

"The Structure and Dynamics of Hadrons" International Workshop XXXIX on Gross Properties of Nuclei and Nuclear Excitations

Hirschegg, Kleinwalsertal, Austria, January 16th-22nd, 2011

Baryon Form Factors definition Space-like region $(q^2 < 0)$

- Electromagnetic current (q = p' p) $J^{\mu} = \langle \mathcal{B}(p') | j^{\mu} | \mathcal{B}(p) \rangle = e\overline{u}(p') \Big[\gamma^{\mu} F_1(q^2) + \frac{i\sigma^{\mu\nu}q_{\nu}}{2M} F_2(q^2) \Big] u(p)$
- Dirac and Pauli form factors F₁ and F₂ are real
- In the Breit frame

 $\begin{cases} p \\ p' \\ q \end{cases}$

$$\begin{array}{l} = (E, -\vec{q}/2) \\ = (E, \vec{q}/2) \\ = (0, \vec{q}) \end{array} \left\{ \begin{array}{l} \rho_q = J^0 = e \left[F_1 + \frac{q^2}{4M^2} F_2 \right] \\ \vec{J}_q = e \, \overline{u}(p') \vec{\gamma} u(p) \left[F_1 + F_2 \right] \end{array} \right.$$

• Sachs form factors $G_E = F_1 + \frac{q^2}{4M^2}F_2$ $G_M = F_1 + F_2$

• Normalizations

$$F_1(0) = Q_{\mathcal{B}}$$
 $G_E(0) = Q_{\mathcal{B}}$
 $F_2(0) = \kappa_{\mathcal{B}}$ $G_M(0) = \mu_{\mathcal{B}}$

pQCD asymptotic behavior Space-like region

Dirac form factor F₁

- Non-spin flip
- Two gluon propagators

•
$$F_1(q^2) \underset{q^2 \to -\infty}{\sim} (-q^2)^{-2}$$

Pauli form factor F₂

pQCD: as q² → -∞, asymptotic behaviors of F₁ and F₂ must follow counting rules
 Quarks exchange gluons to distribute

Spin flip

•
$$F_2(q^2) \underset{q^2 \to -\infty}{\sim} (-q^2)^{-3}$$

Sachs form factors G_E and G_M

momentum

•
$$G_{E,M}(q^2) \sim_{q^2 \to -\infty} (-q^2)^{-2}$$

• Ratio:
$$\frac{G_E}{G_M} \underset{q^2 \to -\infty}{\sim} \text{constant}$$

Baryon form factors Time-like region $(q^2 > 0)$

Crossing symmetry:

 $\langle \mathcal{B}(p')|j^{\mu}|\mathcal{B}(p)
angle
ightarrow \langle \overline{\mathcal{B}}(p')\mathcal{B}(p)|j^{\mu}|0
angle$

Form factors are complex functions of q²

Optical theorem

$$\text{Im}\langle \overline{\mathcal{B}}(p')\mathcal{B}(p)|j^{\mu}|0\rangle \sim \sum_{n} \langle \overline{\mathcal{B}}(p')\mathcal{B}(p)|j^{\mu}|n\rangle \langle n|j^{\mu}|0\rangle \implies$$

|*n*\are on-shell intermediate states: 2\pi, 3\pi, 4\pi, ...

Time-like asymptotic behavior
Phragmèn Lindelöf theorem:
If
$$f(z) \rightarrow a$$
 as $z \rightarrow \infty$ along a straight line,
and $f(z) \rightarrow b$ as $z \rightarrow \infty$ along a straight line,
and $f(z)$ is regular and bounded in
the angle between, then $a = b$ and $f(z) \rightarrow a$
uniformly in this angle.

$$\bigcup_{q^2 \rightarrow -\infty} G_{E,M}(q^2) = \lim_{q^2 \rightarrow +\infty} G_{e,M}(q^2) = \lim_{q^2 \rightarrow +\infty} G_{e,M}(q^2) = \lim_{q^2 \rightarrow +\infty} G_{e,M}(q^2)$$

