Dispersion Relations

 and Nucleon Form Factors
 < $\left\langle/ \bar{z}=x_{6}\right.$ Perugia University and INFN Perugia, Italy
"The Structure and Dynamics of Hadrons" International Workshop XXXIX on Gross Properties of Nuclei and Nuclear Excitations

Hirschegg, Kleinwalsertal, Austria, January $16^{\text {th }}-2^{\text {nd }}, 2011$

Agenda

Baryon form factors and Dispersion Relations

The integral equation for G_{M}^{p} and G_{M}^{n}

The sum rule for G_{M}^{p}

Baryon Form Factors definition Space-like region ($q^{2}<0$)

- Electromagnetic current $\left(q=p^{\prime}-p\right)$

$$
J^{\mu}=\left\langle\mathcal{B}\left(p^{\prime}\right)\right| j^{\mu}|\mathcal{B}(p)\rangle=e \bar{u}\left(p^{\prime}\right)\left[\gamma^{\mu} F_{1}\left(q^{2}\right)+\frac{i \sigma^{\mu \nu} q_{\nu}}{2 M} F_{2}\left(q^{2}\right)\right] u(p)
$$

Dirac and Pauli form factors F_{1} and F_{2} are real

- In the Breit frame

$$
\left\{\begin{array} { l }
{ p = (E , - \vec { q } / 2) } \\
{ p ^ { \prime } = (E , \vec { q } / 2) } \\
{ q = (0 , \vec { q }) }
\end{array} \quad \left\{\begin{array}{l}
\rho_{q}=J^{0}=e\left[F_{1}+\frac{q^{2}}{4 M^{2}} F_{2}\right] \\
\vec{J}_{q}=e \bar{u}\left(p^{\prime}\right) \vec{\gamma} u(p)\left[F_{1}+F_{2}\right]
\end{array}\right.\right.
$$

$$
2 M u\left(p^{\prime}\right) \gamma^{\mu} u(p)=\bar{u}\left(p^{\prime}\right)\left[\left(p+p^{\prime}\right)^{\mu}+i \sigma^{\mu \nu} q_{\nu}\right] u(p)
$$

$$
\bar{u}(-\vec{p}) u(\vec{p})=E / M \quad u^{\dagger}(-\vec{p}) u(\vec{p})=1
$$

- Sachs form factors

$$
\begin{aligned}
& G_{E}=F_{1}+\frac{q^{2}}{4 M^{2}} F_{2} \\
& G_{M}=F_{1}+F_{2}
\end{aligned}
$$

- Normalizations

$$
\begin{array}{ll}
F_{1}(0)=Q_{\mathcal{B}} & G_{E}(0)=Q_{\mathcal{B}} \\
F_{2}(0)=\kappa_{\mathcal{B}} & G_{M}(0)=\mu_{\mathcal{B}}
\end{array}
$$

pQCD asymptotic behavior Space-like region

Dirac form factor F_{1}

- Non-spin flip
- Two gluon propagators
- $F_{1}\left(q^{2}\right) \underset{q^{2} \rightarrow-\infty}{\sim}\left(-q^{2}\right)^{-2}$
(pQCD: as $q^{2} \rightarrow-\infty$, asymptotic behaviors of F_{1} and F_{2} must follow counting rules
- Quarks exchange gluons to distribute momentum
- Spin flip
- Two gluon propagators
- $F_{2}\left(q^{2}\right) \underset{q^{2} \rightarrow-\infty}{\sim}\left(-q^{2}\right)^{-3}$

Sachs form factors G_{E} and G_{M}

- $G_{E, M}\left(q^{2}\right) \underset{q^{2} \rightarrow-\infty}{\sim}\left(-q^{2}\right)^{-2}$
- Ratio: $\frac{G_{E}}{G_{M}} \underset{q^{2} \rightarrow-\infty}{\sim}$ constant

