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Baryon Form Factors definition
Space-like region (q2 < 0)

time

B B

e− e−
γµ

Γµ(q)

γ(q)

Electromagnetic current (q = p′ − p)

Jµ =〈B(p′)|jµ|B(p)〉=eu(p′)
»
γµF1(q2)+

iσµνqν

2M
F2(q2)

–
u(p)

Dirac and Pauli form factors F1 and F2 are real

In the Breit frame8<:
p = (E ,−~q/2)
p′= (E , ~q/2)
q = (0, ~q)

8<: ρq = J0 = e
h
F1 + q2

4M2 F2

i
~Jq = e u(p′)~γu(p) [F1 + F2]

2Mu(p′)γµu(p) = u(p′)[(p + p′)µ + iσµν qν ]u(p)

u(−~p)u(~p) = E/M u†(−~p)u(~p) = 1

Sachs form factors

GE = F1 +
q2

4M2 F2

GM = F1 + F2

Normalizations

F1(0) = QB GE(0) = QB

F2(0) = κB GM(0) = µB
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pQCD asymptotic behavior
Space-like region

γ

q
q
q g

g

pQCD: as q2 → −∞, asymptotic behaviors
of F1 and F2 must follow counting rules

Quarks exchange gluons to distribute
momentum

Dirac form factor F1

Non-spin flip

Two gluon propagators

F1(q2) ∼
q2→−∞

(−q2)−2

Pauli form factor F2

Spin flip

Two gluon propagators

F2(q2) ∼
q2→−∞

(−q2)−3

Sachs form factors GE and GM

GE,M(q2) ∼
q2→−∞

(−q2)−2

Ratio:
GE

GM
∼

q2→−∞
constant
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Baryon form factors
Time-like region (q2 > 0)

γ B

B
|n〉〈n|time

Crossing symmetry:

〈B(p′)|jµ|B(p)〉 → 〈B(p′)B(p)|jµ|0〉
Form factors are complex functions of q2

Optical theorem

Im〈B(p′)B(p)|jµ|0〉 ∼
X

n

〈B(p′)B(p)|jµ|n〉〈n|jµ|0〉 =⇒


ImF1,2 6= 0
for q2 > 4M2

π

|n〉 are on-shell intermediate states: 2π, 3π, 4π, . . .

Time-like asymptotic behavior

Phragmèn Lindelöf theorem:
If f (z) → a as z → ∞ along a straight line,
and f (z) → b as z → ∞ along another
straight line, and f (z) is regular and bounded in
the angle between, then a = b and f (z) → a
uniformly in this angle.

lim
q2→−∞

GE,M(q2)| {z }
space−like

= lim
q2→+∞

GE,M(q2)| {z }
time−like

GE,M ∼
q2→+∞

(q2)−2
real
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Cross sections and analyticity
q2-complex plane

Im[q2]

Re[q2]

Space-like region
eB → eB

FF’s are realFF’s are real

Time-like region
Unphysical region

No data
Data region
e+e−↔BB

FF’s are complexFF’s are complex

sth = 4M2
π sphy = 4M2

B

Crossing: tot. helicity =


1 ⇒ GE
0 ⇒ GM

GE (4M2
B) = GM(4M2

B)

θe− B
e−

B

Elastic scattering

dσ

dΩ
=

α2E′
e cos2 θ

2

4E3
e sin4 θ

2

»
G2

E −τ

„
1+2(1−τ ) tan2 θ

2

«
G2

M

–
1

1−τ
τ =

q2

4M2
B

θ

e− e+

B

B

Annihilation

dσ

dΩ
=

α2βC
4q2

»
(1+cos2 θ)|GM |2+

1
τ

sin2 θ|GE |2
–

β =

r
1 −

1
τ
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Dispersion relations

Re(q2)

Im(q2)

q2

R
sth

C

space-like time-like

The form factors are analytic on the
q2-plane with a multiple cut (sth =4M2

π, ∞)

Dispersion relation for the imaginary part (q2 <0)

G(q2)= lim
R→∞

1
2πi

I
C

G(z)dz
z − q2

=
1
π

Z ∞
sth

ImG(s)ds
s − q2

Dispersion relation for the logarithm (q2 <0)
B.V. Geshkenbein, Yad. Fiz. 9 (1969) 1232.

ln G(q2) =

p
sth − q2

π

Z ∞
sth

ln |G(s)|ds
(s − q2)

√
s − sth

Experimental inputs

Space-like data on the real values of
FF’s from: e−B → e−B and
e−↑B → e−B↑, with polarization

Time-like data on moduli of FF’s
from: e+e− → BB
Time-like data on GE -GM relative
phase from: e+e− → B↑B (pol.)

