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Baryon Form Factors definitic

Space-like region (g < 0)

J Electromagnetic current (g = p’ — p)
" N i\ ic"*qy,
J' = (B(p)j"1B(p)) = €u(p )" F1 (@) + 55, Fo(@)|u(p)
J Dirac and Pauli form factors F; and F, are real
J In the Breit frame

— (E,—G/2 _ o ra
B
q=(0,q) Jg = eu(p')yu(p) [F + F]

9 2Mu(p’ )y u(p) = U(p’)l(p + P')* + ic¥ qu]u(p)
9 U(—P)u(P) = E/M 9 uf(—p)u(@) =1

J Sachs form factors J Normalizations

2
Ge = F + LFZ F1(0) = Qg Ge(0) = Qs
4 M2
Gu=F +F F2(0) = ks Gm(0) = ps

A
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pQCD asymptotic behavior

Space-like region

© pQCD: as g2 — —oo, asymptotic behaviors
of F1 and F, must follow counting rules

© Quarks exchange gluons to distribute

momentum
Dirac form factor F; Pauli form factor F,
© Non-spin flip © Spin flip
© Two gluon propagators © Two gluon propagators
¢ R~ () ¢ R(d) ~ ()

Sachs form factors Ge and Gu
© Gew(q’) , ~ (—4)7°
q oo

— —

(% Ratio:& ~  constant

GM q2— — oo 4 '
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Baryon form factors

Time-like region (g% > 0)

© Crossing symmetry:

(B(p)i*|1B(p)) — (B(p')B(p)|j*|0)
© Form factors are complex functions of ¢°

Optical theorem

Im(B(p')B(p)j*|0) ~ > _(B(p')B(p)Ij* i*10)

n
are on-shell intermediate states: 2x, 3=, 4, ...

ImF1_2 ;ﬁ 0
for g > 4M?

Time-like asymptotic behavior

A 2 A 2
(% 2I|m GE,M(q )= 2I|m GE,M(q )
Phragmeén Lindeléf theorem: =00 F=aree
If f(z) — aas z — oo along a straight line,
and f(z) — b as z — oo along another
straight line, and f(z) is regular and bounded in

— 2\—2
1he_ angle b'etwe_en. thena = band f(z) — a ¢ GE,M ~ (q ) m
uniformly in this angle. G2— +oo 5 l
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Cross sections and analyticity

g?-complex plane

Im[g?
Space-like region % lmellietegion .
eB — eB Unphysical region Data region
No data ete~—BB
| freascomplex
= = G
St = 4M7 Sphy = 4M% Re[q?]

Crossing: tot. helicity = {(1) z g; J

Ge(4M2) = GM(4M125)J

Elastic scattering

2
do _ oPEjcos? § 0 1 _q
— =" 2 G2 _r(14+2(1—7)tan® Z |Gl —— "= a2
dQ "~ 4E3sin® 9 [E T( +2(1-7) 2) m

Annihilation

do  o?BC 2 o 1 . 5 )] B=4/1—
— = 1+cos” 0)|G, —sin“ 0|G

o= e | (1+cos" 0)|Gul+ 1 sin® 0|Gel?
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Dispersion relations

© The form factors are analytic on the
g?-plane with a multiple cut (sy, =4M2 , o9

© Dispersion relation for the imaginary part (g% < 0)

G(@®) = lim L%G(z)dzzl/mlmG(s)ds

R—oo 27l Jcz—q2 s—@q?
Sth

@ Dispersion relation for the logarithm (g2 < 0)
B.V. Geshkenbein, Yad. Fiz. 9 (1969) 1232.

