Mo	tiν	at	io	n

Effective field theories

Vectors

Pseudoscalars

Summary 000000

The dynamics of light vector mesons

Stefan Leupold

(collaborators: Carla Terschlüsen, Matthias Lutz)

Hirschegg 2011, Kleinwalsertal, Austria, January 2011

Motivation	Effective field theories	Vectors	Pseudoscalars 00000	Summary 000000
Table of	Contente			

- 2 Effective field theories
- 8 Results for vector-meson decays
 - Two-body decays fixing parameters
 - Three-body decays predictions
- 4 Outlook to pseudoscalar decays

5 Summary

1

ヘロト ヘポト ヘヨト ヘヨト

•0	00000000	00000000	00000	000000
Why vec	tor mesons?			

- second-lightest degrees of freedom after pseudoscalars,
- \hookrightarrow important for low-energy processes
 - mediators between hadrons and electromagnetism

・ロット (雪) (日) (日)

	00000	000000
Motivation Effective field theories Vectors •0 00000000 00000000	ooooo	oooooo

- second-lightest degrees of freedom after pseudoscalars,
- → important for low-energy processes
 - mediators between hadrons and electromagnetism
- - electromagnetic interaction serves as diagnostic probe for hadron properties (dilepton production in heavy-ion collisions, proton structure, ...)
 - hadronic contributions cause background for physics beyond standard model (anomalous magnetic moment of muon, ...)

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ < つ < □

Vector-meson dominance (VMD)

VMD works very well for pion form factor

e.g., Klingl/Kaiser/Weise, Z. Phys. A356, 193 (1996)

Vector-meson dominance (VMD)

VMD works very well for pion form factor (Sakurai, ...) $e^+e^- \rightarrow \pi^+\pi^-$: 50.0 present -- VMD Barkov 85 40.0 $F_{\pi}|^2$ a = 6.05 g. = 4.93 30.0 20.0 68 0.73 0.78 √q² [GeV] e.g., Klingl/Kaiser/Weise, Z. Phys. A356, 193 (1996) VMD dramatically fails for omega form factor $\omega \rightarrow \mu^+ \mu^- \pi^0$:

Motivation 00	Effective field theories	Vectors 0000000	Pseudoscalars	Summary 000000
Effective fie	eld theory for ve	ctor mesoi	ns	

- develop effective field theory for vector mesons
- apply it to form factors and other quantities

questions:

- why?
- how?
- does it work?

Motivation	Effective field theories	Vectors	Pseudoscalars	Summary
00		0000000	00000	000000
Effective field	eld theory for ve	ector meso	ons	

- develop effective field theory for vector mesons
- apply it to form factors and other quantities

questions:

- why? ~> next slides
- how?
- o does it work?

< ロ > < 回 > < 回 > < 回 > < 回 > < 三 > < 三 >

Motivation 00	Effective field theories	Vectors	Pseudoscalars	Summary 000000
Effective fi	eld theory for	vector mes	ons	

- develop effective field theory for vector mesons
- apply it to form factors and other quantities

questions:

- why? ~ next slides
- how? ~> only briefly discussed here
- does it work?

(日) (字) (日) (日) (日)

Motivation	Effective field theories	Vectors	Pseudoscalars	Summary
00		00000000	00000	000000
Effective field	eld theory for v	ector mes	sons	

- develop effective field theory for vector mesons
- apply it to form factors and other quantities

questions:

- why? ~ next slides
- how? ~> only briefly discussed here
- does it work? ~ results

・ロト ・ 同ト ・ ヨト ・ ヨト

 definition: form factor parametrizes deviation from structureless decay; normalized to photon point (*M* = 0)

 experiments show strong deviation from simple vector-meson dominance

$$F(M^2)=rac{m_
ho^2}{m_
ho^2-M^2}$$

Effective field theories ve	modolo		
Motivation Effective field theories oo oo	Vectors	Pseudoscalars	Summary
	00000000	00000	000000

- example: transition form factor
- a model, e.g., vector-meson dominance model (VMD):

$$F(q^2) = \frac{m^2}{m^2 - q^2}$$

with

- m: mass of intermediate vector meson
- q: invariant mass of dilepton pair
- \hookrightarrow good: predictive power (no free parameters)
- \hookrightarrow bad: no systematic improvement possible

