

Meson Spectroscopy at COMPASS

Methods for Amplitude Analysis

Sebastian Neubert

Technische Universität München

Hirschegg, January 2011

The COMPASS Experiment

Diffractive Pion Dissociation

Amplitude Analysis Formalism

PWA Model Selection

Mass Independent Fit Bayesian Model Evaluation Waveset Exploration

Mass Dependent Fit

ROOTPWA Analysis Toolkit

The COMPASS Experiment

Searching for Gluonic Contributions to the Meson Spectrum

Overview

The COMPASS Experiment

Searching for Gluonic Contributions to the Meson Spectrum

Overview

- COmmon Muon and Proton Apparatus for Structure and Spectroscopy
- Located at CERN's SPS
- M2-beamline: high intensity π/p beam up to 280GeV/c

Hadron Program

- Light Meson Spectroscopy
- Diffractive Reactions
 → Spin Exotic Mesons
- Central Production → Glueballs
- Low Q²: Pion/Kaon Polarizabilities

Diffractive Pion Dissociation Example: 3 Pion Final State

Diffractive Pion Dissociation Example: 3 Pion Final State

Diffractive Pion Dissociation

Example: 3 Pion Final State

Implement parity conservation:

$$\psi_{JM}^{\epsilon} = c(M) \left[\psi_{JM}(\tau) - \epsilon P(-1)^{J-M} \psi_{J(-M)}(\tau) \right]$$
$$= \pm 1 \qquad M \in [0..J] \qquad c(M > 0) = \frac{1}{\sqrt{2}} \qquad c(M = 0) = \frac{1}{2}$$

 $\epsilon =$

PWA Formalism Overview 2Stage Isobar-Model Fit

STEP 1: Mass-Independent PWA

• Fit angular distributions + isobar systems in independent mass bins

$$\mathcal{I}(\tau, m) = \sum_{\epsilon = \pm 1} \sum_{r=1}^{N_r} \left| \sum_{\alpha} \frac{T_{\alpha r}^{\epsilon}}{\tau} \psi_{\alpha}^{\epsilon}(\tau, m) \right|^2$$
Production amplitude

•

PWA Formalism Overview 2Stage Isobar-Model Fit

STEP 1: Mass-Independent PWA

• Fit angular distributions + isobar systems in independent mass bins

STEP 2: Mass-Dependent χ^2 **fit** \rightarrow Extract Resonance Parameters

- Parameterization of spin-density matrix elements $\sum_{r} T_{ir}^{\epsilon} T_{ir}^{\epsilon*}(m_{\chi})$
- Takes into account interference terms
- Coherent background for some waves

- For fixed n-body mass *m* there are 3n 4 parameters (angles, intermediate state masses)
- Parameterization of isobar subsystems

The COMPASS Experiment Diffractive Pion Dissociation Amplitude Analysis Formalism PWA Model Selection Mass Dependent Fit ROOTPWA Ana Decay Parameterization: The Isobar Model Chain of successive 2-body decays Model n-body decay by a chain of successive 2-body decays: Example angular distributions: $\pi^{-}(beam)$ π^{-} (bachelor) $X(2^{-+}) \to f_2(1275)\pi$ $f_2(1275) \rightarrow \pi\pi$ $\epsilon = +$: natural parity exchange $\epsilon = -$: unnatural parity exchange 0.5 0 -0.5 -0.5 **\$** 2 cos θ cosθ target recoil Known shortcomings For fixed n-body mass m there ar Unitarity violation (angles, intermediate state mass€ Rescattering effects

- Parameterization of isobar subsys
- Potential for improvement
- Input from theory needed (see e. g. talk by B. Kubis)

Mass Independent Amplitude Fit

Intensity distribution \mathcal{I} as a function of decay-kinematic variables τ :

Mass Independent Amplitude Fit

Intensity distribution \mathcal{I} as a function of decay-kinematic variables τ :

$$\mathcal{I}(\tau) = \sum_{\epsilon = \pm 1} \sum_{r} \left| \sum_{\substack{\alpha \in M \\ \gamma \in M}} \frac{\mathbf{T}_{\alpha r}^{\epsilon}}{\mathbf{\psi}_{\alpha}^{\epsilon}(\tau)} \right|^{2}$$