Hirschegg - January 17th, 2011

Dispersion Relations and Nucleon Form Factors

 $\begin{cases} \operatorname{Im} \boldsymbol{F}_{1,2} \neq \boldsymbol{0} \\ \text{for } \boldsymbol{q}^2 > 4\boldsymbol{M}_{\pi}^2 \end{cases}$

lim $G_{E,M}(q^2)$

time-like

real

Cross sections and analyticity

e

Elastic scattering

$$\frac{d\sigma}{d\Omega} = \frac{\alpha^2 E'_e \cos^2 \frac{\theta}{2}}{4E_e^3 \sin^4 \frac{\theta}{2}} \left[G_E^2 - \tau \left(1 + 2(1 - \tau) \tan^2 \frac{\theta}{2} \right) G_M^2 \right] \frac{1}{1 - \tau} \quad \tau = \frac{q^2}{4M_B^2}$$

$$\underbrace{\overset{e^+}{\longrightarrow}}_{\overset{e^+}{\longrightarrow}} \underbrace{\overset{e^+}{d\sigma}}_{d\Omega} = \frac{\alpha^2 \beta C}{4q^2} \left[(1 + \cos^2 \theta) |G_M|^2 + \frac{1}{\tau} \sin^2 \theta |G_E|^2 \right] \quad \beta = \sqrt{1 - \frac{1}{\tau}}$$

Hirschegg - January 17th, 2011

Dispersion relations

Experimental inputs

- Space-like data on the real values of FF's from: $e^-\mathcal{B} \rightarrow e^-\mathcal{B}$ and $e^{-\uparrow}\mathcal{B} \rightarrow e^-\mathcal{B}^{\uparrow}$, with polarization
- Time-like data on moduli of FF's from: e⁺e⁻ → BB
- Time-like data on G_E - G_M relative phase from: $e^+e^- \rightarrow \mathcal{B}^{\uparrow}\overline{\mathcal{B}}$ (pol.)

- The form factors are **analytic** on the q^2 -plane with a **multiple cut** ($s_{th} = 4M_{\pi}^2, \infty$)
- Dispersion relation for the imaginary part $(q^2 < 0)$

$$G(q^2) = \lim_{\mathcal{R} \to \infty} \frac{1}{2\pi i} \oint_C \frac{G(z)dz}{z - q^2} = \frac{1}{\pi} \int_{s_{\text{th}}}^{\infty} \frac{\text{Im}G(s)ds}{s - q^2}$$

Dispersion relation for the logarithm $(q^2 < 0)$ B.V. Geshkenbein, Yad. Fiz. 9 (1969) 1232.

$$\ln G(q^2) = \frac{\sqrt{s_{\text{th}} - q^2}}{\pi} \int_{s_{\text{th}}}^{\infty} \frac{\ln |G(s)| ds}{(s - q^2)\sqrt{s - s_{\text{th}}}}$$

Theoretical ingredients

- Analyticity \Rightarrow dispersion relations
- Normalization and threshold values
- Asymptotic behavior ⇒ super-convergence relations

Dispersive approach: advantages and drawbacks

Advantages

) DR's are based on unitarity and analyticity \Rightarrow model-independent approach

DR's relate data from different processes in different energy regions

$$\begin{bmatrix} \text{space-like} \\ \text{form factor} \\ e\mathcal{B} \rightarrow e\mathcal{B} \end{bmatrix} = \int \begin{bmatrix} \text{Im}(\text{form factor}) \text{ or In} | \text{form factor} | \\ \text{over the time-like cut} (s_{\text{th}}, \infty) \\ e^+e^- \rightarrow \mathcal{B}\overline{\mathcal{B}} + \text{theory} \end{bmatrix}$$

Normalizations and theoretical constraints can be directly implemented

Form factors can be computed in the whole q²-complex plane

Drawbacks

Integral equation

Dispersion relation for the logarithm
 Regularization to stabilize solutions
 Model-independent approach
 No time-like |G_E| - |G_M| separation
 ⇒ |G^p_M| and |Gⁿ_M| in the unphysical region

The integral equation for G_M

Dispersion relation subtracted at t = 0 $\ln G(t) = \frac{t\sqrt{s_{\text{th}} - t}}{\pi} \int_{s_{\text{th}}}^{\infty} \frac{\ln |G(s)| ds}{s\sqrt{s - s_{\text{th}}(s - t)}}$

- Less dependent on the asymptotic behavior of the FF
- In $G(0) = 0 \implies$ no further terms have to be considered

Splitting the integral $\int_{s_{th}}^{\infty}$ into $\int_{s_{th}}^{s'_{phy}} + \int_{s'_{ohy}}^{\infty}$ we obtain the integral equation

$$\frac{\text{Data and Theory}}{\ln G(t) - I_{\text{phy}}^{\infty}(t)} = \frac{t\sqrt{s_{\text{th}} - t}}{\pi} \int_{s_{\text{th}}}^{s'_{\text{phy}}} \frac{\ln |G(s)|}{s\sqrt{s - s_{\text{th}}}(s - t)}$$