Baryon form factors Time-like region $\left(q^{2}>0\right)$

- Crossing symmetry:

$$
\left\langle\mathcal{B}\left(p^{\prime}\right)\right| j^{\mu}|\mathcal{B}(p)\rangle \rightarrow\left\langle\overline{\mathcal{B}}\left(p^{\prime}\right) \mathcal{B}(p)\right| j^{\mu}|0\rangle
$$

- Form factors are complex functions of q^{2}

Optical theorem

$$
\operatorname{Im}\left\langle\overline{\mathcal{B}}\left(p^{\prime}\right) \mathcal{B}(p)\right| j^{\mu}|0\rangle \sim \sum_{n}\left\langle\overline{\mathcal{B}}\left(p^{\prime}\right) \mathcal{B}(p)\right| j^{\mu}|n\rangle\langle n| j^{\mu}|0\rangle \Longrightarrow\left\{\begin{array}{l}
\operatorname{Im} F_{1,2} \neq 0 \\
\text { for } q^{2}>4 M_{\pi}^{2}
\end{array}\right.
$$

$|n\rangle$ are on-shell intermediate states: $2 \pi, 3 \pi, 4 \pi, \ldots$

Time-like asymptotic behavior

Phragmèn Lindelöf theorem:

If $f(z) \rightarrow \boldsymbol{a}$ as $z \rightarrow \infty$ along a straight line, and $f(z) \rightarrow b$ as $z \rightarrow \infty$ along another straight line, and $f(z)$ is regular and bounded in the angle between, then $a=b$ and $f(z) \rightarrow a$ uniformly in this angle.

- $\lim _{q^{2} \rightarrow-\infty} G_{E, M}\left(q^{2}\right)=\lim _{q^{2} \rightarrow+\infty} G_{E, M}\left(q^{2}\right)$

- $G_{E, M} \underset{q^{2} \rightarrow+\infty}{\sim}\left(q^{2}\right)^{-2} \quad$ real

Cross sections and analyticity

$\underline{q^{2} \text {-complex plane }}$

$\operatorname{Im}\left[q^{2}\right]$ Space-like region $e \mathcal{B} \rightarrow e \mathcal{B}$ FF's are real

Crossing: tot. helicity $=\left\{\begin{array}{l}1 \Rightarrow G_{E} \\ 0 \Rightarrow G_{M}\end{array} \quad G_{E}\left(4 M_{\mathcal{B}}^{2}\right)=G_{M}\left(4 M_{\mathcal{B}}^{2}\right)\right.$

Elastic scattering

$$
\frac{d \sigma}{d \Omega}=\frac{\alpha^{2} E_{e}^{\prime} \cos ^{2} \frac{\theta}{2}}{4 E_{e}^{3} \sin ^{4} \frac{\theta}{2}}\left[G_{E}^{2}-\tau\left(1+2(1-\tau) \tan ^{2} \frac{\theta}{2}\right) G_{M}^{2}\right] \frac{1}{1-\tau} \quad \tau=\frac{q^{2}}{4 M_{\mathcal{B}}^{2}}
$$

$$
e^{e^{-b}} \frac{e^{+}}{\beta}
$$

Annihilation

$$
\frac{d \sigma}{d \Omega}=\frac{\alpha^{2} \beta C}{4 q^{2}}\left[\left(1+\cos ^{2} \theta\right)\left|G_{M}\right|^{2}+\frac{1}{\tau} \sin ^{2} \theta\left|G_{E}\right|^{2}\right] \quad \beta=\sqrt{1-\frac{1}{\tau}}
$$

Dispersion relations

Experimental inputs

- Space-like data on the real values of FF's from: $\boldsymbol{e}^{-\mathcal{B}} \rightarrow \boldsymbol{e}^{-\mathcal{B}}$ and $\boldsymbol{e}^{-\uparrow \mathcal{B}} \rightarrow \boldsymbol{e}^{-} \mathcal{B}^{\uparrow}$, with polarization
- Time-like data on moduli of FF 's from: $\boldsymbol{e}^{+} \boldsymbol{e}^{-} \rightarrow \mathcal{B} \overline{\mathcal{B}}$
- Time-like data on $G_{E}-G_{M}$ relative phase from: $\boldsymbol{e}^{+} \boldsymbol{e}^{-} \rightarrow \mathcal{B}^{\uparrow} \overline{\mathcal{B}}$ (pol.)

