Strangeness Production

RA

Strangeness Production - Why?

u,d quarks light

dynamics described by low energy EFTs (ChPT)

c, b, t quarks heavy

non-relativistic potential theories (HQET)

s quarks are neither light nor heavy (or both)

baryon spectroscopy: missing resonances

Strangeness Production - What?

123

• $\gamma p \rightarrow K^+ Y^{(*)}$

• pp \rightarrow p K+ Y^(*)

• $\overline{p}p \longrightarrow \overline{Y}^{(*)} Y^{(*)}$

Y means Λ , Σ^0 , and Y^{*} mostly means $\Lambda(1405)$...

UPPSALA UNIVERSITET

Missing Resonances

S.Capstick, W.Roberts, PRD 58 (98) 074011

Photoproduction of 0⁻ Mesons

R.Schumacher, MENU 2010

- Photoproduction described by 4 complex amplitudes
- Bilinear combinations define 16 observables
- 8 measurements needed to separate amplitudes at any given energy
 W.T.Chiang, F.Tabakin, PRC 55 (1997) 2054
 - differential cross section: $d\sigma/d\Omega$
 - 3 single polarization observables: P, T, Σ
 - ◆ 4 double polarization observables

Complete measurements essential to fully define the reaction amplitude

$\gamma p \rightarrow K^+ \Lambda$ Cross Sections

R. Bradford et al. Phys. Rev. C73 035202 (2006)

K. H. Glander et al. Eur. Phys. J. A19 251 (2004)

R.Schumacher, MENU 2010

- Two-bump structure seen
- Resonance-like structure at 1.9 GeV:
 - D₁₃ (Bennhold & Mart)^a
 - P₁₃ (Bonn-Gachina)^b
 - P₁₁ (Ghent "RPR" model)^c
 - KKN bound state (Valencia model)^d
 - Coupled-channel effects (Giessen)^e

a) T, Mart, C. Bennhold, Phys Rev C 61, 012201(R) (1999).

- b) V. Nikanov et al, Phys Lett B 662, 245 (2008).
- c) T. Corthals, et al., PRC 73, 045207 (2006).
- d) A. MartinezTorres, et al., Eur. Phys J. A 41, 361 (2009).
- e) R. Shyam, JO.Scholten & H.Lenske, PRC 81, 015204 (2010). 8

$\gamma p \rightarrow K^+\Lambda$: CLAS'05, CLAS'09 and SAPHIR

- CLAS 'g11' data: broader energy range, better statistics, good agreement with 'g1c' (Bradford et al.)
 - Different data set, different trigger, different analysis chain
 - M. McCracken et al. Phys. Rev. C 81, 025201 (2010).
 - PWA analysis underway

$\gamma p \rightarrow K^+ \Lambda$: Data and Models

M.McCracken et al., PRC 81 (10) 025201

- Kaon-MAID model (green)
 - F.X.Lee et al., Nucl.
 Phys. A695, 237 (2001).
 - Single-channel BW resonance fits
 - No longer up-to-date
 - Bonn-Gachina model (blue)
 - A.V. Sarantsev et al., Eur. Phys. J., A 25, 441 (2005).
 - Multi-channel, unitary, BW resonance fit
 - Large suite of N* contributions
 - Was not predictive for recoil polarization

Λ, Σ^0 Recoil Polarisation

R.Schumacher, MENU 2010

B.Dey et al., PRC 82 (10) 025202

- naïve SU(6) expectation: $\mathbf{P}_{\Lambda} \approx -\mathbf{P}_{\Sigma}$
- True in forward direction
- False in backward direction

Low-Mass S = -1 Hyperons

R.Schumacher, MENU 2010

Spectroscopy of cryptoexotic states: $\Lambda(1405)$

QMs: isospin singlet, excited state, but: mass difficult to reproduce

N.Isgur, G.Karl, PRD 18 (78) 4187 U.Löring, B.C.Metsch, H.R.Petry, EPJA 10 (01) 395

KN bound state

R.C.Arnold, J.J.Sakurai, PR 128 (62) 2808 N.Kaiser, P.B.Siegel, W.Weise, NPA 594 (95) 325

