Possible future experiments on hadron structure at FAIR

Study of the proton structure with (polarized) interactions at FAIR

dr. Paolo Lenisa Università di Ferrara and INFN - ITALY

International Workshop XXIX on Gross Properties of Nuclei and Nuclear Excitation Hirshegg.18.01.11

- Polarized proton-antiproton interactions
- Polarized DIS
- Status of polarized antiprotons studies

- Polarized proton-antiproton interactions
- Polarized DIS
- Status of polarized antiprotons studies

Transversity with SIDIS

$$\mathbf{A}_{\mathrm{UT}}^{\sin(\phi+\phi_{\mathrm{S}})} \propto \delta q(x) \otimes H_1^{\perp q}(z)$$

New extraction (2008): close to most models

- Barone, Calarco, Drago PLB 390 287 (97)
- Soffer et al. PRD 65 (02)
- Ø Korotkov et al. EPJC 18 (01)
- Schweitzer et al. PRD 64 (01)
- Wakamatsu, PLB B653 (07)
- Pasquini et al., PRD 72 (05)
- Cloet, Bentz and Thomas PLB 659 (08)
 -) This analysis.

A. Prokudin, Ferrara 2008

Can we claimed to have measured transversity? Well ...

SIDIS and BELLE at different scales: $\langle Q^2 \rangle = 2.4 \text{ GeV}^2 \text{ vs } Q^2 = 110 \text{ GeV}^2$

Both azimuthal asymmtries involve TMDs beyond tree level

Anselmino et al. use: $H_1 \stackrel{\perp}{\longrightarrow} (z, k^2 \stackrel{}{_}) = D_1(z)F(z, k^2 \stackrel{}{_})$

Evolution is taken to be the one of $D_1(z)$

Modification of the k_{\perp} dependence is also important

Extraction from SIDIS remains a hard theoretical challenge New (possibly) direct measurements needed:

The "golden-gate" to transversity: h₁ from pˆ↑-p ↑ Drell-Yan

 $\sum_{q} e_q^2 \left[q(x_1) q(x_2) + \overline{q}(x_1) \overline{q}(x_2) \right]$

$$\frac{d^{2}\sigma}{dM^{2}dx_{F}} = \frac{4\pi\alpha^{2}}{9\frac{M^{2}s}{x_{1} + x_{2}}} \sum_{q} e_{q}^{2} \left[q(x_{1}) \overline{q}(x_{2}) + \overline{q}(x_{1}) q(x_{2}) \right]$$

$$\begin{cases} q = u, \overline{u}, d, \overline{d}, \dots \\ M \text{ invariant Mass} \\ \text{of lepton pair} \end{cases}$$

$$K_{F} = x_{1} - x_{2} \qquad x_{1}x_{2} = M^{2}/s \equiv \tau \qquad x_{F} = 2Q_{L}/\sqrt{s}$$

$$\begin{cases} A_{TT} = \frac{d\sigma^{\uparrow\uparrow} - d\sigma^{\uparrow\downarrow}}{d\sigma^{\uparrow\uparrow} + d\sigma^{\uparrow\downarrow}} = \hat{a}_{TT} \frac{\sum_{q} e_{q}^{2} \left[h_{1q}(x_{1}) h_{1q}(x_{2}) + h_{1\overline{q}}(x_{1}) h_{1\overline{q}}(x_{2}) \right]}{\sum_{q} e_{q}^{2} \left[q(x_{1}) \sigma(x_{1}) + \overline{\sigma}(x_{1}) \right]} \end{cases}$$