・ロト ・ 同ト ・ ヨト ・ ヨ

Effective field theories vs	models		
Motivation Effective field theories	Vectors	Pseudoscalars	Summary
	0000000	00000	000000

• a model, e.g., vector-meson dominance model (VMD):

$$\mathsf{F}(q^2) = \frac{m^2}{m^2 - q^2}$$

most general field theory

(with vector mesons as active degrees of freedom):

$$F(q^2) = \frac{c_0 m^2}{m^2 - q^2} + (1 - c_0) + c_1 \frac{q^2}{m^2} + c_2 \frac{q^4}{m^4} + \dots$$

 \hookrightarrow (some) parameters c_i might be related to other processes \hookrightarrow bad: infinitely many parameters \rightsquigarrow no predictive power

・ロト・日本・日本・日本・ 日本

Effective	field theories vs	models		
Motivation	Effective field theories	Vectors 00000000	Pseudoscalars 00000	Summary 000000

• a model, e.g., vector-meson dominance model (VMD):

$$F(q^2) = \frac{m^2}{m^2 - q^2}$$

• most general field theory:

$$F(q^2) = \frac{c_0 m^2}{m^2 - q^2} + (1 - c_0) + c_1 \frac{q^2}{m^2} + c_2 \frac{q^4}{m^4} + \dots$$

- effective field theory with power counting:
- Same general formula, but assignment of importance to parameters *c_i*, e.g., *c*₀, *c*₂ ~ *o*(1), *c*₁ ~ *o*(*m*²/Λ²), ... with breakdown scale Λ (where new physics, new degrees of freedom enter)
- \hookrightarrow relevant parameters c_i might be related to other processes
- \hookrightarrow good: predictive power, systematic improvement possible

Motivation	Effective field theories	Vectors	Pseudoscalars	Summary
00		00000000	00000	000000
Effective field	eld theories for h	adrons		

well established: chiral perturbation theory (χ PT)

- relevant degrees of freedom: light pseudoscalars
 = Goldstone bosons of broken chiral symmetry
- Goldstone-boson masses and momenta treated as small
- large scale = breakdown scale: masses of (not excited) other hadrons

now: extend energy region to include also vector mesons

- small scale Q ~ momenta and masses of light pseudoscalar and vector mesons
- N.B. vector mesons represented by antisymmetric tensor fields

Motivation	Effective field theories	Vectors 00000000	Pseudoscalars	Summary 000000
Inclusio	n of vector meso	ons		

aim: develop effective field theory including Goldstone bosons

$$\Phi = \begin{pmatrix} \pi^0 + \frac{1}{\sqrt{3}}\eta & \sqrt{2}\pi^+ & \sqrt{2}K^+ \\ \sqrt{2}\pi^- & -\pi^0 + \frac{1}{\sqrt{3}}\eta & \sqrt{2}K^0 \\ \sqrt{2}K^- & \sqrt{2}\overline{K}^0 & -\frac{2}{\sqrt{3}}\eta \end{pmatrix}$$

and vector mesons

$$\mathbf{V}_{\mu\nu} = \begin{pmatrix} \rho^{0} + \omega & \sqrt{2} \rho^{+} & \sqrt{2} K^{*+} \\ \sqrt{2} \rho^{-} & -\rho^{0} + \omega & \sqrt{2} K^{*0} \\ \sqrt{2} K^{*-} & \sqrt{2} \bar{K}^{*0} & \sqrt{2} \phi \end{pmatrix}_{\mu\nu}$$

N.B.: need assumptions, not as straightforward as pure χ PT

(日)

Motivation	Effective field theories	Vectors 0000000	Pseudoscalars 00000	Summary 000000	
Effective field theory for vector mesons					

- power counting suggested in Lutz/Leupold, Nucl. Phys. A 813, 96 (2008)
- further explored in leading order (so far): Leupold/Lutz, E. P. J. A 39, 205 (2009); Terschlüsen/Leupold, Phys. Lett. B691, 191 (2010)
- in the following: mainly results
- note: validity as effective field theory (EFT) not shown yet (instead of phenomenologically successful tree-level model)
- \hookrightarrow convergence?, breakdown scale?
- \hookrightarrow requires calculations beyond leading order