Theoretical ingredients

Analyticity \Rightarrow dispersion relations

- Normalization and threshold values
- Asymptotic behavior \Rightarrow super-convergence relations

Dispersion Relations and Nucleon Form Factors

Dispersive approach: advantages and drawbacks

Advantages

DR's are based on unitarity and analyticity \Rightarrow model-independent approach

- DR's relate data from different processes in different energy regions

$$
\left[\begin{array}{c}
\text { space-like } \\
\text { form factor } \\
e \mathcal{B} \rightarrow e \mathcal{B}
\end{array}\right]=\int\left[\begin{array}{c}
\operatorname{Im}(\text { form factor }) \text { or In } \mid \text { form factor } \\
\text { over the time-like cut }\left(s_{\text {th }}, \infty\right) \\
e^{+} e^{-} \rightarrow \mathcal{B} \overline{\mathcal{B}}+\text { theory }
\end{array}\right]
$$

- Normalizations and theoretical constraints can be directly implemented
- Form factors can be computed in the whole q^{2}-complex plane

Drawbacks

- Very long-range integration
- Remedy \#1 pQCD power laws
- Remedy \#2 Subtracted DR's

No data in the unphysical region, crucial in dispersive analyses

Integral equation

- Dispersion relation for the logarithm
- Regularization to stabilize solutions
- Model-independent approach
- No time-like $\left|G_{E}\right|-\left|G_{M}\right|$ separation
$\Rightarrow\left|G_{M}^{p}\right|$ and $\left|G_{M}^{n}\right|$ in the unphysical region

$$
\begin{aligned}
& \text { Dispersion relation subtracted at } t=0 \\
& \ln G(t)=\frac{t \sqrt{s_{\mathrm{th}}-t}}{\pi} \int_{s_{\mathrm{th}}}^{\infty} \frac{\ln |G(s)| d s}{s \sqrt{s-s_{\mathrm{th}}}(s-t)}
\end{aligned}
$$

- Less dependent on the asymptotic behavior of the FF
In $G(0)=0 \Longrightarrow$ no further terms have to be considered

Splitting the integral $\int_{s_{\mathrm{th}}}^{\infty}$ into $\int_{s_{\mathrm{th}}}^{s_{\mathrm{phy}}^{\prime}}+\int_{s_{\mathrm{phy}}^{\prime}}^{\infty}$ we obtain the integral equation

Data and Theory

Unknown

$$
\overbrace{\ln G(t)-I_{\mathrm{phy}}^{\infty}(t)}^{\infty}=\frac{t \sqrt{s_{\mathrm{th}}-t}}{\pi} \int_{s_{\mathrm{th}}}^{s_{\mathrm{phy}}^{\prime}} \frac{\overbrace{\mathrm{h}|G(s)|}}{s \sqrt{s-s_{\mathrm{th}}}(s-t)} d s
$$

(Co avoid instabilities around $s_{\text {phy }}=4 M_{N}^{2}$, the upper boundary has been shifted to $s_{\text {phy }}^{\prime}=s_{\text {phy }}+\Delta$, with $\Delta \simeq 0.5 \mathrm{GeV}^{2}$

- We impose continuity of the FF at $s_{\text {phy }}^{\prime}$ and s_{th}, in addition, at the upper boundary $s_{\text {phy }}^{\prime}$, continuty of the first derivative is also required
- A regularization, depending on a free parameter τ, is introduced by requiring the FF total curvature in the unphysical region to be limited

Pion FF to fix the regularization parameter τ
Space-like (DR) and time-like data (yellow bands) have been used as input in the integral equation to retrieve the time-like FF in the nucleon unphysical region.

