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The nuclear many-body landscape

Increasing Dimension of the problem

Calculate the properties of thousands of strongly-
interacting nuclei rooted in the underlying QCD
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Challenges:
1) Extend the reach of ab-initio  

2) next-generation energy density functionals

3) role of three-nucleon (and higher?) interactions

4) controlled theory of shell model Hamiltonians/operators



Multiple Scales in Nuclear Physics
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Old View
• Multiple scales complicate life
• No easy way to connect them

Modern View
• Ratio of scales => small parameters!
• Effective theories at each scale 
connected by renormalization group
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V (⇤) = V2N(⇤) + V3N(⇤) + · · ·

Use RG to pick a convenient  Λ
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r0 ~ 1-1.5 fm in nuclei
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Repulsive core & strong tensor force => low and high k modes strongly 
coupled by the interaction

Complications: strong correlations, non-perturbative, 
poorly convergent basis expansions, ...

Scale-dependent sources of non-perturbative physics



Example: Why large Λ’s are painful   



Example: Why large Λ’s are painful 

Easiest way to extend the reach of ab-initio to heavier 
nuclei 

is to use lower resolutions (Λ) 
 “physical” scales kF and mπ  ~ 1 fm-1 ...
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2 Types of Renormalization Group Transformations

“Vlow k”
integrate-out high k states

preserves observables for k < Λ

“Similarity RG”
 eliminate far off-diagonal coupling

 preserves “all” observables 

Very similar consequences despite differences in appearance
(low and high momentum decoupled)
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The Similarity Renormalization Group
Wegner, Glazek and Wilson

dH�

d⇥
= [�(⇥), H�] with �(⇥) � dU(⇥)

d⇥
U†(⇥)

G� = T ⇥ H� driven towards diagonal in k� space

G� = PH�P + QH�Q ⇥ H� driven to block�diagonal

�(⇥) = [G�, H�]

Unitary transformation via flow equations:

 Engineer η to do different things as λ => 0 
� � s�1/4

.

.

.



Good things happen at lower resolution scales!
Example: universal low-momentum nuclear Hamiltonian

All nuclear force models have 
the same long-distance 
structure...

...but are totally model-
dependent at short-distances

Under RG evolution, the 
different models “collapse” to a 
universal curve
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Simplifications from lowering Λ

pair-distribution g(r)
kF = 1.35 fm-1

correlations in wave functions blurred out
more effective variational calcs., 
efficient basis expansions,
more perturbative...
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Lowering Λ increases “perturbativeness”

“nuclear matter” calculations relevant for neutron
stars, nuclear equation of state, etc. become perturbative



13

Full Configuration Interaction (FCI) Calculations  

Decoupling high-k and low-k => accelerated convergence, more
                        perturbative 

BUT note…
λ-dependent results (omitted induced 3…A-body forces)
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Approximation to the full 3N evolution 

- Chiral EFT complete operator basis
- Project onto N2LO 3NF
- Fit cE and cD to A=3,4 at each Λ

- <3N>/<2N> doesn’t explode
- Need high order calculation
of nuclei and/or nuclear matter and 
exact evolution to assess further 



Consistent 3N SRG evolution
(Jurgenson, Navratil, Furnstahl)

It works! λ-independent 3H, softer convergence
Induced 4N are small (but see R. Roth’s talk for possible problems)



Free space versus in-medium evolution  

Free space SRG:  V(λ)2N  fixed in 2N system
                             V(λ)3N   fixed in 3N system

                       
                       

                           V(λ)aN   fixed in aN system

Use T + V(λ)2N  + V(λ)3N + ... + V(λ)aN in A-body system

In-medium SRG:   
evolution done at finite density (i.e., directly in A-body system). 

Different mass regions => different SRG evolutions 

inconvenience outweighed (?) by simplifications allowed by normal-
ordering



⇥�|N(· · · )|�⇤ = 0
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Normal Ordered Hamiltonians
Pick a reference state Φ (e.g., HF) and apply Wick’s theorem

to 2nd-quantized Hamiltonian
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Normal Ordered Hamiltonians

 0-, 1-, 2-body terms contain some 3NF effects thru
density dependence => Efficient truncation scheme 

for evolution of 3N? 

Normal-order w.r.t. some reference state Φ (e.g., HF) :
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Normal Ordered Hamiltonians

 0-, 1-, 2-body terms contain some 3NF effects thru
density dependence => Efficient truncation scheme 

for evolution of 3N? 