In G(q2) — V Sth — qZ/SOO( In |G(S)‘ds

™ §— G%)\/S— Sm
Experimental inputs Theoretical ingredients
@ Space-like data on the real values of J Analyticity = dispersion relations

FF’s from: e~ B — e~ B and

e~ "B — e~ BT, with polarization
& Time-like data on moduli of FF’s @ Asymptotic behavior =

from: ete— — BB super-convergence relations

@ Normalization and threshold values

@ Time-like data on Gg-Gy relative ’
phase from: ete~ — BB (pol.) 7 l
v
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Dispersive approach:

advantages and drawbacks

Advantages
J DR’s are based on unitarity and analyticity = model-independent approach

J DR’s relate data from different processes in different energy regions

space-like Im(form factor) or In|form factor|
formfactor |= over the time-like cut (s, oo)
eB— eB ete~— BB + theory

J Normalizations and theoretical constraints can be directly implemented

@ Form factors can be computed in the whole g2-complex plane

Drawbacks

@ Very long-range integration

® Remedy #1 ® Remedy #2
pQCD power laws Subtracted DR’s
@ No data in the unphysical region, crucial in dispersive analyses 4%?‘8 l
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Integral equation

» Dispersion relation for the logarithm
» Regularization to stabilize solutions
» Model-independent approach

» No time-like |Ge| — |Gu| separation
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The integral equation for GM EPJC11 709

Dispersion relation subtracted at t = 0 J Less dependent on the
asymptotic behavior of the FF

9 In G(0) = 0 = no further terms
have to be considered

In G(f) =

tv/sth —t [ In|G(S)|ds
7™ JsySVS—Sm(s— 1)

Splitting the integral f;: into f;:“V +fs°,: we obtain the integral equation
phy

Data and Theory W
————— /55 —1 (S In|G(S)| ds
in G(t) — oy () = 0 /

sn SV/S—Sm(s—1t)

¢ To avoid instabilities around sppy = 4M,":,, the upper boundary has been

shifted to s;,, = sphy + A, with A ~ 0.5 GeV?

¢ We impose continuity of the FF at s")hy and sy, in addition, at the upper
boundary s;,hy, continuty of the first derivative is also required

¢ Aregularization, depending on a free parameter T, is introduced by
requiring the FF total curvature in the unphysical region to be limited 10 l
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Testing the method EPUCH1 700

— 8
& v
)
'f 5
— 4
3
2
Pion FF to fix the regularization parameter ~
Space-like (DR) and time-like data (yellow 0l .
bands) have been used as input in the inte- gig
gral equation to retrieve the time-like FF in 06
the nucleon unphysical region. D I
0.4 [ i
03 T\
0.2 i
04 ey P r -
-2 [+] 2 4 6 8 10
q? (GeV?)
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TeSting the method EPJC11 709

‘i 3 | | }
8 !
: H T m7r
o 2 | LAl )
3
NIy
Pion FF to fix the regularization parameter ~ f
Space-like (DR) and time-like data (yellow 0l
bands) have been used as input in the inte- gig
gral equation to retrieve the time-like FF in 06 / iy
the nucleon unphysical region (gray band). D b ‘m I
0.4 |-fhf i
l { W w |
0.2 i
I i
o —2‘”0‘”2‘”4”‘5‘”;‘ ‘IO

q? (GeV?)
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Nucleon magnetic form factors EPUCH1 700

$ £
=0 i =0 ] :
& H % B .
fgé B EE N input data
= | e i outcome
q Steep behavior \
] near by the e
i threshold T4
4 [ N
J [
K Y‘ #
¢ Y
4
107
i
|
-2 Q9 2 4 6 8 1 12 -6 -4 -2 0 2 4 3 8 10
q? (GeV?) q? (GeV?)
M; ~ 770 MeV Ty ~ 350 MeV
M, ~ 1600 MeV T ~ 350 MeV 12.
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The ratio R = u,Gz/ Gl

¢ Dispersion relation for the imaginary part
¢ Model-independent approach
e First time-like |Geg| — |Gu| separation

—> Ratio in the whole g2 complex plane

Hirschegg - January 17”‘, 2011 Dispersion Relations and Nucleon Form Factors



Time-like region

® Old Rosenbluth data in agreement with Only two sets of data from BABAR and LEAR

space-like scaling Gg ~ an,,/up otained studying angular distributions
® New data from polarization techniques show Un}i)que a’}tempts to'perform atime-like
unexplained increasing behavior |Gel-| Gy | separation