Pion FF to fix the regularization parameter τ Space-like (DR) and time-like data (yellow bands) have been used as input in the integral equation to retrieve the time-like FF in the nucleon unphysical region (gray band).

Nucleon magnetic form factors

$$
\begin{array}{ll}
M_{1} \sim 770 \mathrm{MeV} & \Gamma_{1} \sim 350 \mathrm{MeV} \\
\hline M_{2} \sim 1600 \mathrm{MeV} & \Gamma_{2} \sim 350 \mathrm{MeV}
\end{array}
$$

The ratio $\quad R=\mu_{p} G_{E}^{p} / G_{M}^{p}$

- Dispersion relation for the imaginary part
- Model-independent approach
- First time-like $\left|G_{E}\right|-\left|G_{M}\right|$ separation
\Rightarrow Ratio in the whole q^{2} complex plane

Data on $\boldsymbol{R}=\mu_{p} \mathcal{G}_{E}^{p} / \boldsymbol{G}_{M}^{p}$

Space-iike region

- Old Rosenbluth data in agreement with space-like scaling $G_{E}^{p} \simeq G_{M}^{p} / \mu_{p}$
- New data from polarization techniques show unexplained increasing behavior
- Only polarization data have been used in the dispersive analysis

Time-like region

- Only two sets of data from BABAR and LEAR otained studying angular distributions
- Unique attempts to perform a time-like $\left|G_{E}^{p}\right|-\left|G_{M}^{p}\right|$ separation
- Only Babar data have been used in the dispersive analysis

We start from the imaginary part of the ratio $\boldsymbol{R}\left(\boldsymbol{q}^{2}\right)$, written in the most general and model-independent way as $\operatorname{Im}\left[\boldsymbol{R}\left(\boldsymbol{q}^{2}\right)\right]=$ series of orthogonal polynomials

Theoretical constraints can be applied directly on the imaginary part

The function $R\left(q^{2}\right)$ is reconstructed in time and space-like regions

Additional theoretical conditions as well as experimental constraints are finally imposed on the obtained analytic expression of $\boldsymbol{R}\left(\boldsymbol{q}^{2}\right)$

Hirschegg - January 17 ${ }^{\text {th }}, 2011$
Dispersion Relations and Nucleon Form Factors

Dispersion Relations and Nucleon Form Factors

Hirschegg - January 17 ${ }^{\text {th }}, 2011$
Dispersion Relations and Nucleon Form Factors

Hirschegg - January 17 ${ }^{\text {th }}, 2011$
Dispersion Relations and Nucleon Form Factors

Space-Iike zero

$$
t_{0}^{B_{0} A B A R}=(-10 \pm 1) \mathrm{GeV}^{2}
$$

Phase from DR

$$
\phi\left(q^{2}\right)=-\frac{\sqrt{q^{2}-s_{0}}}{\pi} \operatorname{Pr} \int_{s_{0}}^{\infty} \frac{\ln |R(s)| d s}{s-s_{0}\left(s-q^{2}\right)}
$$

Asymptotic $G_{E}^{P}\left(q^{2}\right) / G_{M}^{p}\left(q^{2}\right)$

- Real asymptotic values for G_{E}^{p} / G_{M}^{p}

$$
\frac{G_{E}^{p}}{G_{M}^{p}}\left|q^{2}\right| \rightarrow \infty \quad-1.0 \pm 0.2
$$