Chiral EFTs:

two pole structure close to $\Lambda(1405)$ different coupling to $\overline{K}N$, $\Sigma\pi$ different mass distributions in hadron and γ induced reactions D.Jido, NPA 725 (03) 181

experimental difficulty:

separation of $\Lambda(1405)$ and $\Sigma(1385)$

(early) K+ missing mass analysis CLAS

Goal: resonance line shape with high statistics, angular distributions

Chiral Unitary Model: $\gamma p \rightarrow K^+\Lambda(1405)$

$$\frac{d\sigma(\pi^*\Sigma^-)}{dM_I} \propto \frac{1}{2} |T^{(1)}|^2 + \frac{1}{3} |T^{(0)}|^2 + \frac{2}{\sqrt{6}} \operatorname{Re}(T^{(0)}T^{(1)*}) + O(T^{(2)})$$
$$\frac{d\sigma(\pi^-\Sigma^+)}{dM_I} \propto \frac{1}{2} |T^{(1)}|^2 + \frac{1}{3} |T^{(0)}|^2 - \frac{2}{\sqrt{6}} \operatorname{Re}(T^{(0)}T^{(1)*}) + O(T^{(2)})$$
$$\frac{d\sigma(\pi^0\Sigma^0)}{dM_I} \propto \frac{1}{3} |T^{(0)}|^2 + O(T^{(2)})$$

J.C.Nacher, E.Oset, H.Toki, A.Ramos, PLB 455 (99) 55

$\Lambda(1405)$ lineshape depends on $\Sigma\pi$ decay mode

 $\Sigma^{-}\pi^{+}$ peaks at highest mass, higher than $\Sigma^{+}\pi^{-}$

Interference between I = 0,1 amplitudes modifies mass distribution

$\gamma p \rightarrow K^+\Lambda(1405)$ with CLAS

K.Moriya, R.Schumacher, Hadron 2009

different $\Lambda(1405)$ lineshape for different decay mode direct spin-parity measurement: $J^P = \frac{1}{2}$

 $\Sigma^+\pi^-$ peaks at highest mass, higher than $\Sigma^-\pi^+$, **opposite to chiral unitary model prediction (not yet understood)**

CLAS future prospects

R.Schumacher, MENU 2010

CLAS "g13" data set – analysis in progress

deuteron target $\gamma n(p) \rightarrow K^0 \{\Lambda, \Sigma^0\}(p)$ neutron cross sections, spin observables

• **FroST** polarized target polarized photon beams $\rightarrow \vec{y} \vec{p}$ complete experiments data taken Mar-Jul 2010

• CLAS 12

LEPS2 Project at SPring-8

T.Nakano, Chiral10

Open Strangeness Detection at MAMI: KAOS

P.Achenbach

Kinematics of Strangeness Electroproduction

Elementary cross section

- M. Sumihama *et al. (LEPS), Phys. Rev. C* 73, 035214 (2006) \rightarrow strong longitudinal contributions
- K. H. Althoff *et al., Nucl. Phys. B* 137, 269 (1978) M. Q. Tran *et al. (SAPHIR), Phys. Lett. B* 445, 20 (1998)]

P.Achenbach

$pp \rightarrow pK^+Y \ 11 \ years \ ago...$

MW, Hirschegg 2000

and pp \rightarrow pK⁺Y today...

 Σ^0 excitation function described by phase space behaviour Λ excitation function deviates from phase space behaviour

$\mathsf{R}_{\Lambda/\Sigma} = \sigma(\mathsf{p}\mathsf{K}^+\Lambda) / \sigma(\mathsf{p}\mathsf{K}^+\Sigma^0)$

Energy region of enhanced Λ over Σ^0 production ends slightly above 200 MeV excess energy

$pp \rightarrow pK^+\Lambda/\Sigma^0$ reaction mechanism

Model contents describing total cross section data and Λ/Σ^0 ratio:

- production via established nucleon resonances
- coherent interplay of resonances and final state interaction
- N(1535) without any FSI
- destructive interference of π and K exchange
- constituent quark-gluon model with resonances