・ロット (雪)・ (日)・ (日)・

Motivation	Effective field theories	Vectors ●○○○○○○○	Pseudoscalars	Summary
•				

Some applications of the new counting scheme

- two-body decays of vector mesons in leading order
- \hookrightarrow fixing parameters and qualitative checks
 - three-body decays of vector mesons in leading order
- \hookrightarrow for cases with no new parameters \rightsquigarrow predictions

Lutz/Leupold, Nucl. Phys. A 813, 96 (2008); Leupold/Lutz, E. P. J. A 39, 205 (2009); Terschlüsen/Leupold, Phys. Lett. B691, 191 (2010)

・ロト ・ 同ト ・ ヨト ・ ヨ

Motivation	Effective field theories	Vectors	Pseudoscalars	Summary
00		○●○○○○○○	00000	000000
Fixing para	ameters			

decay of vector into two pseudoscalars in leading order

•
$$\mathcal{L}_{VPP} \sim h_P V_{\mu\nu} [\partial^{\mu} \Phi, \partial^{\nu} \Phi] \sim o(Q^2)$$

$$\hookrightarrow$$
 h_P from $\rho \rightarrow 2\pi, \, K^* \rightarrow K + \pi, \, \phi \rightarrow K + \bar{K}$

decay of vector into dilepton in leading order

•
$$\mathcal{L}_{V\gamma} \sim e_V V_{\mu
u} F^{\mu
u} \sim o(Q^2)$$

$$\hookrightarrow \boldsymbol{e_V} \text{ from } \rho, \, \omega, \, \phi \to l^+ l^- \ (l = \mu, \, \boldsymbol{e})$$

decay of vector into pseudoscalar + photon in leading order

•
$$\mathcal{L}_{VVP,1} \sim h_{A} \epsilon_{\mu\nu\alpha\beta} \{ V^{\mu\nu}, \partial_{\lambda} V^{\lambda\alpha} \} \partial^{\beta} \Phi \sim o(Q^{2});$$

 $\mathcal{L}_{VVP,2} \sim b_{A} \epsilon_{\mu\nu\alpha\beta} V^{\mu\nu} V^{\alpha\beta} [\Phi, \mathcal{M}_{q}] \sim o(Q^{2})$

 $\hookrightarrow \ \mathbf{h_{A}}, \ \mathbf{b_{A}} \text{ from } \rho/\omega \to \pi/\eta + \gamma, \ \mathbf{K^{*}} \to \mathbf{K} + \gamma, \ \phi \to \eta + \gamma$

Motivation	Effective field theories	Vectors 00e00000	Pseudoscalars	Summary 000000
Three-b	odv decavs I			

decays of ω meson

- same vertex appears in both processes $\omega \rightarrow \gamma \pi$ and $\omega \rightarrow 3\pi$ in leading order
- use first process to fix coupling of second one

→ prediction:
$$Γ_{ω \to 3\pi} = 7.3$$
 MeV
 $Γ_{ω \to 3\pi}^{exp} = (7.57 \pm 0.13)$ MeV
S.L./Lutz, E. P. J. A 39, 205 (2009)

Motivation	Effective field theories	Vectors ○○○●○○○○	Pseudoscalars	Summary 000000
Three-h	odv decavs II			

predictions for
$$K^* \rightarrow K \pi \pi$$

• e.g. $K^{*+} \rightarrow K^+ \pi^+ \pi^-$

$$\mathcal{B}_{K^{*+}\to\pi^{+}\pi^{-}K^{+}}=2.7\cdot10^{-2}$$

experimental constraint: $\mathcal{B} < 7 \cdot 10^{-4}$

deviations from pure phase space

(日)

-2

 Motivation
 Effective field theories
 Vectors
 Pseudoscalars
 Summary

 00
 0000000
 0000000
 00000
 000000

Transition form factor of omega meson

• experiments show strong deviation from simple vector-meson dominance

$$F(q^2) = \frac{m^2}{m^2 - q^2}$$

Phys. Lett. B 677, 260 (2009)

イロト イポト イヨト イヨト

Transition form factor of omega meson — theory

standard vector-meson dominance model (VMD):

$$F(q^2) = \frac{m^2}{m^2 - q^2}$$

• most general field theory:

$$F(q^2) = \frac{c_0 m^2}{m^2 - q^2} + (1 - c_0) + c_1 \frac{q^2}{m^2} + c_2 \frac{q^4}{m^4} + \dots$$