 $\mathrm{d}\sigma^{\uparrow\uparrow} + \mathrm{d}\sigma^{\uparrow\downarrow}$

A double polarized pbar-p collider for FAIR

Asymmetric (double-polarized)

proton (15 GeV/c) - antiproton (3.5 GeV/c) collider

$h_{1u} \operatorname{from} \overline{p} \uparrow -p \uparrow \operatorname{Drell-Yan} \operatorname{at} \operatorname{PAX}$ $A_{TT} = \frac{\mathrm{d}\sigma^{\uparrow\uparrow} - \mathrm{d}\sigma^{\uparrow\downarrow}}{\mathrm{d}\sigma^{\uparrow\uparrow} + \mathrm{d}\sigma^{\uparrow\downarrow}} = \hat{a}_{TT} \frac{\sum_{q} e_{q}^{2} \left[h_{1q}(x_{1}) h_{1q}(x_{2}) + h_{1\overline{q}}(x_{1}) h_{1\overline{q}}(x_{2}) \right]}{\sum_{q} e_{q}^{2} \left[q(x_{1}) q(x_{2}) + \overline{q}(x_{1}) \overline{q}(x_{2}) \right]}$

PAX Detector Concept

PAX Detector Concept

Kinematics for Drell-Yan process

 $\frac{d^{2}\sigma}{dM^{2}dx_{F}} = \frac{4\alpha^{2}\pi}{9M^{2}s(x_{1}+x_{2})} \cdot \sum_{q} e_{q}^{2} \left[q(x_{1},M^{2})_{I}(x_{2},M^{2}) + \overline{q}(x_{1},M^{2})_{I}(x_{2},M^{2}) \right] \cdot M^{2} = s x_{1}x_{2}$ $\cdot M^{2} = s x_{1}x_{2}$ $\cdot X_{F} = 2Q_{L}/\sqrt{s} = x_{1}-x_{2}$

Precision in h₁ measurement

1 year run -> 10 % precision on the h_1^u (x) in the valence region

Another option: DY from $p\uparrow -p\uparrow$

Asymmetries are estimated to be large at PAX energies -> access to $h_{1\overline{u}}(x)$

RHIC:
$$T=x_1x_2\sim 10^{-3} \rightarrow sea quarks$$
 $(A_{TT} \sim 0.01)$ JPARC/U70: $T=x_1x_2\sim 10^{-1} \rightarrow valence and sea$ $(A_{TT} \sim 0.1)$ PAX: $T=x_1x_2\sim 10^{-1} \rightarrow valence and sea$ $(A_{TT} \sim 0.1)$

DY events distribution ($p\uparrow\bar{p}\uparrow$, $p\uparrow p\uparrow$ and $\bar{p}\uparrow d\uparrow$)

 $M^2/s = x_1x_2 \sim 0.02 - 0.3$

At x₁=x₂ A_{TT} ~ h_{1u}² Direct measurement of h_{1u} for 0.05<x<0.5

Extraction of h_{1d}, h_{1q} for x<0.2

 $\bar{p}^{\uparrow}p^{\uparrow}$ Any combination of polarization possible: A_{LT}, A_{LL}

Sivers function from $\bar{p}\uparrow p$ or $\bar{p}p\uparrow$ Drell-Yan @PAX

Transversity @ PANDA?

Measurement of Transversity

	non-TMD	TMD
self-sufficient	$ \begin{array}{l} \bar{p}^{\uparrow} p^{\uparrow} \rightarrow \ell \bar{\ell} X \\ p^{\uparrow} p^{\uparrow} \rightarrow (high- p_T jet) X \end{array} \end{array} $	$\begin{array}{c} p \bar{p}^{\uparrow} \to \ell \bar{\ell} X \\ \bar{p} p^{\uparrow} \to \ell \bar{\ell} X \end{array}$
needs e^+e^-	$\begin{array}{l} p \ p^{\uparrow} \rightarrow \Lambda^{\uparrow} X \\ e \ p^{\uparrow} \rightarrow e' \ \Lambda^{\uparrow} X \\ p \ p^{\uparrow} \rightarrow (\pi^{+} \ \pi^{-}) X \\ e \ p^{\uparrow} \rightarrow e' \ (\pi^{+} \ \pi^{-}) X \end{array}$	$e p^{\uparrow} \rightarrow e' \pi X$

•There is only a single self-sufficient process with a single polarized beam •Single spin-asymmetry in $p\uparrow p$ or $pp\uparrow$ Drell-Yan A "window" to transversity: $pbar - p\uparrow \rightarrow l^+l^- X$

