hirschegg@29.01.2013

Compact stars from holographic QCD

We didn't have any nuclear accelerator

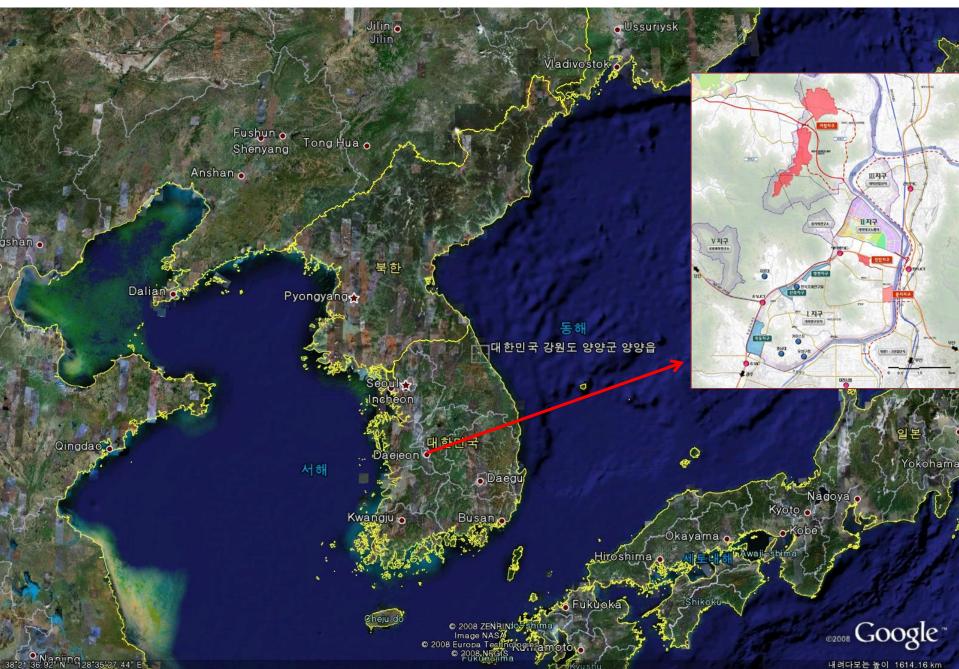
but, in 2011, government approved Korean Rare Isotope Accelerator

KoRIA(nick name) \rightarrow RAON(official name)

"라온"

RAON

a pure Korean word meaning Delightful, Joyful, Happy,...


"with a wish that this accelerator would be a delightful gift for scientists all over the world and for the bright future of mankind."

Brief History

- International Science Business Belt(ISBB) plan (2009.1)
- Preliminary Design Study (2009.3-2010.2)
- Conceptual Design study (2010.3-2011.2)
- International Advisory Committee(2011.7)
- Institute for Basic Science(IBS) established(2011.11)
- Rare Isotope Science Project(RISP) launched(2011.12)
 - Rare isotope accelerator complex is the representative facility of IBS
- Technical Advisory Committee(2012.5)
- Baseline Design Summary (2012.6)
- International Advisory Committee(2012.7)
- Technical Design (present 2013.6)

