Collective phenomena at RHIC and LHC

Ilya Selyuzhenkov
(EMMI, GSI & FIAS)

Facets of Strong-Interaction Physics
Hirschegg, Austria
January 20, 2012
Non-central relativistic heavy-ion collision (HIC)

- Overlap area: non-uniform particle density and pressure gradient

- Large orbital angular momentum:
 \[\mathbf{L} \sim 10^5 \hbar \]
 Liang, JPG34:323 (2007)

- Strong magnetic field:
 \[\mathbf{B} \sim 10^{15} \text{T} \quad (e\mathbf{B} \sim 10^4 \text{MeV}^2) \]
 \[(\mu_N \mathbf{B} \sim 100 \text{MeV}) \]
 Rafelski, Müller PRL36:517 (1976)

\[\mathbf{B} - \text{magnetic field} \]
\[\mathbf{L} - \text{orbital momentum} \]

\[b - \text{impact parameter} \]

Colliding nuclei are moving out-of-plane
Anisotropic transverse flow

✓ What is anisotropic flow and why do we measure it?
✓ Measurement techniques: correlations and non-flow
✓ Elliptic flow at RHIC and LHC
✓ Flow fluctuations and higher harmonics
Colliding nuclei has a finite size

Peripheral collision (large b)

Overlap region is strongly asymmetric in the transverse plane

Central collision (small b)

Overlap region is close to be symmetric in the transverse plane

Asymmetry of the overlap region depends on the impact parameter

b - impact parameter
Nucleon-nucleon collisions in the overlap region

Peripheral collision

- elementary nucleon-nucleon (NN) collision

Small number of nucleon-nucleon collisions: few particles produced

Central collision

Large number of NN collisions: abundant particle production

Number of produced particles is correlated with the impact parameter
Produced particles interact with each other

- Particle emitted out-of-plane
- Emitted in-plane

- Multiple interaction with medium
- Less interaction - small modification
Particle collectivity

Peripheral collision

Strong coordinate space asymmetry transforms into the azimuthal asymmetry in the momentum space

Central collision

Multiple interaction with medium but small initial spacial asymmetry: small asymmetry in the momentum space

Correlated particle production wrt. the collision plane of symmetry
Quantifying azimuthal asymmetry

Coordinate space asymmetry is ~ ellipsoidal quantified by eccentricity:

\[
\epsilon_s = \frac{\langle y^2 - x^2 \rangle}{\langle y^2 + x^2 \rangle}
\]

\(x, y\) - position of each elementary NN interaction
Quantifying azimuthal asymmetry

Coordinate space asymmetry is \(\sim \) ellipsoidal quantified by eccentricity:

\[
\epsilon_s = \frac{\langle y^2 - x^2 \rangle}{\langle y^2 + x^2 \rangle}
\]

\(x, y\) - position of each elementary NN interaction

Momentum space asymmetry:

\[
e_p \sim \frac{\langle p_x^2 - p_y^2 \rangle}{\langle p_y^2 + p_x^2 \rangle} \rightarrow \langle \cos(2 \Delta \phi) \rangle
\]

Second Fourier harmonic in momentum space

\(p_t\) - particle transverse momentum

\(\Delta \phi\) - azimuthal angle relative to the reaction plane
Time evolution of the spatial and momentum asymmetries

- Spatial asymmetry drops very fast
- Momentum asymmetry develops very early

Momentum asymmetry is sensitive to:
- Early times of the system evolution
- Equation of State

EoS I: massless ideal gas
EoS RHIC: matching Lattice QCD
Anisotropic transverse flow: Fourier harmonics

Fourier decomposition of the particle azimuthal distribution wrt. the reaction plane:

$$\frac{dN}{d(\Delta \phi)} \sim 1 + 2 \sum_{n=1} \nu_n(p_t, \eta) \cos(n \Delta \phi)$$