® Only polarization data have been used in the Only BABAR data have been used in the
dispersive analysis dispersive analysis

' " m MITJLab (Polarization) | o o BABAR (ISR + ang. dist) |
= [PRL88,092301-PRL84,1398] | S gt [PRD73,012005] i
w L u SLAC (Rosenbluth) ] & s FENICE+DM2-E835
S15F [PRD50,5491] i > (ang. dist) [EPJC46.421] |
[ * Normalization | = 6t ® LEAR (ang. dist.) =
L ] [NPB411,3] 4
o ] ]
EERRITY AN | ’
: ‘e ] # ?
S AR
0 | I I 0 i
-8 6 4 2 0 4 5 6 7 8 910
7 (GeV?) ¢ (Gev?) 14|
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The dispersive approach fo EPuAs2 421

We start from the imaginary part of the ratio R(g?),
written in the most general and model-independent way as

Im[R(g?)] = series of orthogonal polynomials

Theoretical constraints ; ; The function R(q?) is

can be applied directly ti reconstructed in time
on the imaginary part and space-like regions

Additional theoretical conditions as well as
experimental constraints are finally imposed
on the obtained analytic expression of R(q?)
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EPJA32 421
= =
R(qg?) space-like | |R(g?)| time-like |
L L B LB B ; ; [ ——_—
-
1| ﬁﬂ 10 - 4
05 - +¢ : * H
L J‘] + K
0
L 1 = _
L L L [ L. L
-0 -8 -6 -4 -2 0 4 6 7 8 910
q? (GeV?) q? (GeV?)
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R ( q2 ) EPJA32 421

ImR(s)
R(0) + — /M2 sG—q9)

i >

R(qg?) space-like | |R(g?)| time-like |
L L B LB B ; ; [ ——_—
-

+ ﬁ%‘ﬁ

0 -8 6 -4 2 0 4 5 6 7 8 910
9% (GeV?) q* (GeV?)
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R ( q2 ) EPJA32 421

R(@) =RO)+ L / y s'(”;ﬁ(:)z)

I =
R(q?) space-like | |R(q?)| time-like |

T T T T T T T T T —
r JLab+MIT-Bates BaABAR+DM2/FENICE+E835

1r 10

05
[ DR Approach
—
3 ] Iog2 Q?/Q?
0 — Impr. log? @%/Q?
K i 1+ —uL -
L1 [ [ [ L , , L ]
-10 -8 -6 -4 -2 0 4 5 6 7 8 910
9? (GeV?) 9? (GeV?)
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R ( q2 ) EPJA32 421

R(@) =RO)+ L / y s'(”;ﬁ(:)z)
I =

R(qg?) space-like | |R(g?)| time-like |

T T T T T T T T T —
r JLab+MIT-Bates BABAR+DM2/FENICE+E835

1+

10

r eJLab 2010
[PRL104,242301]

0.5

DR Approach

—1

3 ] Iog2 Q?/Q?
0 T —— Impr. log? @%/Q?
K i 1+ —uL -
L1 [ [ [ L , , L ]
-10 -8 -6 -4 -2 0 4 5 6 7 8 910
9? (GeV?) 9? (GeV?)
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R(qZ): Space-like zero and p EPJA32 421

= =
o

S T RS
— 1 —
@ L @
©

o 2[
L | (2]
o
05| g <

Phragmeén Lindelof

phase limit — zeros

Space-like zero Phase from DR
> In|R(s)|ds

V=S pr/’i
™ sV/S—S0(s—G?)

»(q%)=—

1BABAR — (—10 +1) GeV?
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Asymptotic GE(q?)/ Gy,

EPJA32 421

‘Space |  Time

Real asymptotic values for G2 /Gh,

p
GE
5
GM 1g2| — o0

—1.04+0.2

GE(9?)/Ghy(d?)