- To avoid instabilities around $s_{\rm phy} = 4M_N^2$, the upper boundary has been shifted to $s'_{\rm phy} = s_{\rm phy} + \Delta$, with $\Delta \simeq 0.5 \, {\rm GeV}^2$
- We impose continuity of the FF at s'_{phy} and s_{th} , in addition, at the upper boundary s'_{phy} , continuty of the first derivative is also required
- A regularization, depending on a free parameter *τ*, is introduced by requiring the FF total curvature in the unphysical region to be limited

Pion FF to fix the regularization parameter au

Space-like (DR) and time-like data (yellow bands) have been used as input in the integral equation to retrieve the time-like FF in the nucleon unphysical region.

Testing the method

Pion FF to fix the regularization parameter au

Space-like (DR) and time-like data (yellow bands) have been used as input in the integral equation to retrieve the time-like FF in the nucleon unphysical region (gray band).

Nucleon magnetic form factors

Hirschegg - January 17th, 2011

Dispersion Relations and Nucleon Form Factors

EPJC11 709

The ratio $R = \mu_p G_E^p / G_M^p$

- Dispersion relation for the imaginary part
 - Model-independent approach

• First time-like $|G_E| - |G_M|$ separation

 \Rightarrow Ratio in the whole q^2 complex plane

Data on $m{R}=\mu_{p}m{G}_{E}^{p}/m{G}_{M}^{p}$

Space-like region

- Old Rosenbluth data in agreement with space-like scaling $G_E^p \simeq G_M^p / \mu_P$
- New data from polarization techniques show unexplained increasing behavior
- Only polarization data have been used in the dispersive analysis

Time-like region

- Only two sets of data from BABAR and LEAR otained studying angular distributions
- Unique attempts to perform a time-like $|G_E^p| |G_M^p|$ separation
- Only BABAR data have been used in the dispersive analysis

Hirschegg - January 17th, 2011

We start from the imaginary part of the ratio $R(q^2)$, written in the most general and model-independent way as $Im[R(q^2)] =$ series of orthogonal polynomials

Theoretical constraints can be applied directly on the imaginary part Dispersion Relations The function $R(q^2)$ is reconstructed in time and space-like regions

Additional theoretical conditions as well as experimental constraints are finally imposed on the obtained analytic expression of $R(q^2)$

Hirschegg - January 17th, 2011

Hirschegg - January 17th, 2011

Hirschegg - January 17th, 2011

Hirschegg - January 17th, 2011

$R(q^2)$: space-like zero and phase

A sum rule for G_M^p

- Dispersion relation for the logarithm
 - Unphysical region suppression
 - Low-energy data —→ asymptotic behavior
 - \Rightarrow Check for the asymptotic power law

$|G^{ ho}_{ m {\it E}}(q^2)|$ and $|G^{ ho}_{ m {\it M}}(q^2)|$ from $\sigma_{ ho\overline{ ho}}$ and DR

EPJA32 421

$$|\widetilde{G}^{p}(q^{2})|^{2}=rac{\sigma_{p\overline{p}}(q^{2})}{rac{4\pilpha^{2}eta \mathcal{C}}{3s}}\left(1+rac{1}{2 au}
ight)^{-1}$$

Usually what is extracted from the cross section $\sigma(e^+e^- \rightarrow p\bar{p})$ is the effective time-like form factor $|\tilde{G}^p|$ obtained assuming $|G^p_E| = |G^p_M|$ i.e. $|R| = \mu_p$

Using our parametrization for *R* and the *BABAR* data on $\sigma(e^+e^- \rightarrow p\overline{p})$, $|G_E^p|$ and $|G_M^p|$ may be disentangled

$|G^{ ho}_{E}(q^2)|$ and $|G^{ ho}_{M}(q^2)|$ from $\sigma_{ ho\overline{ ho}}$ and DR

EPJA32 421

$$|G_M(q^2)|^2 = rac{\sigma_{p\overline{p}}(q^2)}{rac{4\pilpha^2eta \mathcal{C}}{3s}} \left(1+rac{|R(q^2)|}{2\mu_p au}
ight)^{-1}$$