No “sin” terms because of the collision symmetry

$$\nu_n(p_t, \eta)$$ – anisotropic transverse flow coefficients

- ν_1 - directed flow
- ν_2 - elliptic flow
- ν_3 - triangular flow
Experimental measurements of the anisotropic flow
Modern ultra-relativistic HI colliders

Relativistic Heavy Ion Collider

- RHIC
- PHOBOS
- BRAHMS
- PHENIX
- STAR
- AGS
- LINAC

Large Hadron Collider

- LHC
- CMS
- ALICE
- ATLAS
- LHCb
- SPS
- PS
- LINACs

<table>
<thead>
<tr>
<th></th>
<th>RHIC</th>
<th>LHC</th>
</tr>
</thead>
<tbody>
<tr>
<td>Location</td>
<td>BNL (USA)</td>
<td>CERN (Europe)</td>
</tr>
<tr>
<td>Circumference</td>
<td>3.8 km</td>
<td>27 km</td>
</tr>
<tr>
<td>Species</td>
<td>p, d, Cu, Au, U polarized protons</td>
<td>p, Pb</td>
</tr>
<tr>
<td>Center of mass energy per nucleon pair</td>
<td>in GeV 7.7-38, 62, 200 500 (pp only)</td>
<td>in TeV 0.9, 2.76, 7 (pp) 2.76 (Pb)</td>
</tr>
</tbody>
</table>
Current heavy-ion experiments at RHIC and LHC

STAR (Solenoidal Tracker At RHIC)

ALICE (A Large Ion Collider Experiment)

PHENIX (Pioneering High Energy Nuclear Ion Experiment)

ATLAS (A Toroidal LHC Apparatus)

CMS (Compact Muon Solenoid)

Main capabilities for heavy-ion studies:
Charge particle tracking and identification: full azimuth, large rapidity coverage
wide p_t range: ~ 100 MeV/c to ~ 100 GeV/c
Calorimetry and rare probes: neutral particles, photons, jets, heavy flavor
Anisotropic flow measurement techniques

\[\frac{dN}{d(\phi_i - \Psi_{RP})} \sim 1 + 2 \sum_{n=1} v_n \cos[n(\phi_i - \Psi_{RP})] \]

\[v_n = \langle \cos[n(\phi_i - \Psi_{RP})] \rangle \]

- directly calculable only in theory when the reaction plane orientation is known
Anisotropic flow measurement techniques

\[\frac{dN}{d(\phi_i - \Psi_{RP})} \sim 1 + 2 \sum_{n=1} v_n \cos[n(\phi_i - \Psi_{RP})] \]

\[v_n = \left\langle \cos[n(\phi_i - \Psi_{RP})] \right\rangle \]

- directly calculable only in theory when the reaction plane orientation is known

Event plane angle - experimental estimate of the reaction plane angle based on the measured azimuthal distribution of particles:

\[\Psi_{RP} \rightarrow \Psi_{EP} \left\{ \sum_{\phi_j} g(\phi_j) \right\} \]

\[v_{n}^{obs} = \left\langle \cos[n(\phi_i - \Psi_{EP})] \right\rangle \sim \left\langle \sum_{\phi_j \neq \phi_i} \cos n(\phi_i - \phi_j) \right\rangle \]

\[c_n \{2\} = \left\langle \cos n(\phi_i - \phi_j) \right\rangle \]

- two particle correlations

Measure anisotropic flow with azimuthal correlations
Non-flow correlations

Non-flow: correlations among the particles unrelated to the reaction plane

In case of two particle correlations: \[
\langle \cos \left[n \left(\phi_i - \phi_j \right) \right] \rangle = \langle v_n^2 \rangle + \delta_{2,n}
\]

Sources of non-flow correlations:
- Resonance decay
- Jet production
- In general - any cluster production
Non-flow correlations

Non-flow: correlations among the particles unrelated to the reaction plane

In case of two particle correlations: \(\langle \cos \left[n \left(\phi_i - \phi_j \right) \right] \rangle = \langle v_n^2 \rangle + \delta_{2,n} \)