• Finite *waveset M*
• Production amplitude
• Decay amplitude

The likelihood \mathcal{L} to observe (a specific set of) *N* events in a bin with finite acceptance $\eta(\tau)$ (assuming a model *M*, parameters T_{ir}^{ϵ}) is:

$$P(\text{Data}|T_{ir}, M) = \mathcal{L} = \left[\frac{\bar{N}^{N}}{N!}e^{-\bar{N}}\right]\prod_{i}^{N} \underbrace{\frac{\mathcal{I}(\tau_{i})\eta(\tau_{i})f(\tau_{i})}{\int \underbrace{\mathcal{I}(\tau)\eta(\tau)d\rho(\tau)}_{=\bar{N}}} \quad \text{with} \quad d\rho(\tau) = f(\tau)d\tau$$

Mass Independent Amplitude Fit

Technische Universität München

$$\mathcal{L} = \left[\frac{\bar{N}^N}{N!}e^{-\bar{N}}\right]\prod_i^N \frac{\mathcal{I}(\tau_i)}{\bar{N}}\eta(\tau_i)f(\tau_i) = \frac{1}{N!}\prod_i^N \mathcal{I}(\tau_i)\cdot\prod_i^N \eta(\tau_i)f(\tau_i)\cdot e^{-\bar{N}}$$

Mass Independent Amplitude Fit Definition of LogLikelihood Function

Technische Universität München

$$\mathcal{L} = \left[\frac{\bar{N}^{N}}{N!}e^{-\bar{N}}\right]\prod_{i}^{N}\frac{\mathcal{I}(\tau_{i})}{\bar{N}}\eta(\tau_{i})f(\tau_{i}) = \frac{1}{N!}\prod_{i}^{N}\mathcal{I}(\tau_{i})\cdot\prod_{i}^{N}\eta(\tau_{i})f(\tau_{i})\cdot e^{-\bar{N}}$$

Taking the logarithm leads to and inserting for \bar{N}

$$\ln \mathcal{L} = -N \ln N + \sum_{i}^{N} \eta(\tau_{i}) f(\tau_{i}) + \sum_{i}^{N} \ln \mathcal{I}(\tau_{i}) - \int \mathcal{I}(\tau) \eta(\tau) d\rho(\tau)$$

Mass Independent Amplitude Fit Definition of LogLikelihood Function

Technische Universität München

$$\mathcal{L} = \left[\frac{\bar{N}^{N}}{N!}e^{-\bar{N}}\right]\prod_{i}^{N}\frac{\mathcal{I}(\tau_{i})}{\bar{N}}\eta(\tau_{i})f(\tau_{i}) = \frac{1}{N!}\prod_{i}^{N}\mathcal{I}(\tau_{i})\cdot\prod_{i}^{N}\eta(\tau_{i})f(\tau_{i})\cdot e^{-\bar{N}}$$

Taking the logarithm leads to and inserting for \bar{N}

$$\ln \mathcal{L} = -N \ln N + \sum_{i}^{N} \eta(\tau_{i}) f(\tau_{i}) + \sum_{i}^{N} \ln \mathcal{I}(\tau_{i}) - \int \mathcal{I}(\tau) \eta(\tau) d\rho(\tau)$$

drop $(-N \ln N + \sum_{i}^{N} \eta(\tau_i) f(\tau_i))$ and insert intensity parameterization

$$\ln \mathcal{L} = \sum_{n=1}^{N_{\text{events}}} \ln \left[\sum_{\epsilon,r} \sum_{\alpha,\beta \in M} T_{\alpha r}^{\epsilon} T_{\beta r}^{\epsilon*} \bar{\psi}_{\alpha}^{\epsilon} (\tau_n) \bar{\psi}_{\beta}^{\epsilon} (\tau_n)^* \right] - \sum_{\epsilon,r} \sum_{\alpha,\beta \in M} T_{\alpha r}^{\epsilon} T_{\beta r}^{\epsilon*} IA_{\alpha\beta}^{\epsilon}$$

