Equation-of-state influence on neutron-star mergers

Andreas Bauswein (MPA Garching) with H.-Th. Janka, K. Hebeler, A. Schwenk, N. Stergioulas

Astrophysics and Nuclear Structure Hirschegg 31/01/2013

SFB/TRANSREGIO 7 GRAVITATIONAL WAVE ASTRONOMY Garching Hannover Jena Potsdam Tübingen

Outline

- Motivation
- Equation of state of high-density matter and the mass-radius relation of neutron stars
- Code details
- Neutron star mergers: general outcome
- Gravitational waves → Advanced LIGO, Advanced Virgo
- Results: equation of state dependence of the GW signal
- Interpretation
- Summary and conclusions

Equation of state of high-density matter

Beta equilibrium, zero temperature

Motivation

Equation of state of high-density matter only incompletely known

- → neutron star properties unknown
- → survey of EoS dependence of neutron-star mergers
- → measure EoS from gravitational-wave signal of neutron-star mergers

→ functional dependence !!!!

Horizontal line: 1.97 M_{sun} (Demorest et al. 2010)

Code details

- 47 microphysical EoS (12 include thermal effects consistently), including two strange quark matter EoSs (distinguishable by other observational features)
- without any selection procedure
- 3D Relativistic Smooth Particle Hydrodynamics
- spatial conformal flatness (+ postNewtonian backreaction)
- from quasi-equilibrium oribt about three revolutions before merging
- inially cold neutron stars in neutrinoless beta-equilibrium
- nonrotating velocity profile
- default resolution of 340,000 SPH particle

Expected binary parameters

Observations suggest:

~ equal-mass binaries with M_{tot}≈2.6 M_{sun} most abundant in binary population

(in agreement with population synthesis studies)

=> focus on 1.35-1.35 M_{sun}

Lattimer 2012

Movie 1.2-1.35 (Temperature)

Movie 1.35-1.35 (density, equatorial plane)

General outcome

for 1.35-1.35 M_{sun} binaries

(most abundant according to population synthesis studies)

42 out of 47 models lead to the formation of a differentially rotating object

Gravitational-wave amplitude

Gravitational-wave spectra

Sensitivity curves: Red dashed: Advanced LIGO Black dashed: Einstein Telescope

thick line: full signal thin line: postmerger signal

 Pronounced peak in the kHz range as a robust feature of all models forming a differentially rotating NS

Connect EoS and GW signal:

Mass-radius relations of nonrotating neutron stars **Stellar parameters of nonrotating NSs = integral EoS property** Candidate EoS cover the full range of stellar parameters for all EoS 1.35-1.35 M_{sun} binaries: f_{peak} vs. properties of <u>nonrotating</u> NS

Radius of the maximum-mass configuration

Red: temperature dependent EoS, remaining: ideal-gas for thermal effects

Radius of a 1.6 M_{sun} star

Red: temperature dependent EoS, remaining: ideal-gas for thermal effects

Radius of a 1.6 M_{sun} star

For the accepted models: Maximum scatter from fit: ~ 100 meters

Triangle: strange quark matter (distinguishable by other observations)

Plus signs: excluded EoSs

Maximum-mass (of nonrotating NSs)

Red: temperature dependent EoS, remaining: ideal-gas for thermal effects

Central density of maximum-mass NS

3.5

1.35-1.35 binaries

Pressure at 1.85 nuclear density

Red: temperature dependent EoS, remaining: ideal-gas for thermal effects

Sound speed at 1.85 nuclear density

Red: temperature dependent EoS, remaining: ideal-gas for thermal effects

Variation of binary parameter

M₁ and M₂ measurable from GW inspiral signal

Note: for the different total binary masses different radii of nonrotating NSs represent better choice (involved density regimes)

Evolution of maximum density

Crucial for usability:

- Out to which distance the postmerger signal can be detected?
- \rightarrow 20-45 Mpc with Advanced LIGO \rightarrow 0.01 1 events/yr (conservative)
- \rightarrow much more with late inspiral signal
- To which accuracy f_{peak} can be determined?
- \rightarrow about 30-50 Hz (from Fisher information matrix)

• (binary masses, merger time, distance ... known from inspiral)

Remarks:

- Peak frequency coincides within a few per cent with results of fully relativistic calculations (without trend, depends also on exact implementation of EoS)
- Some EoS might be ruled out by nuclear physics \rightarrow reduces scatter
- Our method is robust with respect to uncertainties in the determination of the binary masses
- Alternative: EoS from GW inspiral signal: ~1 km accuracy but higher event rate (Read et al. 2009)
- Multiple detections with different total binary masses highly interesting

Why such a scaling?

GW spectrum (pre- and post-merger) 1.35-1.35 M_{sun}, Shen EoS

Fourier transform of the pressure in the equatorial plane

Stergioulas et al. (2011)

Eigenfunction of the pressure at f_{peak}

Fundamental quadrupolar fluid mode

for Newtonian uniform-density stars:

 $f \propto \sqrt{\frac{M}{R^3}}$

still valid for relativistic, rotating stars with arbitrary EoS

$$\Rightarrow f_{\rm peak} \propto R_{\rm remnant}^{-3/2}$$

if remnant size correlates with the radius of nonrotating stars

$$\Rightarrow f_{\rm peak} \propto R_{\rm TOV}^{-3/2}$$

Figure 1. The numerically obtained f-mode frequencies plotted as functions of the mean stellar density (M and R are in km and ω_{f-mode} in kHz).

Andersson & Kokkotas 1998

Radius of the remnant

1.35-1.35 binaries

R_{remnant} = sphere enclosing 2.6 M_{sun} rest mass

→ linear scaling

Summary and conclusions

- Survey of equation of state influence on neutron star mergers
- Generic outcome of 1.35-1.35 M_{sun} merger: formation of a differentially rotating NS
- Pronounced peak in the GW spectrum
- Peak frequency scales very well with the radius of a nonrotating NS with 1.6 M_{sm}
- Neutron star radii can be measure with an accuracy of 100-200 meters
- Correlations / constraints for other EoS properties

Details:	Bauswein & Janka, PRL 108, 011101 (2012)
	Bauswein et al., PRD 86, 063001 (2012)
	Stergioulas et al., MNRAS 418, 427 (2011)