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Motivation

For ++ discussions, | also apply quark-gluon models and Lattice QCD to
Temp=/=0, chiral symmetry, all soris of exotics, , excited hadrons
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The main motivation is to contribute to understand whether exotic
hadrons exit or not.

Although there is no QCD theorem rulling out exotics, they are so hard to find,
that many friends even state that ?exotics don't exist? 2or that at least they
should be very broad resonances?

Observation of a J”PC = 1-+ exotic resonance in diffractive dissociation of 190
GeV/c pi- into pi- pi- pi+. COMPASS Collaboration Phys Rev Lett 104, 241803
(2010). Candidates for different exotics exit! We specialize in tetraquarks, the
less difficult multiquarks to compute beyond the baryons and hybrids.

Notice that there are many possible sorts of tetraquarks:

- the borromean 3-hadron molecule

- the Heavy-Heavy-antilight-antilight

- the hybrid-like tetraquark

- the Jaffe-Wilczek diquark-antidiquark with a generalized Fermat string
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Motivation

As we just did for the hybrids in Lattice QCD computation of the colour fields
for the static hybrid quark-gluon-antiquark system, and microscopic study of the

Casimir scaling ™ 2 41002
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Motivation

this is a preliminar series of plots of the chromo-electric field of a quark-quark-

-antiquark-antiquark system, where we separate the quarks from the antiquarks,
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the Jaffe-Wilcsek diguark-antidiguark with a generalized Fermat string

The flux tubes prefer to divide and link into fundamental flux tubes, and a
possible configurationis in a H-like or butterfly-like flux tube, related to A
Perspective on pentaquarks. R. Jaffe, F. Wilczek. Eur.Phys.J.C33:538-542,2004

The problem is that this tetraquark is open for the decay into a pair of mesons.
We want to determine whether such resonances exist and study the decay width.
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Motivation

A main ideia to stabilize this tetraquark, proposed by Karliner and Lipkin, was an
that angular excitation in the radial coordinate of the diquarks, would partly
prevent the quarks and antiquarks to recombine, producing a repulsive centrifugal

barrier. Although this enhances the mass of teh tetraquarks, it decreases the
decay width of the system.
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2-body confinement produces Van der Waals forces. Van der Waals forces
Are cured by string confinement. We arrive at the triple flipflop potential,
extended with a tetragquark, as in Stability of multiquarks in a simple string

model, J. Vijande, A. Valcarce, J.-M. gichar‘d Phys Rev D76, 114013 (2007)
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We simplify the triple flipflop potential, using a single intermeson variable

X, : Qs
: & ®
r
@ &
Q> Ky

meson-meson, V=2r
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tetraquark, V=r + V3 p
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Using this approximation

r13=rz4

of having a single
internal variable in the
the mesons we get the
potential in the case
s-wave and s-wave :

p is open to continuum
r is confined
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The triple flip-flop potential

Our problem is similar to the classical school student problem of Cherry ina
glass. However this is not simple a student’s problem since glass is broken and the
cherry may escape from the glass! In the quantum case, what is the width?




Finite Difference Method

Since there is a single scale in the potential and a single scale in the kinetic
energy, we can rescale the energy and the coordinates, to get a
dimensionless equation,

HOrp)=[-A/,- A, /,+ min(r+2p, 2r)]1 O(r,p) = E O(r.p)
that we first solve with the finite difference method.

This case is adequate to study equal mass quarks, where the mesons and the
tetraquark have no constant energy shifts. For instance that would be ok for
the system

uudd (S=2) coupled to p+ p+

or the system

c ¢ ¢ ¢ with any spin coupledtocc cc¢c



Finite Difference Method

We discretize the space in anisotropic lattices and solve the finite difference
Schradinger equation, in up To 6000x6000 sparse matrices (equivalent to 40
points in the confined direction x 150 points in the radial continuum direction).
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Finite Difference Method

Since the box quantization produces continuum states at large p, we can

compute their wave length A, and momentum k=11, by fitting the tail of the

wave functions to A(sin k p),
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Finite Difference Method

Comparing the wavelength A / momentum k with the box size L, we can
compute the phase shifts, as a function of the energy. Unfortunately we get
a discrete energy spectrum and there is no unique way to connect the phase
shifts. When more compact channels, in r, open the phase shifts get unclear.
A way out would be to use Luscher's method of changing the box size...
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Outgoing spherical wave method

However the finite difference method is not entirely satisfactory, and we move
to another method, consisting in studying the phase shifts of the outgoing
spherical waves in the continuum.