- Asymptotic behavior of F_{2} / F_{1}

$$
\frac{q^{2}}{4 M_{N}^{2}}\left|\frac{F_{2}}{F_{1}}\right| \underset{\left|q^{2}\right| \rightarrow \infty}{ }\left|\frac{G_{E}^{p}}{G_{M}^{p}}-1\right|=2.0 \pm 0.2
$$

pQCD prediction

$$
\left|\frac{G_{E}^{p}\left(q^{2}\right)}{G_{M}^{p}\left(q^{2}\right)}\right| \underset{\left|q^{2}\right| \rightarrow \infty}{\longrightarrow}
$$

A sum rule for G_{M}^{p}

Dispersion relation for the logarithm

- Unphysical region suppression
- Low-energy data \longrightarrow asymptotic behavior
\Rightarrow Check for the asymptotic power law

$$
\left|\widetilde{G}^{p}\left(q^{2}\right)\right|^{2}=\frac{\sigma_{p \bar{p}}\left(q^{2}\right)}{\frac{4 \pi \alpha^{2} \beta C}{3 s}}\left(1+\frac{1}{2 \tau}\right)^{-1}
$$

- Usually what is extracted from the cross section $\sigma\left(e^{+} e^{-} \rightarrow p \bar{p}\right)$ is the effective time-like form factor $\left|\widetilde{G}^{p}\right|$ obtained assuming $\left|G_{E}^{p}\right|=\left|G_{M}^{p}\right|$ i.e. $|R|=\mu_{p}$

Using our parametrization for R and the BABAR data on $\sigma\left(e^{+} e^{-} \rightarrow p \bar{p}\right)$, $\left|G_{E}^{p}\right|$ and $\left|G_{M}^{p}\right|$ may be disentangled

$$
\left|G_{M}\left(q^{2}\right)\right|^{2}=\frac{\sigma_{p \bar{p}}\left(q^{2}\right)}{\frac{4 \pi \alpha^{2} \beta C}{3 s}}\left(1+\frac{\left|R\left(q^{2}\right)\right|}{2 \mu_{p} \tau}\right)^{-1}
$$

Usually what is extracted from the cross section $\sigma\left(e^{+} e^{-} \rightarrow p \bar{p}\right)$ is the effective time-like form factor $\left|\widetilde{G}^{p}\right|$ obtained assuming $\left|G_{E}^{p}\right|=\left|G_{M}^{p}\right|$
i.e. $|R|=\mu_{p}$

- Using our parametrization for R and the BABAR data on $\sigma\left(e^{+} e^{-} \rightarrow p \bar{p}\right)$, $\left|G_{E}^{p}\right|$ and $\left|G_{M}^{p}\right|$ may be disentangled

Dispersion relations and sum rules

Geshkenbeĭn, loffe, Shifman Yad. Fiz. 20, 128 (1974)

- DR's connect space and time values of a form factor $G\left(q^{2}\right)$

$$
G\left(q^{2}\right)=\frac{1}{\pi} \int_{s_{\mathrm{th}}}^{\infty} \frac{\operatorname{lm} G(s) d s}{s-q^{2}} \quad \text { ep ep } \quad \underset{s_{\mathrm{th}}}{\text { no data } e^{e^{+} e^{-} \leftrightarrow p \bar{p}}} \longrightarrow \mathrm{~S}_{\mathrm{phy}} q^{2}
$$

- The imaginary part is not experimentally accessible
- There are no data in the unhysical region [$s_{\mathrm{th}}, s_{\mathrm{phy}}$]
- We need to know the asymptotic behavior
- They applied the DR for the imaginary part to the function

$$
\phi(z)=f(z) \frac{\ln G(z)}{z \sqrt{s_{\mathrm{th}}-z}} \quad \text { with } \quad \int_{0}^{s_{\mathrm{phy}}} f^{2}(z) d z \ll 1
$$

