delta \Sigma = 0.254 \pm 0.042 \Delta s + \Delta \bar{s} = -0.110 \pm 0.012 at Q2 = 4 GeV2$$

E. Leader, A. V. Sidorov and D. B. Stamenov, arXiv:1010.0574 [hep-ph]

Provides only information about
$$\Delta q + \Delta \bar{q}$$
, because $e_q^2 = e_{\bar{q}}^2$

・ロン ・四 と ・ ヨン ・ ヨン …

How to measure helicity distributions for different flavors?

Principle:

Measure double spin asymmetries of various hadronic final states h in $\vec{\ell}+\vec{N}\to\ell'+X+hadrons$

$$A^{h} = \frac{N_{h}^{\uparrow\downarrow} - N_{h}^{\uparrow\uparrow}}{N_{h}^{\uparrow\downarrow} + N_{h}^{\uparrow\uparrow}} \propto \frac{\sum_{q} e_{q}^{2} \left(\Delta q(x) D_{q}^{h}(z) + \Delta \bar{q}(x) D_{\bar{q}}^{h}(z) \right)}{\sum_{q} e_{q}^{2} \left(q(x) D_{q}^{h}(z) + \bar{q}(x) D_{\bar{q}}^{h}(z) \right)}$$

- D_q^h : fragmentation function
- D^h_q(z)dz = number of hadrons of type h produces from a quark q with energy fraction in [z, z + dz]
- $D_u^{\pi^+} > D_{\overline{u}}^{\pi^+}$
- Kaon asymmetries are for example are sensitive to Δs

Semi-Inclusive Aymmetries

Asymmetries $\rightarrow \Delta q$

Solve:

$$\vec{A} = B\Delta \vec{q}$$

•
$$\vec{A} = (A_{1,p}, A_{1,p}^{\pi^+}, A_{1,p}^{K^+}, \dots, A_{1,d}, \dots, A_{1,p}^{K^-})$$

• $\Delta \vec{q} = (\Delta u, \Delta d, \Delta s, \Delta \bar{u}, \Delta \bar{d}, \Delta \bar{s})$
• $B(q, \int D_a^h dz)$

$\Delta s(x)$ and $\Delta \bar{s}(x)$ from COMPASS Data

 \Rightarrow In the following assume $\Delta s = \Delta ar{s}$

$\Delta u(x), \Delta d(x), \Delta s(x), \Delta \bar{u}(x), \Delta \bar{d}(x), \Delta s(x)$

Jörg Pretz

Recent Results on Nucleon Spin Structure

Motivation

$\Delta \bar{u}(x)$ and $\Delta \bar{d}(x)$

 $\int_{0.004}^{0.3} \Delta \bar{u}(x) - \Delta \bar{d}(x) dx = 0.06 \pm 0.04 \pm 0.02$

Summary Δq

- Statistics allowed for the first time to determine all 6 quark flavors from COMPASS data alone
- $\Delta \bar{u} \Delta \bar{d} > 0$? More data will decide
- $\Delta\Sigma=0.32\pm0.03$ consistent with inclusive result
- No difference found between Δs and $\Delta \bar{s}$
- $\int_{0.004}^{0.3} (\Delta s + \Delta \bar{s}) dx = -0.02 \pm 0.02 \pm 0.02$ in contrast to $\int_{0}^{1} (\Delta s + \Delta \bar{s}) dx = -0.11 \pm 0.01$ from inclusive data & Hyperon decay constants
- Result (mainly Δs) depend on fragmentation functions

(ロ) (個) (注) (注) =

Helicity distributions from $\vec{p}p$ at RHIC

- Instead of measuring double spin asymmetries, one can measure single spin asymmetries and use weak interaction
- Done at RHIC $(\vec{p} + p \rightarrow W^{\pm} \rightarrow e^{\pm} + \nu$ at $\sqrt{s} = 500$ GeV)

Results

STAR

Э

・ロト ・ 聞 ト ・ 言 ト ・ 言 ト ・

Gluon Helicity

æ

・ロト ・ 四ト ・ ヨト ・ ヨト …

How to measure ΔG ?