Only self-sufficient single spin-asymmetry (involves TMDs)

Unpolarized DY production cross-section

 $\begin{aligned} d\sigma^{DY} \propto \bar{h}_1^{\perp}(x_1, k_{T1}^2) \otimes h_1^{\perp}(x_2, k_{T2}^2) \cos 2\phi \\ \uparrow \text{ Boer-Mulders} \uparrow \end{aligned}$

 \rightarrow analogue of BELLE cos2 ϕ asymmetry

Single-polarized DY production cross-section

$$\begin{array}{c} d\sigma^{DY} \propto \bar{f}_{1}(x_{1}, k_{T1}^{2}) \otimes f_{1T}^{\perp}(x_{2}, k_{T2}^{2}) \sin(\phi - \phi_{S2}) + \\ \uparrow \text{ Sivers} \\ + \bar{h}_{1}^{\perp}(x_{1}, k_{T1}^{2}) \otimes h_{1}(x_{2}, k_{T2}^{2}) \sin(\phi + \phi_{S2}) + \\ \uparrow \text{ Boer-Mulders} \uparrow \text{ Transversity} \end{array} \rightarrow \text{analogue of SIDIS Collins asymmetry}$$

DY measurements @ PANDA

- antiproton momentum
 1.5 GeV/c
- Stochastic and electron cooling: Δp/p < 10⁻⁵
- Luminosity > 10³¹cm⁻²s⁻¹
- Hydrogen pellet or jet target, polarised Hydrogen under study
- Variety of nuclear targets

Kinematics and cross section

Use of region M<3 GeV/ c^2 mandatory

DY@PANDA: MC - Simulations I

A. Bianconi NIM A593, 562 (2008)

Unpolarized case:

$$\bar{\mathbf{p}} \mathbf{p} \rightarrow \mu^+ \mu^- \mathbf{X}$$

• Cos2 ϕ asymmetry (related to h_1^{\perp}) not negligible and measurable •Study of the dependence from q_T possible

DY@PANDA: MC - Simulations II

A. Bianconi, M. Radici Phys. Rev. D71, 074014 (2005)

Single-spin asymmetry:

 $\bar{\mathbf{p}} \mathbf{p} \uparrow \rightarrow \mu^+ \mu^- \mathbf{X}$

- Sin($\phi + \phi_s$) asymmetry (related to h_{1T}) not negligble and measurable •Study of the dependence from q_T possible
- Sin($\varphi \neg \varphi_{s})$ asymmetry (related to $f_{1T^{\perp}})$ very small
 - Weak q_T dependence

DY with e⁺/e⁻ @ PANDA? Pion-rejection

T _{p bar}	Q^2	θ _{CM}	θ _{lab}	p _{lab}	one π Misident. Probability	π+π-
(GeV)	(GeV/c) ²			(GeV/c)	ECAL×DIRC×dE/dx	Misident.
						Probability
1	54	20°	13°	2.2	0.001 × 0.5 ×0.05 = 2.5 10 ⁻⁵	0.1 10-9
1.	3.7	160°	132°	0.57	$0.033 \times 0.003 \times 0.03 = 3.0 \ 10^{-6}$	
		90°	54°	1.43	$0.001 \times 0.3 \times 0.03 = 9.10^{-6}$	0.1 10-9
		90°	54°	1.43	$0.001 \times 0.3 \times 0.03 = 9.10^{-6}$	
25	82	20°	10°	3.7	0.001 × 1, ×0.05 = 5, 10 ⁻⁵	0.3 10-9
2.5	0.2	160°	117°	0.7	$0.014 \times 0.014 \times 0.03 = 6.10^{-6}$	
		90°	41°	2.2	$0.001 \times 1. \times 0.03 = 3.10^{-5}$	0.9 10-9
		90°	41°	2.2	$0.001 \times 1. \times 0.03 = 3.10^{-5}$	
5	12.0	20°	7.4°	6.1	$0.001 \times 1. \times 0.1 = 10^{-4}$	0.6 10-9
5.	12.7	160°	102°	0.8	$0.014 \times 0.014 \times 0.03 = 6.10^{-6}$	
		90°	32°	3.4	$0.001 \times 1. \times 0.05 = 5.10^{-5}$	2.5 10-9
		90°	32°	3.4	$0.001 \times 1. \times 0.05 = 5.10^{-5}$	
10	223	20°	5.4°	10.9	$0.001 \times 1. \times 0.3 = 3.10^{-4}$	5.4 10-9
10.	22. 3	160°	85°	1.0	$0.005 \times 0.12 \times 0.03 = 1.8 \ 10^{-5}$	
		90°	24°	5.95	$0.001 \times 1. \times 0.1 = 1.10^{-4}$	10.10-9
		90°	24°	5.95	$0.001 \times 1. \times 0.1 = 1.10^{-4}$	