Mass Independent Amplitude Fit Definition of LogLikelihood Function

Technische Universität München

$$\mathcal{L} = \left[\frac{\bar{N}^{N}}{N!}e^{-\bar{N}}\right]\prod_{i}^{N}\frac{\mathcal{I}(\tau_{i})}{\bar{N}}\eta(\tau_{i})f(\tau_{i}) = \frac{1}{N!}\prod_{i}^{N}\mathcal{I}(\tau_{i})\cdot\prod_{i}^{N}\eta(\tau_{i})f(\tau_{i})\cdot e^{-\bar{N}}$$

Taking the logarithm leads to and inserting for \bar{N}

$$\ln \mathcal{L} = -N \ln N + \sum_{i}^{N} \eta(\tau_{i}) f(\tau_{i}) + \sum_{i}^{N} \ln \mathcal{I}(\tau_{i}) - \int \mathcal{I}(\tau) \eta(\tau) d\rho(\tau)$$

drop $(-N \ln N + \sum_{i}^{N} \eta(\tau_i) f(\tau_i))$ and insert intensity parameterization

$$\ln \mathcal{L} = \sum_{n=1}^{N_{\text{events}}} \ln \left[\sum_{\epsilon,r} \sum_{\alpha,\beta \in M} T_{\alpha r}^{\epsilon} T_{\beta r}^{\epsilon*} \bar{\psi}_{\alpha}^{\epsilon} (\tau_n) \bar{\psi}_{\beta}^{\epsilon} (\tau_n)^* \right] - \sum_{\epsilon,r} \sum_{\alpha,\beta \in M} T_{\alpha r}^{\epsilon} T_{\beta r}^{\epsilon*} IA_{\alpha\beta}^{\epsilon}$$

With acceptance-corrected phase space integral

$$\mathcal{A}^{\epsilon}_{lphaeta} = \int ar{\psi}^{\epsilon}_{lpha}(au_{n})ar{\psi}^{\epsilon}_{eta}(au_{n})^{*}\eta(au)\mathrm{d} au$$

Which waves to include into the waveset?

Which waves to include into the waveset?

Avoid overfitting

Which waves to include into the waveset?

Avoid overfitting

\rightarrow Data driven method

How to Measure the Goodness of a Model Marginal Likelihood Definition

Bayes' Theorem (for the Model Probability after Observation)

$$P(M_k | ext{Data}) = rac{P(ext{Data} | M_k) P(M_k)}{\sum_{k'} P(ext{Data} | M_{k'}) P(M_{k'})}$$

with model-priors $P(M_k) = \sum_{k'} P(M_{k'}) = 1$

How to Measure the Goodness of a Model

Bayes' Theorem (for the Model Probability after Observation)

$$P(M_k | \text{Data}) = \frac{P(\text{Data} | M_k) P(M_k)}{\sum_{k'} P(\text{Data} | M_{k'}) P(M_{k'})}$$

with model-priors $P(M_k) = \sum_{k'} P(M_{k'}) = 1$

Marginal Likelihood or Evidence

$$\mathcal{P}(\mathrm{Data}|M_k) = \int \underbrace{\mathcal{P}(\mathrm{Data}|T^k, M_k)}_{\mathcal{L}} \underbrace{\mathcal{P}(T^k|M_k)}_{\mathrm{Prior}} dT^k$$

 $P(T^k|M_k)$ contains any pre-knowledge on the model-parameters T

- Marginalization (= $\int dT$) is not trivial in high-dimensional spaces
- Numerically stable is only the LogLikelihood

The Occam Factor Approximation

David J. C. MacKay, 2003 "Information Theory, Inference and Learning Algorithms"

$$P(\text{Data}|M_k) = \int \underbrace{P(\text{Data}|T^k, M_k)}_{\mathcal{L}} \underbrace{P(T^k|M_k)}_{\text{Prior}} dT^k$$