Normal-order w.r.t. some reference state Φ (e.g., HF) :



lim
s�⇥

�od(s) = 0

�12|�od|34⇥ = 0 if f12 = f34

dH(s)
ds

= [�(s), H(s)]

� = [f̂ , �̂]
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In-medium SRG for Nuclear matter
• Normal order H w.r.t. non-int. fermi sea

•  Choose SRG generator to eliminate “off-diagonal” pieces 

•  Truncate to 2-body normal-ordered operators “IM-SRG(2)”
-  dominant parts of induced many-body forces included implicitly

� � s�1/4



lim
s�⇥

�od(s) = 0

�12|�od|34⇥ = 0 if f12 = f34

dH(s)
ds

= [�(s), H(s)]

Evac(⇥) � Egs

fk(⇥) � �k (fully dressed s.p.e.)
�d(⇥) � f(k�, k) (Landau q.p. interaction)

H(�) = Evac(�) +
�

fi(�)N(a†iai) +
1
4

�
[�d(�)]ijklN(a†ia

†
jalak)

� = [f̂ , �̂]
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In-medium SRG for Nuclear matter
• Normal order H w.r.t. non-int. fermi sea

•  Choose SRG generator to eliminate “off-diagonal” pieces 

•  Truncate to 2-body normal-ordered operators “IM-SRG(2)”
-  dominant parts of induced many-body forces included implicitly

Microscopic realization of SM ideas: dominant MF + weak A-dependent NNeff

� � s�1/4
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In-medium SRG Equations Infinite Matter

0-body flow

1-body flow

interference of 2p1h 2h1p
self-energy terms
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In-medium SRG Equations Infinite Matter

2-body flow

Note the interference between s, t, u channels a-la Parquet theory
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SRG is manifestly non-perturbative

+  many more ...
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Some observations

1)               for monotonic fk      correlations weakened, HF picks

                                                                up more binding with increasing s.

2) pp channel + 2 ph channels treated on equal footing  

3) Intrinsically non-perturbative 

4) no unlinked diagrams (size extensive, etc.)

5) “3rd-order exact” a-la CCSD

6) Extension to effective operators/Shell model possible
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Weak cutoff dependence over large range => dominant 3,4,...-body
terms evolved implicitly



In-medium SRG for closed-shell nuclei (g.s.)

0p0h 2p2h ...

H =

Df. “offdiagonal” part of 
H as terms that mix 0p0h 

with higher ph sectors

1p1h



In-medium SRG for closed-shell nuclei (g.s.)

0p0h 2p2h ...

H(∞) =

1p1h

HF reference state decouples
from higher npnh states

� � s�1/4



IM-SRG to build “soft” interactions

~ λ-independent CC results (dominant induced many-body
interactions included)

� � s�1/4



- good agreement with CCSD (dashed lines) 
- N6 scaling with number of s.p. orbitals

IM-SRG to diagonalize many-body problems



Also works well for harder interactions:

- agrees well w/CCSD using bare N3LO (Entem/Machleidt)



ϵF

In-medium SRG for open shell nuclei (Shell model)

active valence orbitals vi

inactive particle orbitals qi

inactive hole orbitals hi

Decouple valence orbitals and diagonalize: 

PHeffP | i = (E � Ec)P | i

Previously, Heff from MBPT and
empirical corrections

Can we use the IM-SRG to do this?



In-medium SRG recipe for shell model

1) Identify all terms in H that don’t annihilate model-space states

Ôi

�
v†1 . . . v

†
Nv

|�i
�
6= 0

2) Solve flow equations dH

ds
= [⌘, H]

⌘ = [H(od), H]

H(od) =
X

g
i

Ô
i

3) Diagonalize fully-evolved H in the reduced valence space

PH(1)P | i = (E � Ec)P | i
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Summary
• RG methods can simplify many-body calculations 

immensely provided that induced many-body operators 
are under control

• In-medium evolution + truncations based on normal-
ordering => simple way to evolve dominant induced 3, 
4, ...A-body interactions with 2-body machinery

• Can be used as ab-initio method in and of itself, or to 
construct soft interactions for other ab-initio methods

• Extensions to shell model Heff/Oeff look promising
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Ongoing work

1) Extension to open-shell nuclei using number-projected HFB
reference states (Heiko Hergert, Ohio State)

II) Extension to shell model effective operators (e.g., 0νββ decay)
    - suitable for multi-shell model spaces and non-perturbative

III) Apply to neutron/nuclear matter in a box

IV) Next higher truncation (explicit N-ordered 3-body)