Since the finite difference method shows clearly bands, or channels, for the
different internal energies of the mesons, we project the confined coordinate r
with eigenvalues of the meson equation, i.e. with Airy functions, and thus we are
left with ordinary differential equations on the coordinate p .

In a coupled channel problem, we have the Schrodinger
equation

2

h”

2m,;

VQID.}; -+ ITU qu = (E — (-:'j.)ll’i (l?)

To compute the phase shifts and the cross sections, we
have the following relations we consider the scattering to
the channel 7 to the channel ;.



Assimptoticaly, we have

) eiki'r‘
W, — e*i% 4 f(7) (18)
and, for j # 1,
’ eikj'f‘
Uy — fii (M) — (19)

if the channel j is open, otherwise vanisnhing.

With this and the conservation of the probability, we
obtain the optical theorem

> 01 = F3a(0) (20)

This could be formulated in terms of partial waves, in
which case the equations (18) and (19) become

ut — sin(kir + Im) 4 (20 4+ 1) fLet™T (21)

and
uf — (204 1) f] e (22)

and the optical theorem becomes

1
> ot = @D (23)
j
The ffj could be computed by considering the solutions
of the eq. (17) of the form
U = ety + ’l,l’:_ (24)
We have the equation for v,

h? o
—Q—mivzd’f + Vigh) = (E — ey — Vipe™™ (25)
this equation could be simplified if V;; is spherically sym-
metric, by writing ¢, as

uy(r)
r

v = Yim (0, ¢) (26)

in which case the equation becomes

R d2u,

_Q—WW + V,gju = (E - Ei)ug - V;ghjg(k?")?‘ (27)
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Finally we get extremely clear phase shifts and cross sections!
For s-waves we find no resonance
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FIG. 7: S-wave scattering cross sections from the channel with

[, =0 and n, = 0.
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Important: both angular momenta are conserved, L, =rxp,andL, = pxp,

a tetraquark with

an angular momentum
in r indeed feels

a centrifugal
potential barrier

as anticipated by
Karliner and Lipkin.
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FIG. 8: S-wave scattering cross sections from the channel with
[, =1 and n, = 0.
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FIG. 9: Comparision of the phase shifts for [, =0 and [,, = 1,
with n, = 0.
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We may also consider a radial excitation inr.
n =1
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FIG. 10: Comparision of the phase shifts for different [,., with
n, = 1.
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Outgoing spherical wave method

Finally we can compute the decay width utilizing the phase shift derivative,
r/2=(ds/dE)!

and we get, say for 1=2, a decay width of (in units of mg= sqrt o =1),
r~2(2/n)~01

for instance, for light quarks, say an exotic light tetraquark, since m ~
sqrt(c) are both similar to 400 MeV this results in a width close to

'~ 40 MeV

but one needs to add the decay widths of the two final meson resonances
and these may add to the total decay width.



Conclusion & Outlook tetraquarks with a H/butterfly string

+ We study tetraquarks in the Jaffe-Wilczek model, but include the open
channels of decays to meson-meson pairs.

+ We consider an extended flip-flop model, where we add the tetraquark string
to the two-meson strings.

+ We then utilize an approximate toy-model, simplifying the number of Jacobi
variables. The model is similar to the model of a Cherry in a Broken Glass.

+This allows the solution of the Schrédinger equation with finite differences in
a box, where we look for localised states, and try to compute phase shifts.

+ To compute clearly the phase shifts we then solve the Schroédinger equation
for the outgoing spherical waves. We compute de decay widths from the
phase shifts. We find narrow tetraquarks, possibly widened by the width of the
mesons in the meson-meson pair decay product.

+ In our next work we compare with phenomenology, using three Jacobi
coordinates, and including the decay width of the final mesons.