Sebastian Neubert - Meson Spectroscopy at COMPASS

The Occam Factor Approximation

David J. C. MacKay, 2003 "Information Theory, Inference and Learning Algorithms"

$$P(\text{Data}|M_k) = \int \underbrace{P(\text{Data}|T^k, M_k)}_{\mathcal{L}} \underbrace{P(T^k|M_k)}_{\text{Prior}} dT^k$$

Approximate with Laplace's method:

$$P(\text{Data}|M_k) \approx P(\text{Data}|T_{\text{ML}}^k, M_k) \cdot \underbrace{P(T_{\text{ML}}^k|M_k) \cdot \sqrt{(2\pi)^d |\mathbf{C}_{T|\text{Data}|}}}_{Q}$$

Occam factor

Technische Universitä

The Occam Factor Approximation

David J. C. MacKay, 2003 "Information Theory, Inference and Learning Algorithms"

$$P(\text{Data}|M_k) = \int \underbrace{P(\text{Data}|T^k, M_k)}_{\mathcal{L}} \underbrace{P(T^k|M_k)}_{\text{Prior}} dT^k$$

Approximate with Laplace's method:

$$P(\text{Data}|M_k) \approx P(\text{Data}|T_{\text{ML}}^k, M_k) \cdot \underbrace{P(T_{\text{ML}}^k|M_k) \cdot \sqrt{(2\pi)^d |\mathbf{C}_{T|\text{Data}|}}_{Occam \ factor}$$

• $P(\text{Data}|\mathcal{T}_{\text{ML}}^k, M_k)$ LogLikelihood at maximum likelihood solution \mathcal{T}_{ML}

- $\bullet~|\textbf{C}_{\mathcal{T}|\mathrm{Data}}|$ determinant of covariance matrix
- Dimension of parameter space: d

Technische Unive

The Occam Factor Approximation

David J. C. MacKay, 2003 "Information Theory, Inference and Learning Algorithms"

$$P(\text{Data}|M_k) = \int \underbrace{P(\text{Data}|T^k, M_k)}_{\mathcal{L}} \underbrace{P(T^k|M_k)}_{\text{Prior}} dT^k$$

Approximate with Laplace's method:

$$P(\text{Data}|M_k) \approx P(\text{Data}|T_{\text{ML}}^k, M_k) \cdot \underbrace{P(T_{\text{ML}}^k|M_k) \cdot \sqrt{(2\pi)^d |\mathbf{C}_{T|\text{Data}|}}_{Occam \ factor}$$

• $P(\text{Data}|T_{\text{ML}}^k, M_k)$ LogLikelihood at maximum likelihood solution T_{ML}

- $\bullet~|\textbf{C}_{\mathcal{T}|\mathrm{Data}}|$ determinant of covariance matrix
- Dimension of parameter space: d

Logarithmic evidence:

$$\ln P(\text{Data}|M_k) \approx \ln P(\text{Data}|T_{\text{ML}}^k, M_k) + \ln P(T^k|M_k) + \ln \sqrt{(2\pi)^d} |\mathbf{C}_{T|D}|$$

Technische Univer

Final Definition

Log-Evidence

$$\mathsf{n} P(Data|M_k) pprox \mathsf{ln} \mathcal{L}_{ML} + \mathsf{ln} \sqrt{(2\pi)^d |\mathbf{C}_{T|\text{Data}|}} - \mathsf{ln} V_T^k + \sum_{i \in M} \mathsf{ln} S_i$$

where V_T^k is the (prior) volume of parameter space

Models (=wavesets) compared through the Bayes-Factor

$$\mathsf{B}_{12} = \frac{\mathsf{P}(\mathsf{Data}|\mathsf{M}_1)}{\mathsf{P}(\mathsf{Data}|\mathsf{M}_2)}$$

• Interpretation according to Kass&Raftery:

$2 \ln B_{12}$	B_{12}	Evidence
0 to 2	1 to 3	Not worth mentioning
2 to 6	3 to 20	Positive
6 to 10	20 to 150	Stong
> 10	> 150	Very strong