Theoretical ingredients

Analyticity ⇒ dispersion relations

Normalization and threshold values

Asymptotic behavior ⇒
super-convergence relations
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Dispersive approach:
advantages and drawbacks

Advantages

DR’s are based on unitarity and analyticity ⇒ model-independent approach

DR’s relate data from different processes in different energy regions24 space-like
form factor
eB→ eB

35=

∫ 24 Im(form factor) or ln|form factor|
over the time-like cut (sth, ∞)

e+e−→ BB + theory

35
Normalizations and theoretical constraints can be directly implemented

Form factors can be computed in the whole q2-complex plane

Drawbacks

Very long-range integration

Remedy #1
pQCD power laws

Remedy #2
Subtracted DR’s

No data in the unphysical region, crucial in dispersive analyses
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Integral equation
Dispersion relation for the logarithm

Regularization to stabilize solutions

Model-independent approach

No time-like |GE | − |GM | separation

⇒ |Gp
M | and |Gn

M | in the unphysical region
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The integral equation for GM EPJC11 709

Dispersion relation subtracted at t = 0

ln G(t) =
t
√

sth − t
π

Z ∞

sth

ln |G(s)|ds
s
√

s − sth(s − t)

Less dependent on the
asymptotic behavior of the FF

ln G(0) = 0 =⇒ no further terms
have to be considered

Splitting the integral
R∞

sth
into

R s′
phy

sth
+
R∞

s′
phy

we obtain the integral equation

Data and Theoryz }| {
ln G(t) − I∞phy(t) =

t
√

sth − t
π

Z s′
phy

sth

Unknownz }| {
ln |G(s)| ds

s
√

s − sth(s − t)

To avoid instabilities around sphy = 4M2
N , the upper boundary has been

shifted to s′
phy = sphy + ∆, with ∆ ' 0.5 GeV2

We impose continuity of the FF at s′
phy and sth, in addition, at the upper

boundary s′
phy, continuty of the first derivative is also required

A regularization, depending on a free parameter τ , is introduced by
requiring the FF total curvature in the unphysical region to be limited
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Testing the method EPJC11 709

Pion FF to fix the regularization parameter τ

Space-like (DR) and time-like data (yellow
bands) have been used as input in the inte-
gral equation to retrieve the time-like FF in
the nucleon unphysical region.

q2 (GeV2)

|F
π
(q

2
)|
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Testing the method EPJC11 709

Pion FF to fix the regularization parameter τ

Space-like (DR) and time-like data (yellow
bands) have been used as input in the inte-
gral equation to retrieve the time-like FF in
the nucleon unphysical region (gray band).

q2 (GeV2)

|F
π
(q

2
)|

τ ∼ mπ
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Nucleon magnetic form factors EPJC11 709

q2 (GeV2)

|e Gp M
(q

2
)/

µ
p
|

q2 (GeV2)

|e Gn M
(q

2
)/

µ
n
|

Steep behavior
near by the
threshold

input data
outcome

M1 ∼ 770 MeV Γ1 ∼ 350 MeV

M2 ∼ 1600 MeV Γ2 ∼ 350 MeV
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The ratio R = µpGp
E/Gp

M
Dispersion relation for the imaginary part

Model-independent approach

First time-like |GE | − |GM | separation

⇒ Ratio in the whole q2 complex plane
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Data on R = µpGp
E/Gp

M

Space-like region
Old Rosenbluth data in agreement with
space-like scaling Gp

E ' Gp
M /µp

New data from polarization techniques show
unexplained increasing behavior

Only polarization data have been used in the
dispersive analysis

0

0.5

1

1.5

2

-8 -6 -4 -2 0

q2 (GeV2)

µ
p
G

p M
/
G

p E

MIT-JLab (Polarization)
[PRL88,092301-PRL84,1398]