Asymptotic behavior of F, /F;

GP
—E _1|=2.040.2

q? F2 .
4M2 lq2|—oo | Gy

PR PRI M
-10000 -5000 0 5000 10000
a? (GeV?)

pQCD prediction

Ge(@®)| __ |
G(g?) | la2l—o0 18]
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A sum rule for G},

¢ Dispersion relation for the logarithm
¢ Unphysical region suppression
e Low-energy data — asymptotic behavior

—> Check for the asymptotic power law
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|G2(g°)| and |Gjy(g)| from ap

EPJA32 421

G°(e?)] - ¢*
10 —v v v T
® |Ge|=|Gml 1 |ép(q2)|2 _
8 _
e 7+ J Usually what is extracted from the
f o X ; ] cross section o(ete~— pp) is the
Al teetd bt } v effective time-like form factor LGP|
t bt obtained assuming |GZ| = |Gy
L ] i.e. |R| = pp
0 L L L
2 22 24
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G2(g?)| and |Giy(q)|

EPJA32 421

o 1GEM@I-a

] (a2 oy —1
® |Ge|=|Gul | 22 _ a'pp(q ) |R(q?)|
. I [ Ge| (IRI1p) | 1Gu(a)* = 4 z5e |1+ Byt
C1Guml (IRIFp) | 3s

J Usually what is extracted from the
cross section o(ete—— pp) is the

4 effective time-like form factor |é”|
obtained assuming |GZ| = |G|
i.e. |R| = pp

J Using our parametrization for R and
) S S M| the BABAR data on o (et e—— pp),
2 22 24 |G2| and |Gf;| may be disentangled

V@ (GeV)
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Dispersion relations and sum r

Geshkenbein, loffe, Shifman Yad. Fiz. 20, 128

¢ DR’s connect space and time values of a form factor G(g?)
1 [ ImG(s)ds no data °'¢ PP
G(q2)=f/ (7)2 ﬂ—::» )
sy S—Qq Sth Sphy Regqg

@ The imaginary part is not experimentally accessible

© There are no data in the unhysical region [si, Sphy]

Drawbacks

@ We need to know the asymptotic behavior

¢ They applied the DR for the imaginary part to the function
In G(2)

P(2) = f(z)ﬁ

Sph:
with /pyfz(z)dz <<1
0

& The DR integral contains
the modulus |G(s)|

® Zeros of G(z) are poles for ¢(z)

& The unhysical region

contribution is suppressed

=
[
«
]
H
©
B
[=]

Advantages
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Attenuated DR and sum rule YF20 128

Assuming G(gq?) # 0 and using the Cauchy theorem, we have the new DR

?{ @(2)dz=0 Im(q?)
¢ c

~U« 0 Sphy
/0 Im[f(#)] In G(t) G(t) _/°°f(s) In|G(s)|ds Sth Re(q?)
—oo I/Sth — sm SV/S — Sth

Space-like Time-like

Convergence relation to find the asymptotic power-law behavior of Gﬁ,,

_/0 Im[f(t)]In G(t) . _ /oo UOLICOTIN = 1(s)InG(s)|
tv/sn — 1 sn  SVS— Sn oy SV/S — Sth

Space-like data + (—t)—"

N is the free parameter
22|
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Sum rule: result for Gy, Crpyscss 74

an”(q2) o |q2 | —(2.27+0.36)

|q2|—o0
1E 4
/% Im[f()]In G(t) < f(s)In|G(s)| ,_
10 '1;/_00 et O /s,,hy $v/5 — St ds,:
$ ]
CPE )
T e % (9°)"
101 %
: | | |
0

-20 20

q? (GeV?) 23 |
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Time-like |Ge| — |Gu| Separation: DR and data

Understand threshold effect(s):

@ Dispersive analyses: integral equation, sum rule,...
Z' Experimental observation in pp — 7%/t /-
= [C. Adamuscin, E.A. Kuraev, E. Tomasi-Gustafsson, F. Maas, Phys. Rev. C75, 045205 (2007)]
% Asymptotic behavior: DR and data for the phase

7 zeros o phases: DR and data
M

Unphysical region, VMD contributions:
integral equation, sum rule, data on pp — g A 24'
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...On the same topic...