Sources of non-flow correlations:
- Resonance decay
- Jet production
- In general - any cluster production

Example: 2-particle decay

Collective flow: correlations between particles through the common plane of symmetry

Probability to be correlated for one particle with another out of \(M \)-particles is \(1/(M-1) \):

\[
\delta_2 \sim \frac{1}{M - 1}
\]

To measure flow with 2-particle correlations:

\[
v_n \gg \frac{1}{\sqrt{M}}
\]

\(M = 200 \rightarrow v_n \gg 0.07 \)

For RHIC/LHC: \(v_n \approx 0.04 - 0.07 \)
Estimating flow with multi-particle cumulants

Rapidity separation between correlated particles suppress short-range non-flow:

\[v_2^{(2)} > v_2^{(2, |\Delta \eta|)} \]

Large non-flow in peripheral collisions
Estimating flow with multi-particle cumulants

Rapidity separation between correlated particles suppress short-range non-flow:

\[v_2\{2\} > v_2\{2,|\Delta \eta|\} \]

Large non-flow in peripheral collisions

Note: \(v_2\{2\} \) and \(v_2\{4\} \) differ not only because of non-flow, but also due to flow fluctuations (discussed later)

Multi-particle cumulants remove residual non-flow:

\[v_2\{4\} \approx v_2\{6\} \approx v_2\{8\} \]
Elliptic flow:
the dominant flow component at the relativistic energies
Elliptic flow vs. collision energy

Experimental results covers about 4 decades of the collision energy

Data from GSI, AGS, SPS, RHIC, and LHC experiments

collision energy, $\sqrt{s_{NN}}$ (GeV)
Elliptic flow: RHIC vs. LHC

30% increase of v_2 from RHIC: stronger collectivity at LHC

But: measured v_2 vs. transverse momenta has similar shape and magnitude at RHIC and LHC

centrality 20-30%

collision energy, $\sqrt{s_{NN}}$ (GeV)
Identified particle spectra: LHC vs. RHIC

Spectra shapes changed significantly from RHIC to LHC

Radial expansion (flow):
Boost particles to higher p_t
(particles gain extra radial velocity)

From Blast wave spectra fits:
20% stronger radial flow at LHC
→ increase of integral v_2
Elliptic flow mass splitting

Similar to spectra:

- v_2 of heavier particles is pushed to higher p_t

Viscous hydrodynamics well describe flow of π^\pm and K^\pm:

\[\rightarrow \text{sensitivity to QGP viscosity} \]

Including hadronic rescattering with UrQMD model allows better reproduce proton v_2:

\[\rightarrow \text{sensitivity to the evolution} \]

VISHNU: Heinz et. al, arxiv:1108.5323
Constituent number of quarks scaling

Observe approximate number of quark scaling:

Strong indication that system evolved through deconfined (QGP) phase
Flow fluctuations
Experimentally study many collisions

Three collisions with the same:
- magnitude of impact parameter
- reaction plane angle
Fluctuating initial energy density

Fluctuating spatial asymmetry results in the event-by-event fluctuations of anisotropic flow
How fluctuations affect the measured flow?

2-particle azimuthal correlation:

\[c_n\{2\} = \langle \cos[2(\phi_i - \phi_j)] \rangle = \langle v_n^2 \rangle + \delta_{n,2} \]

\[\langle v_n^2 \rangle \neq \langle v_n \rangle^2 \]

\[\langle v_n^2 \rangle = \langle v_n \rangle^2 + \sigma_n^2 \]

\[\langle \cos[n(\phi_i - \phi_j)] \rangle = \langle v_n \rangle^2 + \sigma_n^2 + \delta_{n,2} \]

flow fluctuations non-flow
Elliptic flow fluctuations

2-particle correlations affected by 3 effects: \[v_2 \{2\} = \sqrt{\langle v_2 \rangle^2 + \sigma_2^2 + \delta_2^2} \]