F. Maas Univ. of Mainz – GSI (D)

A polarized target in PANDA? A (very) difficult task!

Positioning:

- •Keep good PID for EM physics
- •No parasitic run possible

Technical issues:

- •Transport of polarized gas
- Compensation of solenoidal field
- •Pumping of polarized gas

Other options:

- •new detector with thoroidal field?
- •additional IP in HESR?
- •Asymmetric pbar-p collider

Proton Electromagnetic Form Factors

Space-like and Time-like regions

- FFs are analytical functions.
- One photon exchange: functions of $t = q^2 = -Q^2$.

 $\lim_{q^2 \to -\infty} F^{SL}(q^2) = \lim_{q^2 \to +\infty} F^{TL}(q^2)$ (Different from pQCD predictions)

Spin-physics at FAIR

Study of the Proton Electromagnetic Form-Factors

Additional and more precise measurements needed

Time-like form factor measurement @ PANDA

T _{p_bar} (GeV)	Q ² (GeV/c) ²	^Ө см	θ _{lab}	p _{lab} (GeV/c)	one π Misident. Probability ECAL×DIRC×dE/dx	π ⁺ π ⁻ Misident. Probability	
1	54	20°	13°	2.2	0.001 × 0.5 ×0.05 = 2.5 10 ⁻⁵	0.1 10-9	
1.	5.4	160°	132°	0.57	$0.033 \times 0.003 \times 0.03 = 3.0 \ 10^{-6}$		
		90°	54°	1.43	$0.001 \times 0.3 \times 0.03 = 9.10^{-6}$	0.1 10-9	
		90°	54°	1.43	$0.001 \times 0.3 \times 0.03 = 9.10^{-6}$		
25	82	20°	10°	3.7	0.001 × 1 , × 0.05 = 5 , 10 ⁻⁵	0.3 10-9	
2.5	0.2	160°	117°	0.7	$0.014 \times 0.014 \times 0.03 = 6.10^{-6}$		
		90°	41°	2.2	$0.001 \times 1. \times 0.03 = 3.10^{-5}$	0.9 10-9	
		90°	41°	2.2	$0.001 \times 1. \times 0.03 = 3.10^{-5}$		
5	12.0	20°	7.4°	6.1	$0.001 \times 1. \times 0.1 = 10^{-4}$	0.6 10-9	
5.	14.9	160°	102°	0.8	$0.014 \times 0.014 \times 0.03 = 6.10^{-6}$		
		90°	32°	3.4	$0.001 \times 1. \times 0.05 = 5.10^{-5}$	2.5 10-9	
		90°	32°	3.4	$0.001 \times 1. \times 0.05 = 5.10^{-5}$		
10	223	20°	5.4°	10.9	$0.001 \times 1. \times 0.3 = 3.10^{-4}$	5.4 10-9	
10.	22.5	160°	85°	1.0	$0.005 \times 0.12 \times 0.03 = 1.8 \ 10^{-5}$		
		90°	24°	5.95	0.001 × 1 . × 0.1 = 1 . 10 ⁻⁴	10.10-9	
		90°	24°	5.95	0.001 × 1 . × 0 . 1 = 1 . 10 ⁻⁴		le .