Differential observables needed to constrain reaction mechanism

S. Abd El-Samad et al. (COSY-TOF Collaboration), PLB 688 (2010) 142

ISOBAR model, A. Sibirtsev: different N^{*} resonances, final state interaction

A.Sibirtsev, J.Haidenbauer, H.-W.Hammer, S.Krewald, EPJA 27 (2006) 269

 A_R = relativistic BW amplitudes of three N^{*} resonances considered

 $\sum_{R} C_{R} + C_{N} = 1$

leading mechanism: N^{*} resonance excitation at $\varepsilon \approx 200$ MeV: N(1650)S₁₁ dominant, comparable to N(1710)P₁₁ + N(1720)P₁₃ at $\varepsilon \approx 300$ MeV pA–FSI mandatory for appropriate description nonresonant contribution small

separation of N(1710)P₁₁ and N(1720)P₁₃ with **polarised beam** (program started 2010)

additional tool: **Partial Wave Analysis** as for γp (A.V.Sarantsev, V.A.Nikonov, A.V.Anisovich, E.Klempt, U.Thoma, EPJA 25 (05) 441)

$pp \rightarrow pK^+\Lambda/\Sigma^0$ angular distributions

A: L=0 and L=1 resonances likely: S_{11} , P_{11} , P_{13}

Σ⁰: intermediate resonances only occur with L=0 for p-N^{*} or p-Δ^{*} L in entrance or exit channel or total L must be 0! Resonance contribution only likely from N(1650)S₁₁, Δ (1900)S₃₁ M. Abdel-Bary et al., EPJA 46 (2010) 27

$pp \rightarrow pK^+\Lambda/\Sigma^0$ angular distributions

Λ: only small (L=0) contribution from K-exchange possible
 Σ⁰: L=1 for p-K⁺ subsystem strongly indicates significance of kaon exchange

M. Abdel-Bary et al., EPJA 46 (2010) 27

Production mechanisms for Λ and Σ^0 differ decisively!

$pp \rightarrow Y\overline{Y}$ total cross sections

spin of the Λ/Λ is primarily carried by the s/s quark

$\overline{p}p \rightarrow \Lambda\Lambda$

spin of the $\overline{\Lambda}/\Lambda$ is primarily carried by the \overline{s}/s quark

spin observables in $pp \rightarrow \Lambda\Lambda$ give access to spin degreees of freedom in the ss creation process

Spin observables $\overline{p}p \rightarrow \Lambda\Lambda$

Polarisation

Spin Correlations

interference between different amplitudes

Singlet Fraction $F_s pp \rightarrow \Lambda \Lambda$

 $\implies \Lambda\Lambda \text{ pairs produced in triplet state!}$ $\implies \text{Triplet state reflects the ss production process}$

$\overline{p}p \rightarrow \Lambda\Lambda$ production dynamics

 $D_{nn} > 0$

Including K_2^* allows for a $\Delta \ell = 2$ transition (spin flip) triplet $\overline{\Lambda}\Lambda$ spin

 $D_{nn} < 0$

$\overline{p}p \rightarrow \Lambda\Lambda$ production dynamics

M.A. Alberg, J.R. Ellis, D. Kharzeev, PLB 356 (1995) 113

$pp \rightarrow \Lambda \overline{\Lambda}$ depolarisation

 \rightarrow No transverse spin transfer from p to Λ !

$pp \rightarrow \Lambda \overline{\Lambda}$ polarisation transfer

Spin transfer from target p to Λ ! $\Lambda \overline{\Lambda}$ triplet state \longleftrightarrow $D_{nn} = K_{nn}$?

$pp \rightarrow \Lambda\Lambda$ polarisation transfer

high statistical weight at forward angles \rightarrow average FS ≈ 0

both depolarisation and polarisation transfer are so far not understood

Spectroscopy of cryptoexotic states: $\Lambda(1405)$

$$pp \rightarrow pK^{+}Y^{*} \quad pp \rightarrow \overline{Y}^{*}\Lambda (Y^{*}\Lambda)$$

separation of $\Lambda(1405)$ and $\Sigma(1385)$

by detection of ...

- ...K⁺ and/or $\Lambda \rightarrow p\pi^-$ (strangeness tag) and
- $(p\pi^{-})\pi^{0}$ 2 γ for $\Sigma(1385)$
- $(p\pi^{-})\pi^{0}\gamma$ 3 γ for $\Lambda(1405)$

requires a detector with ...