Use hadronic final state in DIS to tag gluon! $\vec{\mu} + \vec{N} \rightarrow \mu' + \text{hadrons} + X$

・ロン ・四 と ・ ヨン ・ ヨン …

How to measure ΔG ?

Use hadronic final state in DIS to tag gluon! $\vec{\mu} + \vec{N} \rightarrow \mu' + \text{hadrons} + X$

How to tag Photon -Gluon- Fusion sub-process $\gamma^* {m g} o q ar q$?

• open charm: $\gamma^* g \to c \bar{c} \to D^0 + X$

2 high $p_T: \gamma^* g \to q\bar{q} \to hadrons$ with large p_T

<ロ> (四) (四) (三) (三) (三) (三)

Results on ΔG from DIS

• Data show small values of $\Delta g/g$ at $x_g \approx 0.1$

Jörg Pretz

Results on ΔG from $\vec{p}\vec{p}$

STAR: $\vec{p} + \vec{p} \rightarrow \text{Jet} + X$

э

・ロト ・四ト ・ヨト ・ヨト

Results on ΔG from $\vec{p}\vec{p}$

PHENIX: $\vec{p} + \vec{p} \rightarrow \text{Jet} + X$

Summary ΔG

- $\Delta G = \int_0^1 \Delta g(x) dx \approx 0 \pm \frac{1}{2}$ certainly small compared to large values $\Delta G \approx 2 - 3$ proposed to explain small of $\Delta \Sigma \approx 30\%$, **not** small compared to the total spin of the proton of $\frac{1}{2}$!
- x-dependence not very well determined
- Note: RHIC results are in NLO QCD, (most) DIS results in LO QCD

◆□▶ ◆□▶ ◆□▶ ◆□▶ ●

æ

・ロン ・四 と ・ ヨン ・ ヨン …

The ENC@FAIR project

- add a 3 GeV e^+/e^- accelerator to the already planed 15 GeV HESR (High Energy Storage Ring) for \bar{p} , p
- e^- and p polarized ($P \approx 80\%$)
- $\mathcal{L}\approx 10^{32}/\text{cm}^2/\text{s}$
- Use (modified) PANDA detector

・ロト ・ 理 ト ・ ヨ ト ・ ヨ ト

The ENC@FAIR project

- add a 3 GeV e^+/e^- accelerator to the already planed 15 GeV HESR (High Energy Storage Ring) for \bar{p} , p
- e^- and p polarized (P pprox 80%)
- $\mathcal{L}\approx 10^{32}/\text{cm}^2/\text{s}$
- Use (modified) PANDA detector

Experiment	JLab(12 GeV)	HERMES	ENC	COMPASS
s/GeV^2	23	50	180	300
$\mathcal{L}/(1/ ext{cm}^2/ ext{s})$	$pprox 10^{38}$	$pprox 10^{32}$	$pprox 10^{32}$	$pprox 10^{32}$

◆□▶ ◆□▶ ◆□▶ ◆□▶ ●

$Luminosity \rightarrow FOM$

More interesting: FOM for polarisation measurements:

 $\mathsf{FOM} = (\mathsf{diluting}\;\mathsf{factors})^2\,\mathcal{L}$

diluting factors:	beam polarization	P_B
	target polarization	P_T
	target dilution factor	f
	reconstruction efficiency	
	and purity	r

3

・ロト ・ 四ト ・ ヨト ・ ヨト …

Diluting Factors

	COMPASS	collider
P_T	0.5	0.8
f	0.4	1
P_B	0.8	0.8

$\begin{array}{l} \mbox{COMPASS uses a solid target (}^{6}\mbox{LiD or NH}_{3}\mbox{)} \\ \mbox{dilution factor} \approx \frac{\mbox{nb. of polarisable nucleons}}{\mbox{nb. of all nucleons}} = \frac{4}{8} \mbox{ for } {}^{6}\mbox{LiD} \end{array}$