Tuesday at 17:30
Yue Ma
“Time-like Form Factor from PANDA”

Wednesday at 9:00
Diego Bettoni
“Time-like Electromaganetic Form Factors (Overview)”

Wednesday at 11:00
Carl Carison
“Two Photon Physics in the Time-like and Spacelike Regions”

Wednesday at 17:30
Marco Maggiora
“Hadron Structure at BESIII”
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Additional slides
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YY eXChange from e+e_—> p PLB659, 197

do

do
(cos 6,q%) — ——(—cos6,q%)
dQ dQ
A(cos 6, q%) =

d d
é(cos 0,q%) + é(— cos 6, ¢?)

0.1 } . {

Pl 4+ | | :
o ; (A)coso,q2 = 0.01 = 0.02 7:
[ | R———

w

2 2.25 25 2.75
vV q? (GeV)



ete” — pp

The incredible threshold value PRD73, 012005

_ _ 4xa?3C 2M2 wa?BC
o(ete — pp) = 73(12 {|G’I’3’|2 + 4q2P |G£_|2] q—>_2ll)/l,, B |GP|2 J
P

o —
S 1 : »?1 Fove At threshold
b * i ABAR | o(ete~ — pp) = 0.80 £ 0.05 nb
0.75 :.-L |,',' e - .
| [ o| Il 1» T j ete~ — ppis the only endothermic
w = 4 . ..
+ » process that shows this peculiarity
L3 o {
® 05 £ TI
2 ++
025 | 4
[ Ak |
4+
[ a +
O L L L L L L L L L
1.6 18 2 22 2.4

Ve (GeV) 28|
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ete” — pp

The incredible threshold value PRD73, 012005
Bc J
= —
= 1 < '\wB 1 At threshold
S * i ] o(ete~ — pp) = 0.80 + 0.05 nb
T075’ ,HLIH ] — ]
! S| | |'T'T j ete~ — pp is the only endothermic
4 = i process that shows this peculiarity
- 2 bl
b o5 < ++ U’
2 ++ ]
025 [ 11 i Where does the factor C come from?
2 Ak |
4+ _ am2 [ finite at
o + BC =1 — qTC ~ 1 threshold
1.6 18 2 22 2.4
V@ (GeV) 28]
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Holer, Mergell, Meissner, Hammer procedure

» Optical theorem
» Dispersion relation for the imaginary part

» No time-like |Geg| — |Gu| separation
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H,M,: Holer, Mergell, Meissner, H PRCT5 035202

Spectral decomposition

Im(B(p")B(p)|j*|0) ~ > (B(p")B(p)|j*|n)(n|j*|0) = {

ImF1,2 ;’f 0
for g2 > 4M2

é}’, 1 I
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, Mergell, Meissner, PRC75 035202

Spectral decomposition
v,s
ImF, 2 #0

Im(B(p')B(p)|j*|0) ~ > (B(p')B(p)|j* [n)(n|j*|0) =
n for g2 > 4M2

mFY (%) S mFS ()
P . w - s

Kﬂk - !

i & i ¢
KK :

i -
p/ p/// ¢ d
© 27 continuum is knowm for € KK continuum from analytic continuation of
¢ e [4Mf\_, ~ 40M72r] KN scattering amplitude

Further contribution in the ¢-region is due to

© The singularity on the second Riemann
7 p exchange

sheetin #N — 7 N amplitude gives the

strong shoulder at threshold © Anomalous threshold behavior is masked
because the pole in the second Riemann

sheet is not close to (3M,;)?