Residual non-flow subtracted based on HIJING Monte-Carlo:

\[v_2^{corr} \{2\} \approx \langle v_2 \rangle + \frac{\sigma_2^2}{2\langle v_2 \rangle} \]

Many-particle correlations free of non-flow:

\[v_2 \{4\} \approx \langle v_2 \rangle - \frac{\sigma_2^2}{2\langle v_2 \rangle} \]

Fluctuations set the difference between \(v_2^{corr} \{2\} \) and \(v_2 \{4\} \)

Flow fluctuations are significant

Additional constraint on the initial condition
Triangular flow, v_3 - pure fluctuations

Non-zero correlations observed for $v_3^{corr}\{2\}$ and $v_3\{4\}$!

$$v_3^{corr}\{2\} = \sqrt{\langle v_3 \rangle^2 + \sigma_3^2} \neq 0$$

Due to collision symmetry the odd harmonic flow is asymmetric:

$$v_{2n+1}(-\eta) = -v_{2n+1}(\eta)$$

In the symmetric rapidity range:

$$\langle v_3 \rangle = 0$$

$$v_3^{corr}\{2\} = \sigma_3$$

Together with fluctuations in the 2nd harmonic provides strong constraints on the initial condition.
Two particle azimuthal correlations:

collective flow modulations
or ridge & mach cone?

\[C(\phi_1 - \phi_2) \sim 1 + 2 \sum_{i=1} v_{n,1} v_{n,2} \cos(n[\phi_1 - \phi_2]) \]
Two particle correlations and higher harmonic flow

Azimuthal correlations are studied with large rapidity gap: \(0.8 < |\Delta \eta| < 1.8\)

Correlations at small \(p_t\) (bulk)

\(2 < p_T^b < 2.5\) GeV/c
\(1.5 < p_T^a < 2\) GeV/c
\(0.8 < |\Delta \eta| < 1.8\)

Correlations at high \(p_t\) (away side jet)

\(8 < p_T^b < 15\) GeV/c
\(6 < p_T^a < 8\) GeV/c
\(0.8 < |\Delta \eta| < 1.8\)

Gaussian fit:
\(\sigma_{\Delta \phi} = 0.34\)

“ridge” and “mach-cone” like structures are naturally described by the collective flow effects
Anisotropic flow: summary

- Anisotropic transverse flow is an important experimental observable to study the evolution of a heavy-ion collision and understand the properties of the quark-gluon plasma (QGP).

- It provides constraints on:
 - Equation of state of the created matter
 - Transport properties (i.e. viscosity) of the QGP matter
 - Shape of the initial conditions in a heavy-ion collision

- Helps to understand the origin of the correlations between produced particle
Probes of local parity violation in strong interactions

\[
\frac{dN_\pm}{d(\Delta \phi_\pm)} \sim 1 + 2a_\pm \sin \Delta \phi_\pm
\]
Charge asymmetry wrt. the reaction plane

Coordinate/momentum are vectors:
\[\vec{r} \rightarrow -\vec{r} \quad \vec{p} \rightarrow -\vec{p} \]

Magnetic field (\(\mathbf{B} \)) is axial-vector:
\[\vec{B} \rightarrow -\vec{B} \]

Charge asymmetry wrt. the \(\Psi_{RP} \) breaks the parity symmetry

Theoretical motivation for the local parity violation:

- T.D. Lee, PRD8:1226 (1973)
- Finch, Chikanian, Longacre,
 Sandweiss, Thomas, PRC65:014908(2002)
Observable to probe local parity violation

- Asymmetry fluctuates event by event. P-odd observable yields zero (no global violation of the symmetry):

\[
\langle a_\pm \rangle = \langle \sin(\phi_\pm - \Psi_{RP}) \rangle = 0
\]

- Study P-even correlations: \(\langle a_\alpha a_\beta \rangle \) \((\alpha, \beta = \pm) \)

