Three-nucleon forces and neutron-rich nuclei

Achim Schwenk

Facets of Strong Interaction Physics Hirschegg 40 + Bengt 60, Jan. 18, 2012

Bundesministerium für Bildung und Forschung

Happy Birthday Bengt!

Outline

Understanding three-nucleon forces

Three-body interactions and normal Fermi systems with B. Friman

3N forces and neutron-rich nuclei with J.D. Holt, J. Menendez, T. Otsuka, T. Suzuki 使原文学

Electroweak interactions and 3N forces with J. Menendez, D. Gazit

Three-nucleon forces and neutron matter with K. Hebeler, J.M. Lattimer, C.J. Pethick

האוניברסיטה העברית בירושלים The Hebrew University of Jerusalem

Niels Bohr Institutet

Why are there three-body forces?

Why are there three-nucleon (3N) forces?

Nucleons are finite-mass composite particles, can be excited to resonances

dominant contribution from $\Delta(1232 \text{ MeV})$

+ many shorter-range parts

EFT provides a systematic and powerful approach to organize 3N forces

Weinberg, van Kolck, Kaplan, Savage, Wise, Epelbaum, Kaiser, Machleidt, Meissner,...

Weinberg, van Kolck, Kaplan, Savage, Wise, Epelbaum, Kaiser, Machleidt, Meissner,...

Subleading chiral 3N forces

parameter-free N³LO Bernard et al. (2007, 2011), Ishikawa, Robilotta (2007)

one-loop contributions:

 2π -exchange, 2π - 1π -exchange, rings, contact- 1π -, contact- 2π -exchange

1/m corrections: spin-orbit parts, interesting for A_y puzzle

Chiral EFT for nuclear forces Separation of scales: low momenta $\frac{1}{\lambda} = Q \ll \Lambda_{\rm b}$ breakdown scale ~500 MeV NN **3**N 4N1.5 LO $\mathcal{O}\left(\frac{Q^0}{\Lambda^0}\right)$ 1.0 [MeV 0.5 NLO $\mathcal{O}\left(\frac{Q^2}{\Lambda^2}\right)$ (4NF)> 0.0 LIV -0.5 H lass IV class V Class ass lass -1.0 all N²LO $\mathcal{O}\left(\frac{Q^3}{\Lambda^3}\right)$ -1.5 first perturbative estimate of 4N forces Nogga et al. (2010) N³LO $\mathcal{O}\left(\frac{Q^4}{\Lambda^4}\right)$ nuclear matter estimate small Fiorilla et al. (2011)

Weinberg, van Kolck, Kaplan, Savage, Wise, Epelbaum, Kaiser, Machleidt, Meissner,...

Three-body interactions and normal Fermi systems 3N forces important, but why residual 3-body contributions small? no 3-body Fermi liquid parameters needed in liquid ³He

no evidence of residual 3-body forces in the shell model (I. Talmi)

Three-body interactions and normal Fermi systems 3N forces important, but why residual 3-body contributions small? no 3-body Fermi liquid parameters needed in liquid ³He no evidence of residual 3-body forces in the shell model (I. Talmi)

can be understood in Fermi liquid theory Friman, AS, arXiv:1101.4858.

$$\delta E = \sum_{1} \varepsilon_{1}^{0} \,\delta n_{1} + \frac{1}{2V} \sum_{1,2} f_{1,2}^{(2)} \,\delta n_{1} \,\delta n_{2} + \frac{1}{6V^{2}} \sum_{1,2,3} f_{1,2,3}^{(3)} \,\delta n_{1} \,\delta n_{2} \,\delta n_{3}$$

contributions from residual 3-body interactions suppressed by E_{ex}/E_F

$$\frac{1}{2V} \sum_{1,2} f_{1,2}^{(2)} \,\delta n_1 \,\delta n_2 \sim \frac{1}{V} \,\langle f^{(2)} \rangle \left(\frac{N\Delta}{\mu}\right)^2 \sim \langle F^{(2)} \rangle \,\frac{N\Delta^2}{\mu}$$
$$\frac{1}{6V^2} \sum_{1,2,3} f_{1,2,3}^{(3)} \,\delta n_1 \,\delta n_2 \,\delta n_3 \sim \frac{n^2}{\mu} \,\langle f^{(3)} \rangle \,\frac{N\Delta^3}{\mu^2} \sim \langle F^{(3)} \rangle \,\frac{N\Delta^3}{\mu^2}$$

very helpful guiding principle for nuclei

Towards the limits of existence - the neutron drip-line

The oxygen anomaly

one such nucleus — yet it lies just at the limit of stability.

The oxygen anomaly - not reproduced without 3N forces

The oxygen anomaly - impact of 3N forces

- include 'normal-ordered' 2-body part of 3N forces (enhanced by core A)
- leads to repulsive interactions between valence neutrons
- contributions from residual three valence-nucleon interactions suppressed by $E_{ex}/E_F \sim N_{valence}/N_{core}$ ¹⁶O core Friman, AS, arXiv:1101.4858.