@ Poles for higher mass states 3 Ol

@ Poles for higher mass states
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H>M,: Theoretical constraints a PRC75 035202

© Superconvergence relations: / Im Fy 2(q?)dg? = / G?Im F5(g%)dg? = 0
aM2 4M2

¢ Asymtpotic behaviors from perturbative QCD

Space-like

G/ (10Gp)

—g? (GeV?)
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The Lomon Model

¢ VMD + quark form factors
¢ DRs — analytic VM propagators
® Time-like |Ge| — |Gu| separation

—> GP" and GI;" in space and time-like region
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Analyticitization of pheno

The Lomon Model PRC66 045501

The Lomon parameterization for nucleon FF’s is based on the
Gari-Krimpelmann model, and it includes:

¢ coupling to the photons through vector meson exchange
[VMD in terms of propagators Fy(g?), M = p, w, ¢, o', ']

¢ hadron/quark form factors Ay(g?) at vector meson-nucleon
(quark) vertices to control transition to perturbative QCD at
high momentum transfers

Analytic extension: space-like — time-like

® Fy; for broad mesons:
simple poles — poles with finite energy-dependent widths

® Dispersion realtions:
rigorous analytic continuation of Fy; from time-like to space-like region
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Lomon Model: Results for the pro

. . GE —_ .
Space-like region: R, = up—,‘f Time-like region: |Ggﬂ(q2)|
Gu
—~ 12 — 08
= 10- S:/_ Param. #1
o O @ Param. #2
@ 06 —J |
0.8
0.6 04 .
04+
02+ .
02
00" ol | ‘ 00L . !
02 05 10 20 50 100 3.0 50 70 100 150
—q2 (GeV?) g2 (GeV?)
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Lomon Model: Resulis for the ne

Gn
Space-like region: Rp = pn—- an Time-like region: |G (g?)|
—~ 06 — 10,
RS &
e st 5_5:/_ [ Param. #1
o O <% 08- Param. #2 l
04- o [
[ 06"
03 ’
[ 04+
02" [
o1l 02l
00" ! ] 00. |
02 05 10 20 30 50
—q° (GeV?) q* (GeV?)
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R(g?) in the complex plane

|R(q?)]

. i tal sheet
Ge, Gu and also R, if Gy has S
no zeros, are on the q2
plane with a cut (sm = 4M2, o)

pALCH!
ﬂﬁ"
o ® o0e” # Sth Sphy
Re(q?)
hysical sheet

4 BI
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R(g?) in the complex plane

IR(g?)

experimental sheet
Dispersion relation for the imaginary part (g2 < si)

6 = im L f @9 _1 /= InG(s)ee
R — oo 7rl_cz_q2 ™ S S—q2
7'm(q?)
o
- oo 49 s}r}m

Re(q?)

hysical sheet
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R(g?) in the complex plane

IR(g?)

experimental sheet

Dispersion relation for R with subtraction at g°> = 0

2 /’°° ImR(s)ds
sn S(s—q?)

R(g?) = R(0) + o

7m(g?) /
s ] ﬁﬁw‘D 8 Sphy /
— 2
Re(q?)
atp ° R

hysical sheet
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Parameterization and constra

The imaginary part of R is parameterized by two series of orthogonal polynomials T;(x)

29° —Spny —Sh
Z/ C,T,(X) X = Sth < q2 < Sphy

Sphyfsth

25,
_ Zophy 2
= -1 g > Sphy

Theoretical conditions on ImR(g?)
® R(4M2)is real = I(4M2) =0
® R(4M2) is real = I(4MZ) = 0
® R(co)isreal = /(c0) =0

Theoretical conditions on R(g?)
® Continuity at g% = 4M2
® R(4M2) is real and ReR(4M2) = pp

Experimental conditions on R(g?) and |R(q?)|

@ Space-like region (g? < 0) data for R from JLab and MIT-Bates
@ Time-like region (g% > 4M,%,) data for | R| from FENICE+DM2, BABAR , E835 and Lear
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