Measure the difference between in-plane and out-of-plane correlations:

\[
\langle \cos(\phi_\alpha + \phi_\beta - 2\Psi_{RP}) \rangle = \langle \cos \Delta \phi_\alpha \cos \Delta \phi_\beta \rangle - \langle \sin \Delta \phi_\alpha \sin \Delta \phi_\beta \rangle =
\]

\[
= \left[\langle v_{1,\alpha} v_{1,\beta} \rangle + Bg^{(in)} \right] - \left[\langle a_\alpha a_\beta \rangle + Bg^{(out)} \right]
\]

\(\Delta \phi_{\alpha,\beta} = \phi_{\alpha,\beta} - \Psi_{RP} \)

- Large RP-independent background correlations cancel out in \(Bg^{(in)} - Bg^{(out)} \)

\(Bg^{(in)} (Bg^{(out)}) \) denotes in- (out-of) plane background correlations

- RP-dependent (P-even) backgrounds contribute:

\(\rightarrow Bg^{(in)} - Bg^{(out)} \) term

\(\rightarrow \langle v_{1,\alpha} v_{1,\beta} \rangle \): directed flow (zero in symmetric rapidity range) + flow fluctuations
Charge separation in Pb-Pb collisions at LHC

3-particle correlations measured with the reaction plane estimated from:

- Charge particle reconstructed with TPC
- Cumulants and mixed harmonics
- Particles counted with VZERO detectors
- Spectator deflection measured by ZDCs

Observe negative same sign and small/positive opposite sign correlations

- Very good agreement between results with different estimates of the reaction plane:
 → evidence for correlations wrt. to the reaction plane
- Charge separation observed in Pb-Pb collisions at $\sqrt{s_{NN}} = 2.76$ TeV

ALICE Pb-Pb @ $\sqrt{s_{NN}} = 2.76$ TeV

same opp.

- TPC (cumulants)
- TPC (EP)
- ZDC (SP)
- VZERO (EP)

Preliminary

Ilya Selyuzhenkov, Hirschegg, 20/01/2012
Comparison with RHIC results

- RHIC and LHC observe charge separation
- Separation seems to disappear between 11.5 and 7.7 GeV energies

Note: RHIC data plotted inversely vs. centrality than the LHC data
Comparison with HIJING Monte-Carlo

HIJING reproduces the trends seen for opposite sign correlations.

Similar correlations for opposite and same sign pairs in HIJING.

Little/no charge dependence in HIJING

Other sources of background correlations:

- Charge conservation: S. Pratt, arXiv:1002.1758 [nucl-th]
Constraining backgrounds with two particle correlations

Similarity to RHIC:

- correlation strength between opposite sign pairs is larger than the same sign correlation

Difference from RHIC:

- Positive same sign correlation at LHC (while negative at RHIC)
- Magnitude of correlations is large than at RHIC

\[
\langle \cos(\phi_\alpha - \phi_\beta) \rangle = \langle \cos \Delta \phi_\alpha \cos \Delta \phi_\beta \rangle + \langle \sin \Delta \phi_\alpha \sin \Delta \phi_\beta \rangle = \\
\left[\langle v_{1,\alpha} v_{1,\beta} \rangle + Bg^{(in)} \right] + \left[\langle a_\alpha a_\beta \rangle + Bg^{(out)} \right]
\]

Significant change in the correlation pattern for 2-particle correlations from RHIC to LHC
Summary

Anisotropic transverse flow is an important experimental observable to study the evolution of a heavy-ion collision and understand the properties of the quark-gluon plasma (QGP).

- It provides constraints on:
 - Equation of state of the created matter
 - Transport properties (i.e. viscosity) of the QGP matter
 - Shape of the initial conditions in a heavy-ion collision

- Helps to understand the origin of the correlations between produced particle

Charge dependent azimuthal correlations are observed at RHIC and LHC:

- Correlations reflect collective effect
- Magnitude of the correlations is similar to that at RHIC energies
- Observe different behavior for the first harmonic two particle azimuthal correlations than at RHIC