The DR integral contains the modulus $|G(s)|$

- The unhysical region contribution is suppressed

Assuming $G\left(q^{2}\right) \neq 0$ and using the Cauchy theorem, we have the new DR

$$
\oint_{c} \phi(z) d z=0
$$

$$
\underbrace{-\int_{-\infty}^{0} \frac{\operatorname{Im}[f(t)] \ln G(t)}{t \sqrt{s_{\mathrm{th}}-t}} d t}_{\text {Space-like }}=\underbrace{\int_{s_{\mathrm{th}}}^{\infty} \frac{f(s) \ln |G(s)|}{s \sqrt{s-s_{\mathrm{th}}}} d s}_{\text {Time-like }}
$$

Convergence relation to find the asymptotic power-law behavior of G_{M}^{p}

$$
\underbrace{-\int_{-\infty}^{0} \frac{\operatorname{lm}[f(t)] \ln G(t)}{t \sqrt{s_{\mathrm{th}}-t}} d t}_{\text {Space-like data }+(-t)^{-n}}=\int_{s_{\mathrm{th}}}^{\infty} \frac{f(s) \ln |G(s)|}{s \sqrt{s-s_{\mathrm{th}}}} d s \approx \underbrace{\int_{s_{\mathrm{phy}}}^{\infty} \frac{f(s) \ln |G(s)|}{s \sqrt{s-s_{\mathrm{th}}}} d s}_{\text {Time-like data }+s^{-n}}
$$

\boldsymbol{n} is the free parameter

Sum rule: result for G_{M}^{p}

$$
c_{c^{2}\left(q^{2}\right)_{\left|q^{2}\right|-\infty} \propto^{\alpha}\left|q^{2}\right|-(2 x+2.0 .8)}
$$

Time-like $\left|G_{E}\right|-\left|G_{M}\right|$ Separation: DR and data

Understand threshold effect(s):

Dispersive analyses: integral equation, sum rule,...
Experimental observation in $p \bar{p} \rightarrow \pi^{0} I^{+} I^{-}$
[C. Adamuscin, E.A. Kuraev, E. Tomasi-Gustafsson, F. Maas, Phys. Rev. C75, 045205 (2007)]

Asymptotic behavior: DR and data for the phase

Zeros \leftrightarrow phases: DR and data

Unphysical region, VMD contributions:
integral equation, sum rule, data on $p \bar{p} \rightarrow \pi^{0} I^{+} I^{-}$

... On the same topic...

Tuesday at 17:30
Yue Ma
"Time-like Form Factor from PANDA"

Wednesday at 9:00
Diego Bettoni
"Time-like Electromaganetic Form Factors (Overview)"

Wednesday at 11:00
Carl Carlson
"Two Photon Physics in the Time-like and Spacelike Regions"
Wednesday at 17:30
Marco Maggiora
"Hadron Structure at BESIII"

Additional slides

$$
\mathcal{A}\left(\cos \theta, q^{2}\right)=\frac{\frac{d \sigma}{d \Omega}\left(\cos \theta, q^{2}\right)-\frac{d \sigma}{d \Omega}\left(-\cos \theta, q^{2}\right)}{\frac{d \sigma}{d \Omega}\left(\cos \theta, q^{2}\right)+\frac{d \sigma}{d \Omega}\left(-\cos \theta, q^{2}\right)}
$$

$\boldsymbol{e}^{+} \boldsymbol{e}^{-} \rightarrow p \bar{p}$

The incredible threshold value

$$
\sigma\left(e^{+} e^{-} \rightarrow p \bar{p}\right)=\frac{4 \pi \alpha^{2} \beta C}{3 q^{2}}\left[\left|G_{M}^{p}\right|^{2}+\frac{2 M_{p}^{2}}{q^{2}}\left|G_{E}^{p}\right|^{2}\right] \underset{q \rightarrow 2 M_{p}}{\longrightarrow} \frac{\pi \alpha^{2} \beta C}{2 M_{p}^{2}}\left|G^{p}\right|^{2}
$$

$$
\begin{aligned}
& \text { At threshold } \\
& \qquad \begin{array}{l}
\sigma\left(e^{+} e^{-} \rightarrow p \bar{p}\right)=0.80 \pm 0.05 \mathrm{nb}
\end{array} \\
& \boldsymbol{e}^{+} \boldsymbol{e}^{-} \rightarrow p \bar{p} \text { is the only endothermic } \\
& \text { process that shows this peculiarity }
\end{aligned}
$$