- our approach:
 - no free parameters (all fixed from real photon)
 - only c₀ leading order
 - all other *c_i* subleading
 - numerically: $c_0 \approx 2$

$$F(q^2) pprox rac{m^2+q^2}{m^2-q^2}$$

Transition form factors — omega to pion

C. Terschlüsen, S.L., Phys. Lett. B691, 191 (2010)

NA60: dimuons, planned: WASA with dielectrons

3

(日)

C. Terschlüsen, S.L., Phys. Lett. B691, 191 (2010)

• upcoming: ϕ data by KLOE

・ロト ・ 同ト ・ ヨト ・ ヨ

Motivation	Effective field theories	Vectors 00000000	Pseudoscalars ●0000	Summary 000000
~	and the second			

Cross relation to pseudoscalar Dalitz decay

turning some in- and outgoing states around ...

- here experiments show agreement with vector-meson dominance → next slide
- important for muon's anomalous magnetic moment (light-by-light scattering)

(日)

VMD fails for omega but works for eta form factor

NA60, Phys. Lett. B 677, 260 (2009)

3

・ロット (雪) (日) (日)

Importance of vector mesons for η decays?

- study Dalitz decay $\eta \rightarrow \gamma I^+ I^-$
- pure χPT: leading-order contribution from Wess-Zumino-Witten term

 $\rightsquigarrow f^{WZW}$

 EFT with vector mesons: leading-order contribution fixed by vector-meson decays

 $\rightsquigarrow f^{\text{vec}}$

 → study ratio as function of dilepton mass → fig.

・ロト ・ 理 ト ・ ヨ ト ・ ヨ

vectors important at "high" invariant masses

Motivation	Effective field theories	Vectors	Pseudoscalars	Summary
			00000	

Form factor of the η meson

PRELIMINARY

• our approach:

leading-order term from vector-meson EFT plus leading-order term from pure χ PT (Wess-Zumino-Witten)

 inclusion of η-η' mixing important

PRELIMINARY

PRELIMINARY

• peaks of ρ and ω visible in form factor of η'

PRELIMINARY

・ロット (雪) (日) (日)

э

Motivation	Effective field theories	Vectors 00000000	Pseudoscalars 00000	Summary •ooooo
Summary and outlook				

- suggested new counting scheme for theory of pseudoscalar and vector mesons
- good understanding of vector-meson decays
- systematic inclusion of η' currently investigated

effective-field-theory program (=outlook):

- phenomenological consequences (leading-order calculations as first step):
 - other vector-meson decays
 - influence of vector mesons on decays of pseudoscalars
 - hadronic information in e^+e^- reactions and au decays
 - quark-mass dependence of masses of pseudoscalar and vector mesons (connection to lattice QCD)
- calculations at next-to-leading order: ---- next slide

Motivation	Effective field theories	Vectors 00000000	Pseudoscalars	Summary 000000
=	AL 1.1.1			

Effective-field-theory program

phenomenological consequences (leading order)

- calculations at next-to-leading order:
 - show that power counting works
 - pin down breakdown scale

estimates for breakdown scale (from pure χ PT):

- vector-meson mass?
- \hookrightarrow no! (vector mesons explicitly included)
 - maybe at $(4\pi f_{\pi}) \approx 1 \text{ GeV} \rightsquigarrow$ convergence would be poor
- \hookrightarrow might rather signal importance of unitarity
 - expect it at masses of excited (= not included) states
- $\,\,\hookrightarrow\,\,m_{\pi'}pprox$ 1.3 GeV, $m_{
 ho'}pprox$ 1.5 GeV

(日) (字) (日) (日) (日)

Motivation	Effective field theories	Vectors	Pseudoscalars	Summary
				000000

Backup slides

Jegerlehner/Nyffeler, Phys. Rept. 477, 1 (2009)

-2

・ロト ・ 理 ト ・ ヨ ト ・ ヨ ト

Motivation	Effective field theories	Vectors 0000000	Pseudoscalars	Summary 00000
Muon's c	7 – 2			

Largest uncertainty of standard model: hadronic contributions

(a)