The oxygen anomaly - impact of 3N forces

- include 'normal-ordered' 2-body part of 3N forces (enhanced by core A)
- leads to repulsive interactions between valence neutrons
- contributions from residual three valence-nucleon interactions suppressed by $E_{ex}/E_F \sim N_{valence}/N_{core}$ ¹⁶O core Friman, AS, arXiv:1101.4858.

 $d_{3/2}$ orbital remains unbound from ¹⁶O to ²⁸O

microscopic explanation of the oxygen anomaly Otsuka et al., PRL (2010)

Calculational improvements and benchmark Holt, AS, arXiv:1108.2680.

good agreement with CC calculations (based on same NN interaction and CC single-particle energies)

3rd order MBPT well converged compared to other uncertainties

extended valence space $(sdf_{7/2}p_{3/2})$ is important for neutron-rich extremes

Oxygen spectra focused on bound excited states Holt, AS, arXiv:1108.2680.

- NN only too compressed
- 3N contributions and extended valence space are key to reproduce excited states

Three-body forces and magic numbers

3N mechanism important for shell structure

Holt et al., arXiv:1009:5984

N=28 shell closure due to 3N forces and single-particle effects (⁴¹Ca)

N=34: predict high 2⁺ excitation energy in ⁵⁴Ca at 3-5 MeV

Evolution to neutron-rich calcium isotopes

repulsive 3N contributions also key for calcium ground-state energies

Evolution to neutron-rich calcium isotopes

repulsive 3N contributions also key for calcium ground-state energies

mass measured to ⁵²Ca shown to exist to ⁵⁸Ca

Holt et al., arXiv:1009:5984

predict drip-line around ⁶⁰Ca

estimate of residual 3-body forces ~5 MeV in ⁶⁰Ca

Evolution to neutron-rich calcium isotopes

new ^{51,52}Ca TITAN measurements: J. Dilling et al. preliminary

⁵²Ca is 1.75 MeV more bound compared to atomic mass evaluation (AME)!

Chiral EFT for electroweak transitions Menendez, Gazit, AS (2011).

- two-body currents lead to important contributions in nuclei (Q~100 MeV) especially for Gamow-Teller transitions
- two-body currents determined by NN, 3N couplings to N³LO Park et al., Phillips,...
- explains part of quenching of g_A (dominated by long-range part)
- + predict momentum dependence (weaker quenching for larger p)

Chiral EFT for electroweak transitions Menendez, Gazit, AS (2011).

- two-body currents lead to important contributions in nuclei (Q~100 MeV) especially for Gamow-Teller transitions
- two-body currents determined by NN, 3N couplings to N³LO Park et al., Phillips,...
- explains part of quenching of g_A
- + predict mom. dependence
- + nuclear matrix elements for $0\nu\beta\beta$ decay based on chiral EFT operator

Weinberg, van Kolck, Kaplan, Savage, Wise, Epelbaum, Kaiser, Meissner,...

Impact of 3N forces on neutron matter

Hebeler, AS (2010); Tolos, Friman, AS (2007) only long-range parts of 3N forces contribute to neutron matter (c_1 and c_3)

uncertainties dominated by c_3 coupling

repulsive contribution as for heavier neutron-rich nuclei

microscopic calculations within band

Symmetry energy and neutron skin Hebeler et al. (2010)

neutron matter band predicts range for symmetry energy 30.1-34.4 MeV

$c_1 [{ m GeV}^{-1}]$	$c_3[{ m GeV}^{-1}]$	$ \overline{S}_2 [{ m MeV}]$
-0.7	-2.2	30.1
-1.4	-4.8	34.4
NN-only EM		26.5
NN-only EGM		25.6

and neutron skin of ²⁰⁸Pb to 0.17±0.03 fm

compare to ± 0.05 fm future PREX goal first result: 0.34+0.15-0.17 fm

from complete E1 response 0.156+0.025-0.021 fm Tamii et al., PRL (2011).

3N forces and neutron stars

uncertainty from many-body forces and general extrapolation

constrains neutron star radius: 9.9-13.8 km for M=1.4 M_{sun} (±15% !)

consistent with extraction from X-ray burst sources Steiner et al., ApJ (2010) provides important constraints for EOS for core-collapse supernovae

Summary

Exciting era with advances on many fronts: development of effective field theory and the renormalization group

enables a unified description from nuclei to matter in astrophysics

3N forces are a frontier for neutron-rich nuclei/matter:

key to explain why ²⁴O is the heaviest oxygen isotope

Ca isotopes (and N=28 magic number), key for neutron-rich nuclei

dominant uncertainty of neutron (star) matter below nuclear densities, constraints on neutron star radii

exciting interactions with experiments and observations