Location

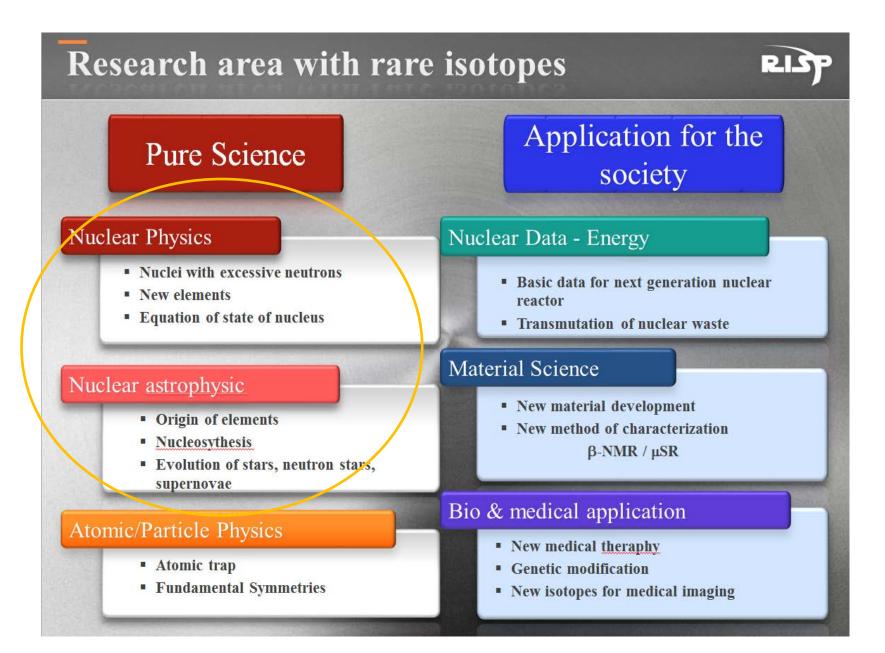
Institute for Basic Science

Accelerator : RAON

High intensity rare isotope beam with ISOL and IF methods

- 70MeV, 1mA proton beam, ²³⁸U target 70kW ISOL system
- 200MeV/u, 8.3pµA, ²³⁸U beam and other stable isotope beam 400kW IF system

High current high purity neutron-rich RI beam


- For example, ¹³²Sn : ~250MeV/u, ~ 10⁸ pps
- ISOL + acceleration
- Production of exotic beams combining ISOL and IF methods
- Simultaneous operation of IF and ISOL systems