Expected count-rates and statistical projection

Measurement of G_E and G_M moduli @ PANDA

- Use of different angular dependence for G_F and G_M

Polarized antiprotons on fixed target

(PAX-Phase I)

EXPERIMENT: Fixed target experiment: polarized antiprotons protons in CSR (p>200 MeV/c) fixed polarized protons target

Double polarized pbar-p annihilation:

$$\begin{pmatrix} \frac{d\sigma}{d\Omega} \end{pmatrix}_{0} A_{xx} = \sin^{2}\theta \left(|G_{M}|^{2} + \frac{1}{\tau}|G_{E}|^{2} \right) \mathcal{N}, \\ \left(\frac{d\sigma}{d\Omega} \right)_{0} A_{yy} = -\sin^{2}\theta \left(|G_{M}|^{2} - \frac{1}{\tau}|G_{E}|^{2} \right) \mathcal{N},$$

$$\begin{pmatrix} \frac{d\sigma}{d\Omega} \end{pmatrix}_{0} A_{zz} = \left[(1 + \cos^{2}\theta) |G_{M}|^{2} - \frac{1}{\tau} \sin^{2}\theta |G_{E}|^{2} \right] \mathcal{N},$$

$$\begin{pmatrix} \frac{d\sigma}{d\Omega} \end{pmatrix}_{0} A_{zz} = \left(\frac{d\sigma}{d\Omega} \right)_{0} A_{zx} = \frac{1}{\sqrt{\tau}} \sin 2\theta ReG_{E}G_{M}^{*}\mathcal{N}.$$
E. Tomasi, F. Lacroix, C. Duterte, G.I. Gakh, EPJA 24, 419(2005)

- Most contain moduli G_E, G_M
 Independent G_E-G_M separation
 Test of Rosenbluth separation in the time-like region
- Access to G_E-G_M phase
 Very sensitive to different models (next transparencies)

Polarization and Models in T.L. Region

VDM : IJL Ext. VDM 'QCD inspired'

E. Tomasi, F. Lacroix, C. Duterte, G.I. Gakh, EPJA 24, 419(2005)

Single Spin Observables

$$\begin{aligned} \frac{d\sigma}{d\Omega}(P_y) &= \left(\frac{d\sigma}{d\Omega}\right)_0 [1 + \mathcal{A}P_y], \\ \mathcal{A} &= \frac{\sin 2\theta Im G_E^* G_M}{D\sqrt{\tau}}, \ D &= |G_M|^2 (1 + \cos^2 \theta) + \frac{1}{\sigma} |G_E|^2 \sin^2 \theta \\ \end{aligned}$$
A. Z. Dubnickova, S. Dubnicka, M.P. Rekalo Nuovo Cimento A109, 241 (1996)

Polarized proton-antiproton interactions

Polarized DIS

• Status of polarized antiprotons studies

Gluon polarization: present status

DGLAP evolution

Measurements

Need polarized collider to extend kinematic range (USA-projects)
Need more direct probes (ENC)

P.Lenisa

A double polarized e-p/d collider for FAIR

• L≈1(4)x10³² 1/cm²s

•√s > 10 GeV: 3.3 GeV e⁻ ⇔15 GeV p

Polarized e- (>80 %)
Polarized p/d (> 80 %)

transversal + longitudinal

Use PANDA detector

Performance and comparison

Energy and luminosity

Experiment	JLAB(12 GeV)	HERMES	ENC	COMPASS
s (GeV)²	23	50	180	300
L (cm ⁻² s ⁻¹)	≈10 ³⁸	≈10 ³¹	≈ 10 ³²	≈10 ³²

•Factor of merit

$$\delta \sigma \propto \frac{1}{P_{b}P_{t}f} \cdot \frac{1}{\sqrt{N}}$$

	Diluting ·	ratio	
	COMPASS*	ENC	
unpolarized	1	1	1
Single spin (Ptf)²	0.02	0.64	32
Double spin (P _b P _t f) ²	0.013	0.41	32
Rec. hadr. final state		\checkmark	
*NH3 target			