$\boldsymbol{e}^{+} \boldsymbol{e}^{-} \rightarrow p \bar{p}$

The incredible threshold value

$$
\begin{gathered}
\text { At threshold } \\
\sigma\left(e^{+} e^{-} \rightarrow p \bar{p}\right)=0.80 \pm 0.05 \mathrm{nb} \\
e^{+} e^{-} \rightarrow p \bar{p} \text { is the only endothermic } \\
\text { process that shows this peculiarity }
\end{gathered}
$$

Where does the factor C come from?

$$
\beta C=\sqrt{1-\frac{4 M_{P}^{2}}{q^{2}}} C=\left\{\begin{array}{l}
\text { finite at } \\
\text { threshold }
\end{array}\right.
$$

Holer, Mergell, Meissner, Hammer procedure

- Optical theorem
- Dispersion relation for the imaginary part
- No time-like $\left|G_{E}\right|-\left|G_{M}\right|$ separation
$\Rightarrow G_{E}^{p, n}$ and $G_{M}^{p, n}$ in space and time-like region

$$
\operatorname{Im}\left\langle\overline{\mathcal{B}}\left(p^{\prime}\right) \mathcal{B}(p)\right| j^{\mu}|0\rangle \sim \sum_{n}\left\langle\overline{\mathcal{B}}\left(p^{\prime}\right) \mathcal{B}(p)\right| j^{\mu}|n\rangle\langle n| j^{\mu}|0\rangle \Longrightarrow\left\{\begin{array}{l}
\operatorname{Im} F_{1,2} \neq 0 \\
\text { for } q^{2}>4 M_{\pi}^{2}
\end{array}\right.
$$

$\mathbf{H}_{2} \mathbf{M}_{2}$: Höler, Mergell, Meissner, Hammer,

Spectral decomposition

$$
\operatorname{Im}\left\langle\overline{\mathcal{B}}\left(p^{\prime}\right) \mathcal{B}(p)\right| j^{\mu}|0\rangle \sim \sum_{n}\left\langle\overline{\mathcal{B}}\left(p^{\prime}\right) \mathcal{B}(p)\right| j^{\mu}|n\rangle\langle n| j^{\mu}|0\rangle \Longrightarrow\left\{\begin{array}{l}
\operatorname{Im} F_{1,2}^{V, s} \neq 0 \\
\text { for } q^{2}>4 M_{\pi}^{2}
\end{array}\right.
$$

- 2π continuum is knowm for $q^{2} \in\left[4 M_{\pi}^{2}, \sim 40 M_{\pi}^{2}\right]$
- The singularity on the second Riemann sheet in $\pi N \rightarrow \pi N$ amplitude gives the strong shoulder at thresholdPoles for higher mass states

- $K K$ continuum from analytic continuation of $K N$ scattering amplitude
(Further contribution in the ϕ-region is due to $\pi \rho$ exchange
- Anomalous threshold behavior is masked because the pole in the second Riemann sheet is not close to $\left(3 M_{\pi}\right)^{2}$
Poles for higher mass states
- Superconvergence relations: $\int_{4 M_{\pi}^{2}}^{\infty} \operatorname{Im} F_{1,2}\left(q^{2}\right) d q^{2}=\int_{4 M_{\pi}^{2}}^{\infty} q^{2} \operatorname{Im} F_{2}\left(q^{2}\right) d q^{2}=0$
- Asymtpotic behaviors from perturbative QCD

The Lomon Model

- VMD + quark form factors

DRs \longrightarrow analytic VM propagators

- Time-like $\left|G_{E}\right|-\left|G_{M}\right|$ separation
$\Rightarrow G_{E}^{p, n}$ and $G_{M}^{p, n}$ in space and time-like region