- (almost) full angular coverage
- detection of neutral and charged particles
- capability to run at high luminosity

Scan of $\overline{pp} \rightarrow \Lambda(1405)\Lambda$ over $pK^-\Lambda$ threshold $\overline{pp} \rightarrow \overline{\Lambda}(1405)\Lambda$ over $\overline{pK^+\Lambda}$ threshold

Strangeness 2 and 3 with

 $pp \rightarrow \Xi = \alpha(\Xi^0) = -0.41$ polarisation, singlet fraction How is the $qqqq \rightarrow ssss$ creation reflected in spin observables? $pp \rightarrow \overline{\Omega}\Omega \quad \alpha(\Omega^-) = -0.03$ differential cross section, spin observables difficult

And Charm? (not part of this talk)

Hyperon	Quarks	Mass	cτ [cm]	α	Decay	B.R.
0.193070		$[Mev/c^2]$	070 D		channel	[%]
Λ	uds	1116	8.0	+0.64	рπ-	64
Σ^+	uus	1189	2.4	-0.98	pл°	52
Σ^0	uds	1193	2.2x10 ⁻⁹	-	Δγ	100
Σ^{-}	dds	1197	2.4	-0.07	nπ ⁻	100
Ξ^{0}	uss	1315	8.7	-0.41	$\Lambda \pi^0$	99
Ξ^-	dss	1321	4.9	-0.46	$\Lambda\pi^{-}$	100
Ω-	SSS	1672	2.5	-0.03	ΛК-	68
Λ_{c}^{*}	ude	2285	6.0 x 10 ⁻³	98(19)	$\Lambda\pi^+$	1
Σ_c^{**}	uuc	2453			$\Lambda_c^+ \pi^+$	100
Σ_c^+	ude	2455	1		$\Lambda_c^+ \pi^0$	100
Σ_c^0	dde	2452	÷.,		$\Lambda_c^+ \pi^-$	100
Ξ_c^+	usc	2466	1.3x10 ⁻²			
Ξ_c^0	dsc	2472	2.9 x 10 ⁻³	-0.6(4)	$\Xi^{-}\pi^{+}$	seen
Ω^{0}	ssc	2697	1.9x10 ⁻³			

$$\overline{p}p \rightarrow \overline{\Lambda}_{c}^{+} \Lambda_{c}^{+}$$

$$\downarrow \alpha_{\Lambda c}^{+} = -0.98 \pm 0.19$$

$$\Lambda \pi^{+}$$

$$\downarrow \alpha_{\Lambda} = 0.64$$

$$p\pi^{-}$$

How does the $uu \rightarrow cc$ process compare to $uu \rightarrow ss$?

"Applied" Strangeness Production

Angular distribution asymmetry:

$$A = \frac{\overline{\alpha} + \alpha}{\overline{\alpha} - \alpha}$$

A = 0 if CP is conserved

 α = weak decay asymmetry

Observation of CP violation in hyperon decay would be first observation of CP violation in baryon sector

Best experimental limit: $A_{\Lambda\Lambda} = 0.006 \pm 0.014$

CP violation in hyperon decays

Angular distribution asymmetries

HyperCP statistics (expected): $\sigma(A_{\Xi\Lambda}) \le 2 \times 10^{-4}$

Standard Model prediction: 1×10^{-5}

T a n d a 1×10^{-4} accuracy requires 1 year of running, hard to improve on HyperCP

Partial rate asymmetries

measure
$$\Delta_{\Lambda K} = \frac{\Gamma(\Omega^{-} \to \Lambda K^{-}) - \Gamma(\overline{\Omega}^{+} \to \overline{\Lambda} K^{+})}{\Gamma(\Omega^{-} \to \Lambda K^{-}) + \Gamma(\overline{\Omega}^{+} \to \overline{\Lambda} K^{+})}$$

Standard Model prediction: $\Delta_{\Lambda K} = 2 \times 10^{-5}$; non-SM: $10^{-3} - 10^{-4}$

Golden Book, 2nd Workshop on Physics with a High Intensity Proton Source at Fermilab (Draft, Feb 2008)

Strangeness Production

 vivid field: direction towards differential observables, polarisation data, and complete experiments, which constantly provoque new questions and challenges
 Photo-electroproduction: CB-ELSA, CLAS, LEPS, KAOS@MAMI-C, NKS2/Tohoku
 Hadronic production: COSY

New facilities in future to meet present challenges: BGO-OD, CLAS-12, LEPS2, PANDA

Strangeness Production

If you did not like the talk... blame the speaker!

otherwise credits go to... P.Achenbach, R.Beck, K.Hicks, T.Johansson, A.Lleres, V.Metag, M.Nanova, E.Roderburg, M.Röder, H.Schmieden, R.Schumacher