Usually what is extracted from the cross section $\sigma(e^+e^- \rightarrow p\overline{p})$ is the effective time-like form factor $|\widetilde{G}^p|$ obtained assuming $|G^p_E| = |G^p_M|$ i.e. $|R| = \mu_p$

Using our parametrization for *R* and the *BABAR* data on $\sigma(e^+e^- \rightarrow p\overline{p})$, $|G_E^p|$ and $|G_M^p|$ may be disentangled

Dispersion relations and sum rules Geshkenbein, loffe, Shifman Yad. Fiz. 20, 128 (1974)

DR's connect space and time values of a form factor $G(q^2)$

$$G(q^2) = \frac{1}{\pi} \int_{s_{\text{th}}}^{\infty} \frac{\text{Im}G(s)ds}{s - q^2} \xrightarrow{e p \to e p}_{0} \text{ no data } e^{+e} \to p\bar{p}$$

- There are no data in the unhysical region $[s_{th}, s_{phy}]$
- We need to know the asymptotic behavior

They applied the DR for the imaginary part to the function

$$\phi(z) = f(z) \frac{\ln G(z)}{z\sqrt{s_{\text{th}} - z}} \quad \text{with} \quad \int_0^{s_{\text{phy}}} f^2(z) dz << 1$$

Advantages The DR integral contains the modulus |G(s)|

Drawbacks

The unhysical region contribution is suppressed Drawback Zeros of G(z) are poles for $\phi(z)$

Attenuated DR and sum rule

Assuming $G(q^2) \neq 0$ and using the Cauchy theorem, we have the new DR

Convergence relation to find the asymptotic power-law behavior of G_M^p

$$-\int_{-\infty}^{0} \frac{\operatorname{Im}[f(t)] \ln G(t)}{t\sqrt{s_{\text{th}} - t}} dt = \int_{s_{\text{th}}}^{\infty} \frac{f(s) \ln |G(s)|}{s\sqrt{s - s_{\text{th}}}} ds \approx \underbrace{\int_{s_{\text{phy}}}^{\infty} \frac{f(s) \ln |G(s)|}{s\sqrt{s - s_{\text{th}}}} ds}_{\text{Time-like data + } s^{-n}}$$
I is the free parameter

Sum rule: result for G_M^p

"To do" list

Time-like $|G_E| - |G_M|$ Separation: DR and data

Dispersive analyses: integral equation, sum rule,...

Experimental observation in $p\overline{p} \rightarrow \pi^0 I^+ I^-$ [C. Adamuscin, E.A. Kuraev, E. Tomasi-Gustafsson, F. Maas, Phys. Rev. C75, 045205 (2007)]

Asymptotic behavior: DR and data for the phase

Zeros \leftrightarrow phases: DR and data

Unphysical region, VMD contributions: integral equation, sum rule, data on $p\overline{p} \rightarrow \pi^0 l^+ l^-$

24

... On the same topic...

Tuesday at 17:30 **Yue Ma** "Time-like Form Factor from PANDA"

Wednesday at 9:00 **Diego Bettoni** "Time-like Electromaganetic Form Factors (Overview)"

Wednesday at 11:00 Carl Carlson "Two Photon Physics in the Time-like and Spacelike Regions"

Wednesday at 17:30 Marco Maggiora "Hadron Structure at BESIII"

Additional slides

Hirschegg - January 17th, 2011 Dispersion Relations and Nucleon Form Factors

$\gamma\gamma$ exchange from $e^+e^- \rightarrow p\overline{p}\gamma$ **BABAR** data

PLB659, 197

$$\mathcal{A}(\cos heta,q^2) = rac{\displaystyle rac{d\sigma}{d\Omega}(\cos heta,q^2) - \displaystyle rac{d\sigma}{d\Omega}(-\cos heta,q^2)}{\displaystyle rac{d\sigma}{d\Omega}(\cos heta,q^2) + \displaystyle rac{d\sigma}{d\Omega}(-\cos heta,q^2)}$$

$e^+e^- \rightarrow p\overline{p}$ The incredible threshold value

PRD73, 012005

$e^+e^- \rightarrow p\overline{p}$ The incredible threshold value

PRD73, 012005

Höler, Mergell, Meissner, Hammer procedure

- Optical theorem
 - Dispersion relation for the imaginary part
 - No time-like $|G_E| |G_M|$ separation

 $\implies G_E^{\rho,n}$ and $G_M^{\rho,n}$ in space and time-like region

H₂M₂: Höler, Mergell, Meissner, Hammer,...