Analyticitization of phenomenological models The Lomon Model

The Lomon parameterization for nucleon FF's is based on the Gari-Krümpelmann model, and it includes:

- coupling to the photons through vector meson exchange [VMD in terms of propagators $F_{\mathrm{M}}\left(q^{2}\right), M=\rho, \omega, \phi, \rho^{\prime}, \omega^{\prime}$]
- hadron/quark form factors $\boldsymbol{A}_{\boldsymbol{M}}\left(\boldsymbol{q}^{2}\right)$ at vector meson-nucleon (quark) vertices to control transition to perturbative QCD at high momentum transfers

Analytic extension: space-Iike \longrightarrow time-Iike

- F_{M} for broad mesons: simple poles \longrightarrow poles with finite energy-dependent widths
- Dispersion realtions: rigorous analytic continuation of F_{M} from time-like to space-like region

Lomon Model: Results for the proton

Space-like region: $R_{p}=\mu_{p} \frac{G_{E}^{p}}{G_{M}^{p}}$
Time-like region: $\left|G_{\text {eff }}^{p}\left(q^{2}\right)\right|$

Lomon Model: Results for the neutron

Space-like region: $R_{n}=\mu_{n} \frac{G_{E}^{n}}{G_{M}^{n}}$

※

Time-like region: $\left|G_{\text {eff }}^{n}\left(q^{2}\right)\right|$

$R\left(q^{2}\right)$ in the complex plane

$R\left(q^{2}\right)$ in the complex plane

$R\left(q^{2}\right)$ in the complex plane

Parameterization and constraints

The imaginary part of R is parameterized by two series of orthogonal polynomials $T_{i}(x)$
$\operatorname{Im} R\left(q^{2}\right) \equiv I\left(q^{2}\right)=\left\{\begin{array}{llll}\sum_{i} C_{i} T_{i}(x) & x=\frac{2 q^{2}-s_{\mathrm{phy}}-s_{\mathrm{th}}}{s_{\mathrm{phy}}-s_{\mathrm{th}}} & s_{\mathrm{th}} \leq q^{2} \leq s_{\mathrm{phy}} & s_{\mathrm{th}}=4 M_{\pi}^{2} \\ \sum_{j} D_{j} T_{j}\left(x^{\prime}\right) & x^{\prime}=\frac{2 s_{\mathrm{phy}}}{q^{2}}-1 & q^{2}>s_{\mathrm{phy}} & s_{\mathrm{phy}}=4 M_{N}^{2}\end{array}\right.$

Theoretical conditions on $\operatorname{ImR}\left(q^{2}\right)$

- $R\left(4 M_{\pi}^{2}\right)$ is real $\Longrightarrow I\left(4 M_{\pi}^{2}\right)=0$
- $R\left(4 M_{N}^{2}\right)$ is real $\Longrightarrow I\left(4 M_{N}^{2}\right)=0$
- $R(\infty)$ is real $\Longrightarrow I(\infty)=0$

Theoretical conditions on $\boldsymbol{R}\left(\boldsymbol{q}^{2}\right)$

Continuity at $q^{2}=4 M_{\pi}^{2}$

- $R\left(4 M_{N}^{2}\right)$ is real and $\operatorname{Re} R\left(4 M_{N}^{2}\right)=\mu_{p}$

Experimental conditions on $\boldsymbol{R}\left(\boldsymbol{q}^{2}\right)$ and $\left|\boldsymbol{R}\left(\boldsymbol{q}^{2}\right)\right|$

- Space-like region ($q^{2}<0$) data for R from JLab and MIT-Bates
- Time-like region $\left(q^{2} \geq 4 M_{N}^{2}\right)$ data for $|R|$ from FENICE+DM2, BABAR, E835 and Lear