Measurement of ΔG : Photon-gluon fusion

•Golden channel: Charm production

- Theoretically very clean
- •Experimentally very challenging •(low statistics)

Double spin-asymmetries to access ΔG :

$$A^{raw} = \frac{N^{\uparrow\downarrow} - N^{\uparrow\uparrow}}{N^{\uparrow\downarrow} + N^{\uparrow\uparrow}} \propto \frac{\Delta G}{G}$$

ENC vs COMPASS

- COMPASS: only one of the D mesons reconstructed
 - $\rightarrow x_a$ cannot be reconstructed
- ENC: both D mesons reconstructed
 - \rightarrow Better access to x_q

 \rightarrow Measurement of $\Delta G/G$ (x_q) possible not only $\langle \Delta G/G \rangle x_q$

Other issues ...

- Deep Virtual Compton Scattering
 Orbital Angular Momentum
- Semi-inclusive DIS
 - Transversity and TMD
- •Spin dependence of fragmentation process

ENC and the others...

- Polarized proton-antiproton interactions
- Polarized DIS
- Status of polarized antiprotons studies

Production of polarization in a stored beam Two Methods: Loss versus spin flip

For an ensemble of spin $\frac{1}{2}$ particles with projections + (\uparrow) and - (\downarrow)

Spin-filtering at TSR: "FILTEX" - proof-of-principle

PAX submitted new proposal to find out how well does spin filtering work for antiprotons:

Measurement of the Spin-Dependence of the pp Interaction at the AD Ring

(CERN-SPSC-2009-012 / SPSC-P-337)

Spin-filtering studies at COSY

Main purpose:

1. Commissioning of the experimental setup for AD

2. Quantitative understanding of the machine parameters

Phases of COSY installation:

1.	July 2009:	Installation of quadrupole magnets (\checkmark)	
----	------------	---	--

- 2. July 2010: Installation of rest of equipment (✓)
- 3. October 2010: Commissioning of equipment (\checkmark)
- 4. September 2011 Spin-filtering studies

Experimental setup at COSY (commissioning Oct. 2010)

- Low-ß section
- Atomic Beam Source
- Breit-Rabi polarimeter
- Openable storage cell

Commissioning I: Beam lifetime optimization

High beam lifetimes require:

- optimized closed orbit
- low residual gas in machine
- optimized electron cooler setup

In case intra-beam scattering poses a limitation, increase of beam emittance should increase lifetime!

Recent result: Increase of beam emittance achieved by tilting of electron <u>cooler beam</u>

Commissioning II: Acceptance measurement

In an ideal machine Single-Coulomb scattering at the target dominates beam loss

Polarization build-up at COSY:projections

PAX at the CERN-AD (spin filtering with antiprotons)

Expected polarizations after filtering for two lifetimes

New calculation of expected polarizations

Conclusions

- e-p collider: 3rd generation polarized DIS experiment
 - Systematic studies towards the (still unsolved) proton-spin puzzle
 - Complementary to USA projects
- Appealing perspectives for pbar-p single-spin asymmetries
 - Polarized target in PANDA?
 - Asymmetric collider (pbar-p↑,d↑)
- Double polarized pbar-p: worldwide unique facility
 - Asymmetric collider (pbar↑-p↑,d↑)
 - Polarized pbar studies under way

Polarization is missing tool that will be an added value to FAIR!

P.Lenisa

Beyond Collinear Approximation: Transverse Momentum Dependent DFs

LO quark distribution functions

Only f_1 and g_1 measurable in inclusive DIS, all others in SIDIS

 $D_1 \equiv D_q^h =$, normal' FF, $H_1^{\perp} =$ spin-dependent Collins FF

P.Lenisa

Spin-physics at FAIR

Experimental tools for spin-physics

Higher energy p-p machine

Cross-section

Asymmetry

Main phases of installation at AD

Background to Drell-Yan e⁺e⁻

Background 1:1 to signal after PID, E>300 MeV, conversion veto, mass cut * the combinatorial component can be subtracted (wrong-sign control sample) * the charm can be reduced (vertex decay)

Theoretical models

Spacelike

Timelike