SLAC (Rosenbluth)
[PRD50,5491]

Normalization

Time-like region
Only two sets of data from BABAR and LEAR
otained studying angular distributions

Unique attempts to perform a time-like
|Gp

E |-|Gp
M | separation

Only BABAR data have been used in the
dispersive analysis

0

2

4

6

8

4 5 6 7 8 9 10

q2 (GeV2)

|µ
p
G

p M
/
G

p E
|

BABAR (ISR + ang. dist.)
[PRD73,012005]

FENICE+DM2-E835
(ang. dist.) [EPJC46,421]

LEAR (ang. dist.)
[NPB411,3]
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The dispersive approach for R(q2) EPJA32 421

We start from the imaginary part of the ratio R(q2),
written in the most general and model-independent way as

Im[R(q2)] = series of orthogonal polynomials

Theoretical constraints
can be applied directly
on the imaginary part

Dispersion
Relations

The function R(q2) is
reconstructed in time

and space-like regions

Additional theoretical conditions as well as
experimental constraints are finally imposed
on the obtained analytic expression of R(q2)

Hirschegg - January 17th, 2011 Dispersion Relations and Nucleon Form Factors



16

R(q2) EPJA32 421

R(0) +
q2

π

∫ ∞

4M2
π

ImR(s)

s(s − q2)
dsR(q2) =

Req2

0

0.5

1

-10 -8 -6 -4 -2 0

R(q2) space-like

q2 (GeV2)

JLab+MIT-Bates

1

10

4 5 6 7 8 9 10

|R(q2)| time-like

BABAR +DM2/FENICE+E835

q2 (GeV2)
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R(q2) EPJA32 421

R(0) +
q2

π

∫ ∞

4M2
π

ImR(s)

s(s − q2)
dsR(q2) =

Req2

0

0.5

1

-10 -8 -6 -4 -2 0

R(q2) space-like

q2 (GeV2)

JLab+MIT-Bates

1

10

4 5 6 7 8 9 10

|R(q2)| time-like

BABAR +DM2/FENICE+E835

q2 (GeV2)
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R(q2) EPJA32 421

R(0) +
q2

π

∫ ∞

4M2
π

ImR(s)

s(s − q2)
dsR(q2) =

Req2

0

0.5

1

-10 -8 -6 -4 -2 0

R(q2) space-like

q2 (GeV2)

JLab+MIT-Bates

1

10

4 5 6 7 8 9 10

|R(q2)| time-like

BABAR +DM2/FENICE+E835

q2 (GeV2)

DR Approach
1/Q
log2 Q2/Q2

Impr. log2Q2/Q2

IJL
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R(q2) EPJA32 421

R(0) +
q2

π

∫ ∞

4M2
π

ImR(s)

s(s − q2)
dsR(q2) =

Req2

0

0.5

1

-10 -8 -6 -4 -2 0

R(q2) space-like

q2 (GeV2)

JLab+MIT-Bates

JLab 2010
[PRL104,242301]

1

10

4 5 6 7 8 9 10

|R(q2)| time-like

BABAR +DM2/FENICE+E835

q2 (GeV2)

DR Approach
1/Q
log2 Q2/Q2

Impr. log2Q2/Q2

IJL
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R(q2): space-like zero and phase EPJA32 421

-0.5

0

0.5

1

-20 -15 -10 -5 0

q2 (GeV2)

R
(q

2
)

0

1

2

0 2 4 6 8 10p
q2 (GeV)

P
ha

se
of

R
(q

2
)

Phragmèn Lindelöf

phase limit ↔ zeros

Space-like zero

tBABAR
0 = (−10 ± 1) GeV2

Phase from DR

φ(q2)=−
p

q2−s0

π
Pr
Z ∞

s0

ln |R(s)|ds
√

s−s0(s−q2)
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Asymptotic GP
E(q2)/Gp

M(q2) EPJA32 421

-1

0

1

2

-10000 -5000 0 5000 10000

q2 (GeV2)

G
P E
(q

2
)/

G
p M

(q
2
)