Diluting Factors

	diluting factor		ratio
	COMPASS	ENC	
double spin asymmetries $(P_T f P_B)^2$	0.026	0.41	16
reconstruction of hadronic			
final state			pprox 10
mass resolution	\odot	٢	
displaced vertices	٢	٢	
more D^0 deacy ch.		3	
determination of x_g	٢	٢	
due to reconstruction of D and $ar{D}$			

æ

・ロン ・四 と ・ ヨン ・ ヨン …

Diluting Factors

	diluting factor		ratio
	COMPASS	ENC	
double spin asymmetries $(P_T f P_B)^2$	0.026	0.41	16
reconstruction of hadronic			
final state			pprox 10
mass resolution	\odot	٢	
displaced vertices	٢	٢	
more D^0 deacy ch.	٢	٢	
determination of x_g	٢	٢	
due to reconstruction of D and $ar{D}$			

Huge potential for polarization observables!

э

・ロト ・ 四ト ・ ヨト ・ ヨト

æ

・ロト ・ 四ト ・ ヨト ・ ヨト …

• New results on helicity distributions Δq and Δg

æ

・ロン ・四 と ・ ヨン ・ ヨン …

• New results on helicity distributions Δq and Δg

• Full Flavor decomposition $\Delta u, \Delta d, \Delta s, \Delta \bar{u}, \Delta \bar{d}, \Delta \bar{s}$

э

• New results on helicity distributions Δq and Δg

• Full Flavor decomposition $\Delta u, \Delta d, \Delta s, \Delta \bar{u}, \Delta \bar{d}, \Delta \bar{s}$

•
$$\Delta G \approx 0 \pm \frac{1}{2}$$

э

- New results on helicity distributions Δq and Δg
 - Full Flavor decomposition $\Delta u, \Delta d, \Delta s, \Delta \bar{u}, \Delta \bar{d}, \Delta \bar{s}$

•
$$\Delta G \approx 0 \pm \frac{1}{2}$$

• Nucleon Spin Puzzle still not solved

- New results on helicity distributions Δq and Δg
 - Full Flavor decomposition $\Delta u, \Delta d, \Delta s, \Delta \bar{u}, \Delta \bar{d}, \Delta \bar{s}$
 - $\Delta G \approx 0 \pm \frac{1}{2}$
- Nucleon Spin Puzzle still not solved
- New physics program at COMPASS(CERN), JLab, RHIC(BNL) to investigate
 Generalized Parton Distributions (GPDs) and Transverse
 Momentum Distributions (TMDs)

・ロト ・ 理 ト ・ ヨ ト ・ ヨ ト

- New results on helicity distributions Δq and Δg
 - Full Flavor decomposition $\Delta u, \Delta d, \Delta s, \Delta \bar{u}, \Delta \bar{d}, \Delta \bar{s}$
 - $\Delta G \approx 0 \pm \frac{1}{2}$
- Nucleon Spin Puzzle still not solved
- New physics program at COMPASS(CERN), JLab, RHIC(BNL) to investigate
 Generalized Parton Distributions (GPDs) and Transverse
 Momentum Distributions (TMDs)

・ロト ・ 理 ト ・ ヨ ト ・ ヨ ト

- New results on helicity distributions Δq and Δg
 - Full Flavor decomposition $\Delta u, \Delta d, \Delta s, \Delta \bar{u}, \Delta \bar{d}, \Delta \bar{s}$
 - $\Delta G \approx 0 \pm \frac{1}{2}$
- Nucleon Spin Puzzle still not solved
- New physics program at COMPASS(CERN), JLab, RHIC(BNL) to investigate
 Generalized Parton Distributions (GPDs) and Transverse
 Momentum Distributions (TMDs)
- An **polarized electron nucleon collider** would offer high potential for polarisation measurements

・ロト ・ 四ト ・ ヨト ・ ヨト …

$\Delta \bar{u}$ and $\Delta \bar{d}$

for different curves shown in A_{LL}^W plot.

D. de Florian, W. Vogelsang arXiv 1003.4533

Э

◆□▶ ◆□▶ ◆□▶ ◆□▶ ●

Dependence of SIDIS results on FF

Motivation

Unpol. PDFs at $Q^2 = 10 \text{ GeV}^2$