PRC75 035202

Spectral decomposition
$$\operatorname{Im}\langle \overline{\mathcal{B}}(p')\mathcal{B}(p)|j^{\mu}|0\rangle \sim \sum_{n} \langle \overline{\mathcal{B}}(p')\mathcal{B}(p)|j^{\mu}|n\rangle \langle n|j^{\mu}|0\rangle \implies \begin{cases} \operatorname{Im} F_{1,2} \neq 0\\ \text{for } q^{2} > 4M_{\pi}^{2} \end{cases}$$

H₂M₂: Höler, Mergell, Meissner, Hammer,...

PRC75 035202

- 2 π continuum is knowm for $q^2 \in [4M_{\pi}^2, \sim 40M_{\pi}^2]$
- The singularity on the second Riemann sheet in $\pi N \rightarrow \pi N$ amplitude gives the strong shoulder at threshold
- Poles for higher mass states

- KK continuum from analytic continuation of KN scattering amplitude
- Further contribution in the ϕ -region is due to $\pi \rho$ exchange
- Anomalous threshold behavior is masked because the pole in the second Riemann sheet is not close to $(3M_{\pi})^2$
- Poles for higher mass states

H_2M_2 : Theoretical constraints and result for G_M^p PRC75 035202

Superconvergence relations:
$$\int_{4M_{\pi}^2}^{\infty} \text{Im } F_{1,2}(q^2) dq^2 = \int_{4M_{\pi}^2}^{\infty} q^2 \text{Im } F_2(q^2) dq^2 = 0$$

The Lomon Model

VMD + quark form factors

- DRs \longrightarrow analytic VM propagators
 - Time-like $|G_E| |G_M|$ separation
 - \Rightarrow $G_E^{p,n}$ and $G_M^{p,n}$ in space and time-like region

Analyticitization of phenomenological models The Lomon Model

PRC66 045501

The **Lomon** parameterization for nucleon FF's is based on the Gari-Krümpelmann model, and it includes:

- coupling to the photons through vector meson exchange [VMD in terms of propagators $F_{M}(q^2)$, $M = \rho$, ω , ϕ , ρ' , ω']
- hadron/quark form factors $A_M(q^2)$ at vector meson-nucleon (quark) vertices to control transition to perturbative QCD at high momentum transfers

Analytic extension: space-like \longrightarrow time-like

- F_M for broad mesons: simple poles \longrightarrow poles with finite energy-dependent widths
- Dispersion realtions: rigorous analytic continuation of F_M from time-like to space-like region

Lomon Model: Results for the proton

Lomon Model: Results for the neutron

$R(q^2)$ in the complex plane

$R(q^2)$ in the complex plane

$R(q^2)$ in the complex plane

Hirschegg - January 17th, 2011

Parameterization and constraints

The imaginary part of R is parameterized by two series of orthogonal polynomials $T_i(x)$

$$\operatorname{Im} R(q^2) \equiv I(q^2) = \begin{cases} \sum_i C_i T_i(x) & x = \frac{2q^2 - s_{\text{phy}} - s_{\text{th}}}{s_{\text{phy}} - s_{\text{th}}} & s_{\text{th}} \leq q^2 \leq s_{\text{phy}} \\ \\ \sum_j D_j T_j(x') & x' = \frac{2s_{\text{phy}}}{q^2} - 1 & q^2 > s_{\text{phy}} \end{cases} \quad \begin{aligned} s_{\text{th}} = 4M_\pi^2 \\ s_{\text{phy}} = 4M_N^2 \end{cases}$$

Theoretical conditions on $ImR(q^2)$

• $R(4M_{\pi}^2)$ is real $\implies I(4M_{\pi}^2) = 0$

•
$$R(4M_N^2)$$
 is real $\implies I(4M_N^2) = 0$

$$R(\infty)$$
 is real $\implies l(\infty) = 0$

Theoretical conditions on
$$R(q^2)$$
• Continuity at $q^2 = 4M_{\pi}^2$ • $R(4M_N^2)$ is real and $\text{Re}R(4M_N^2) = \mu_p$

Experimental conditions on $R(q^2)$ and $|R(q^2)|$

Space-like region ($q^2 < 0$) data for R from JLab and MIT-Bates Time-like region ($q^2 \ge 4M_N^2$) data for |R| from FENICE+DM2, BABAR, E835 and Lear