Kass, Raftery, Bayes Factors, J. Am. Stat. Assoc. 90 (1995) 773

Technische Universität Mü

Automatic Waveset Exploration

Strategies:

- Start with population of small (2-15 waves) wavesets (adding waves)
- Start with diverse population (10 80 waves)
- Start with population of large wavesets (not done yet)

Automatic Waveset Exploration

Genetic Algorithm - 50 generations, population size 50

Number of waves optimizes at around 35

Automatic Waveset Exploration

Genetic Algorithm - 50 generations, population size 50

- Diverse initial population run \rightarrow better results
- Typical log-Evidence differences: 30-100

\circledast Example: Top 20 Fits from Genetic Search Π

Example Mass Dependent Fit

$$T_{i}^{\epsilon}T_{j}^{\epsilon*} = \rho_{ij}^{\epsilon}(m) = \left(\sum_{k} C_{ik}^{\epsilon}BW_{k}(m)\sqrt{\int |\psi_{i}^{\epsilon}|^{2}d\tau}\right) \left(\sum_{l} C_{jl}^{\epsilon}BW_{l}(m)\sqrt{\int |\psi_{j}^{\epsilon}|^{2}d\tau}\right)$$
(1)

with Breit-Wigner amplitude:

$$BW_{ik}(m, M_0, \Gamma_0) = \frac{M_0 \Gamma_0}{m^2 - M_0^2 + i \Gamma_{tot}(m) M_0}$$
(2)

and dynamic width:

$$\Gamma_{tot}(m) = \sum_{n} \gamma_n \frac{\rho_n(m)}{\rho_n(M_0)} \qquad \rho_n(m) \sim \int |\psi_i^{\epsilon}|^2 dq \qquad \sum \gamma_n = \Gamma_0 \qquad (3)$$

and background terms:

$$bkg(m) = e^{-\alpha q}$$
 q – Breakup momentum (4)

Fit Results Overview - Spin Density Matrix

ROOTPWA: Open Source Analysis Toolkit

http://sourceforge.net/projects/rootpwa

- Based on BNL code "pwa2000"
- Largely rewritten
- Workflow for mass-dependent fit:

ROOTPWA: Open Source Analysis Toolkit

Main Features:

- Amplitude calculator for diffractive production (Helicity Form.)
- General Amplitude Framework upcoming (B. Grube)
- MC generators (diffraction)
- Numerical tools
 - MC integrator
 - Fitters
 - Genetic Optimization
- Resonance parameterizations (under development)
- Visualization & Plotting tools (ROOT-based)
- CUDA support

ROOTPWA: Open Source Analysis Toolkit

Main Features:

- Amplitude calculator for diffractive production (Helicity Form.)
- General Amplitude Framework upcoming (B. Grube)
- MC generators (diffraction)
- Numerical tools
 - MC integrator
 - Fitters
 - Genetic Optimization
- Resonance parameterizations (under developmen
- Visualization & Plotting tools (ROOT-based)
- CUDA support

ROOTPWA Graphical User Interface

Sebastian Neubert - Meson Spectroscopy at COMPASS

Technische Universität München

Summary

- ROOTPWA is one of 2 PWA programs used at COMPASS
- 2 step analysis:
 - Fit angular correlations with Isobar Model decay
 - 2 Parameterize dynamics \rightarrow resonance extraction
- Genetic search for waveset exploration
- Open source toolkit http://sourceforge.net/projects/rootpwa

Summary

- ROOTPWA is one of 2 PWA programs used at COMPASS
- 2 step analysis:
 - Fit angular correlations with Isobar Model decay
 - Parameterize dynamics → resonance extraction
- Genetic search for waveset exploration
- Open source toolkit http://sourceforge.net/projects/rootpwa

Outlook

- Improvements in amplitude parameterizations
- Study of non-resonant contributions (Deck effect)
- Theory input needed (Rescattering etc.)
- Status of Analyses and Results \rightarrow Talk by B. Ketzer tomorrow