Space Time
Real asymptotic values for Gp

E/Gp
M

Gp
E

Gp
M

−→
|q2|→∞

−1.0 ± 0.2

Asymptotic behavior of F2/F1

q2

4M2
N

˛̨̨̨
F2

F1

˛̨̨̨
−→

|q2|→∞

˛̨̨̨
˛Gp

E

Gp
M

−1

˛̨̨̨
˛=2.0±0.2

pQCD prediction∣∣∣∣∣ Gp
E(q2)

Gp
M(q2)

∣∣∣∣∣ −→
|q2|→∞

1
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A sum rule for Gp
M

Dispersion relation for the logarithm

Unphysical region suppression

Low-energy data −→ asymptotic behavior

⇒ Check for the asymptotic power law
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|Gp
E(q2)| and |Gp

M(q2)| from σpp and DR EPJA32 421

0

2

4

6

8

10

2 2.2 2.4p
q2 (GeV)

|eGp(q2)| · q4

|GE |= |GM | |eGp(q2)|2 =
σpp(q2)

4πα2βC
3s

„
1 +

1
2τ

«−1

Usually what is extracted from the
cross section σ(e+e−→ pp) is the
effective time-like form factor |eGp|
obtained assuming |Gp

E | = |Gp
M |

i.e. |R| = µp

Using our parametrization for R and
the BABAR data on σ(e+e−→ pp),
|Gp

E | and |Gp
M | may be disentangled
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|Gp
E(q2)| and |Gp

M(q2)| from σpp and DR EPJA32 421

0

2

4

6

8

10

2 2.2 2.4p
q2 (GeV)

|Gp
E,M(q2)| · q4

|GE |= |GM |
|GE | (|R|6=µp )

|GM | (|R|6=µp )

|GM(q2)|2 =
σpp(q2)

4πα2βC
3s

 
1 +

|R(q2)|
2µpτ

!−1

Usually what is extracted from the
cross section σ(e+e−→ pp) is the
effective time-like form factor |eGp|
obtained assuming |Gp

E | = |Gp
M |

i.e. |R| = µp

Using our parametrization for R and
the BABAR data on σ(e+e−→ pp),
|Gp

E | and |Gp
M | may be disentangled
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Dispersion relations and sum rules
Geshkenbeı̆n, Ioffe, Shifman Yad. Fiz. 20, 128 (1974)

DR’s connect space and time values of a form factor G(q2)

G(q2) =
1
π

Z ∞

sth

ImG(s)ds
s − q2 Req2sth sphy0

e p → e p e+e−↔ ppno data

The imaginary part is not experimentally accessible

There are no data in the unhysical region [sth, sphy]

We need to know the asymptotic behaviorD
ra

w
ba

ck
s

They applied the DR for the imaginary part to the function

φ(z) = f (z)
ln G(z)

z
√

sth − z
with

Z sphy

0
f 2(z)dz << 1

The DR integral contains
the modulus |G(s)|

The unhysical region
contribution is suppressedA

dv
an

ta
ge

s

Zeros of G(z) are poles for φ(z)

D
ra

w
ba

ck
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Attenuated DR and sum rule YF20 128

Assuming G(q2) 6= 0 and using the Cauchy theorem, we have the new DRI
C

φ(z)dz = 0

⇓
−
Z 0

−∞

Im[f (t)] ln G(t)
t
√

sth − t
dt| {z }

Space-like

=

Z ∞

sth

f (s) ln |G(s)|
s
√

s − sth
ds| {z }

Time-like

Re(q2)

Im(q2)

sth

sphy0

C

Convergence relation to find the asymptotic power-law behavior of Gp
M

−
Z 0

−∞

Im[f (t)] ln G(t)
t
√

sth − t
dt| {z }

Space-like data + (−t)−n

=

Z ∞

sth

f (s) ln |G(s)|
s
√

s − sth
ds ≈

Z ∞

sphy

f (s) ln |G(s)|
s
√

s − sth
ds

| {z }
Time-like data + s−n

n is the free parameter
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Sum rule: result for Gp
M ChPhysC34 874

Gp
M(q2) ∝

|q2|→∞
|q2|−(2.27±0.36)

10
-3

10
-2

10
-1

1

-20 0 20

(q2)−n(−q2)−n

q2 (GeV2)

|G
p M

(q
2
)/

µ
p
|

−
Z 0

−∞

Im[f (t)] ln G(t)
t
√

sth − t
dt

Z ∞

sphy

f (s) ln |G(s)|
s
√

s − sth
ds

u
n

p
h

y
s

ic
a

l
r
e

g
io

n
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“To do” list

Time-like |GE | − |GM | Separation: DR and data

Understand threshold effect(s):

Dispersive analyses: integral equation, sum rule,. . .

Experimental observation in pp → π0l+l−
[C. Adamuscin, E.A. Kuraev, E. Tomasi-Gustafsson, F. Maas, Phys. Rev. C75, 045205 (2007)]

Asymptotic behavior: DR and data for the phase

Zeros ↔ phases: DR and data

Unphysical region, VMD contributions:
integral equation, sum rule, data on pp → π0l+l−
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. . . On the same topic. . .

Tuesday at 17:30
Yue Ma
“Time-like Form Factor from PANDA”

Wednesday at 9:00
Diego Bettoni
“Time-like Electromaganetic Form Factors (Overview)”

Wednesday at 11:00
Carl Carlson
“Two Photon Physics in the Time-like and Spacelike Regions”

Wednesday at 17:30
Marco Maggiora
“Hadron Structure at BESIII”
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Additional slidesAdditional slides
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γγ exchange from e+e−→ ppγ BABAR data PLB659, 197

A(cos θ, q2) =

dσ

dΩ
(cos θ, q2) −

dσ

dΩ
(− cos θ, q2)

dσ

dΩ
(cos θ, q2) +

dσ

dΩ
(− cos θ, q2)

-0.1

0

0.1

2 2.25 2.5 2.75 3p
q2 (GeV)

〈A
〉 c

os
θ

〈A〉cos θ,q2 = 0.01 ± 0.02
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e+e− → pp
The incredible threshold value PRD73, 012005

σ(e+e−→ pp) =
4πα2βC

3q2

"
|Gp

M |2 +
2M2

p

q2 |Gp
E |2
#

−→
q→2Mp

πα2βC
2M2

p
|Gp|2

0

0.25

0.5

0.75

1

1.6 1.8 2 2.2 2.4

σ
(e

+
e−

→
p

p
)[

nb
]

p
p

th
re

sh
ol

d

p
q2 (GeV)

At threshold
σ(e+e− → pp) = 0.80± 0.05 nb

e+e− → pp is the only endothermic
process that shows this peculiarity

⇓
Where does the factor C come from?

βC =

r
1 − 4M2

P
q2 C =


finite at
threshold
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e+e− → pp
The incredible threshold value PRD73, 012005

σ(e+e−→ pp) =
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⇓
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finite at
threshold
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Höler, Mergell, Meissner, Hammer procedure
Optical theorem

Dispersion relation for the imaginary part

No time-like |GE | − |GM | separation

⇒ Gp,n
E and Gp,n

M in space and time-like region
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H2M2: Höler, Mergell, Meissner, Hammer,. . . PRC75 035202

Spectral decomposition

Im〈B(p′)B(p)|jµ|0〉 ∼
X

n
〈B(p′)B(p)|jµ|n〉〈n|jµ|0〉 =⇒

(
ImF1,2 6= 0

for q2 > 4M2
π
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H2M2: Höler, Mergell, Meissner, Hammer,. . . PRC75 035202

Spectral decomposition

Im〈B(p′)B(p)|jµ|0〉 ∼
X

n
〈B(p′)B(p)|jµ|n〉〈n|jµ|0〉 =⇒

8<: ImF V ,S
1,2 6= 0

for q2 > 4M2
π

ImFV
i (q2)

q2

ρ

ππ

ρ′

ρ′′

ρ′′′

2π continuum is knowm for
q2 ∈ [4M2

π, ∼ 40M2
π ]

The singularity on the second Riemann
sheet in πN → πN amplitude gives the
strong shoulder at threshold

Poles for higher mass states

ImFS
i (q2)

q2

ω

φ

KK

πρ

S′

S′′

KK continuum from analytic continuation of
KN scattering amplitude

Further contribution in the φ-region is due to
πρ exchange

Anomalous threshold behavior is masked
because the pole in the second Riemann
sheet is not close to (3Mπ)2

Poles for higher mass states
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H2M2: Theoretical constraints and result for Gp
M PRC75 035202

Superconvergence relations:
Z ∞

4M2
π

Im F1,2(q2)dq2 =

Z ∞
4M2

π

q2Im F2(q2)dq2 = 0

Asymtpotic behaviors from perturbative QCD

−q2 (GeV2)

G
p M

/
(µ

p
G

D
)

Space-like

q2 (GeV2)

|e Gp M
|

Time-like

F (q2
SL) =

1
π

Z ∞

4M2
π

ImF (q2
TL)

q2
TL − q2

SL

dq2
TL
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The Lomon Model

VMD + quark form factors

DRs −→ analytic VM propagators

Time-like |GE | − |GM | separation

⇒ Gp,n
E and Gp,n

M in space and time-like region
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Analyticitization of phenomenological models
The Lomon Model PRC66 045501

The Lomon parameterization for nucleon FF’s is based on the
Gari-Krümpelmann model, and it includes:

coupling to the photons through vector meson exchange
[VMD in terms of propagators FM(q2), M = ρ, ω, φ, ρ′, ω′]

hadron/quark form factors AM(q2) at vector meson-nucleon
(quark) vertices to control transition to perturbative QCD at
high momentum transfers

γ(q)

M FM(q2)

AM(q2)

N N

Analytic extension: space-like −→ time-like

FM for broad mesons:
simple poles −→ poles with finite energy-dependent widths

Dispersion realtions:
rigorous analytic continuation of FM from time-like to space-like region
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Lomon Model: Results for the proton

−q2 (GeV2)

R
p
(q

2
)

Space-like region: Rp = µp
Gp

E

Gp
M

q2 (GeV2)

|G
p ef

f(
q2

)|

Time-like region: |Gp
eff(q

2)|

Param. #1
Param. #2
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Lomon Model: Results for the neutron

−q2 (GeV2)

R
n
(q

2
)

Space-like region: Rn = µn
Gn

E
Gn

M

q2 (GeV2)

|G
n ef

f(
q2

)|

Time-like region: |Gn
eff(q

2)|

Param. #1
Param. #2
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R(q2) in the complex plane

Re(q2)

Im(q2)

|R(q2)|

sth
sphy

physical sheet

unphysical sheet

experimental sheet
GE , GM and also R, if GM has
no zeros, are analytic on the q2

plane with a cut (sth = 4M2
π, ∞)
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R(q2) in the complex plane

Re(q2)

Im(q2)

|R(q2)|

sth
sphy

physical sheet

path C R

unphysical sheet

experimental sheet
Dispersion relation for the imaginary part (q2 ≤ sth)

G(q2) = lim
R→∞

1
2πi

I
C

G(z)dz
z − q2 =

1
π

Z ∞

sth

ImG(s)ds
s − q2
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R(q2) in the complex plane

Re(q2)

Im(q2)

|R(q2)|

sth
sphy

physical sheet

path C R

unphysical sheet

experimental sheet
Dispersion relation for R with subtraction at q2 = 0

R(q2) = R(0) +
q2

π

Z ∞

sth

ImR(s)ds
s(s − q2)
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Parameterization and constraints

The imaginary part of R is parameterized by two series of orthogonal polynomials Ti (x)

ImR(q2) ≡ I(q2) =

8>><>>:
P

i Ci Ti (x) x =
2q2−sphy−sth

sphy−sth
sth ≤ q2 ≤ sphy

P
j Dj Tj (x ′) x ′ =

2sphy
q2 − 1 q2 > sphy

sth =4M2
π

sphy =4M2
N

Theoretical conditions on ImR(q2)

R(4M2
π) is real =⇒ I(4M2

π) = 0
R(4M2

N) is real =⇒ I(4M2
N) = 0

R(∞) is real =⇒ I(∞) = 0

Theoretical conditions on R(q2)

Continuity at q2 = 4M2
π

R(4M2
N) is real and ReR(4M2

N) = µp

Experimental conditions on R(q2) and |R(q2)|

Space-like region (q2 < 0) data for R from JLab and MIT-Bates
Time-like region (q2 ≥ 4M2

N) data for |R| from FENICE+DM2, BABAR , E835 and Lear
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