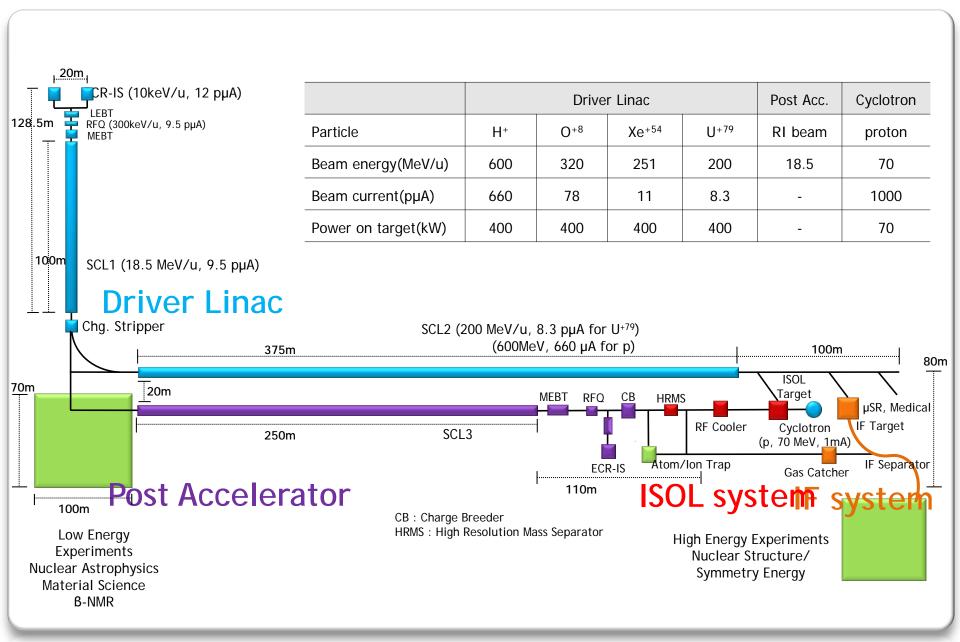
Design Consideration for the future

Wide variety of isotope beams

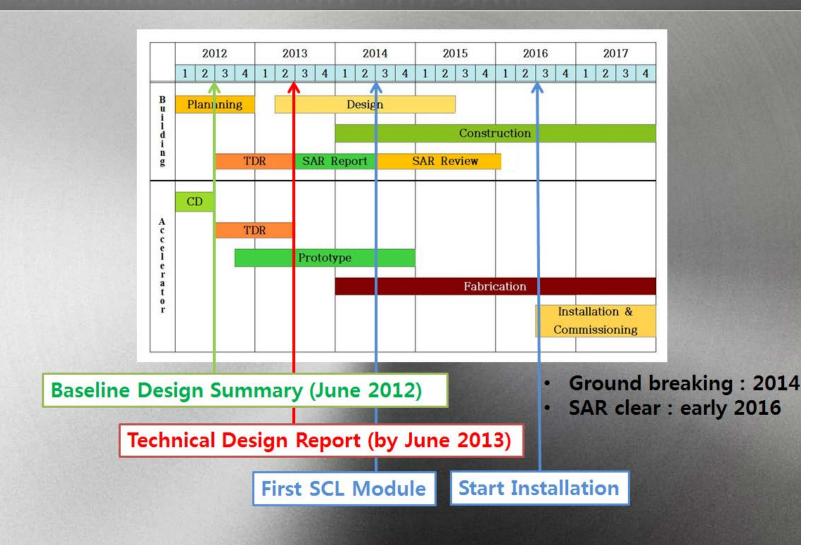
Upgradable to higher energy and higher intensity

World leading RI beam facility for longer term

Science topics


Research Field	Theme	Topics	Example reactions Apparatus	Beam	Production
	Origin of elements/ Stellar Evolution	r-process waiting point	· ¹²³ Nb, ¹²⁴ Mo, ¹²⁵ Tc, ¹²⁶ Ru · Decay Station	 primary beam(PB): ²³⁸U E: 200 <u>AMeV</u> Intensity: > 1 pµA 	·IF
		Contribution of isomer interaction to <u>nucleosynthesis</u>	· ${}^{26m}Al+p \rightarrow {}^{27}Si+\gamma$ · Recoil Spectrometer	 · PB : ²⁸Si · SB : ^{26m}Al - E: < 5 AMeV - Intensy: > 10⁷ pps 	· IF
		Escape process to <u>rp-proces</u>	· ¹⁵ O+α→ ¹⁹ Ne+γ · Recoil Spectrometer	 PB : p(ISOL), ¹⁶O(IF) SB : ¹⁵O E: < 10 AMeV Intensity: > 10¹⁰ pps 	· ISOL · IF
		Superheavy elements	• ${}^{64}\text{Ni} + {}^{238}\text{U} \rightarrow {}^{299}120 + 3n$ • SHE spectrometer	· PB: ⁶⁴ Ni - E: < few <u>AMeV</u> - Intensity: > few pµA	• Stable Ion Beam
	Nuclear structure and Nuclear force	Nuclear structure of rare isotopes with neutron magic number near 126	\cdot ¹⁴⁴ Xe + ²⁰⁸ Pb \rightarrow ¹⁹⁶ Yb + X \cdot Decay Station	 SB: ¹⁴⁴Xe E: > 100 AMeV Intensity: > 10⁶ pps 	·ISOL
		Symmetry energy	$\cdot {}^{132}Sn + {}^{119}Sn \rightarrow X + Y$ $\cdot Large Acceptance$ Spectrometer	 PB:p(ISOL), ²³⁸U(IF) SB: ¹³²Sn E: 10~250 AMeV Intensity: > 10⁷ pps 	· ISOL (Low E) · IF (High E)
	Nuclear data	Neutron capture cross section	· p + Be, Li, C · neutron irradiation facility	· PB: p - 70 MeV (p) - 1 kHz ~10 MHz pulse beam	• Cyclotron

Science topics

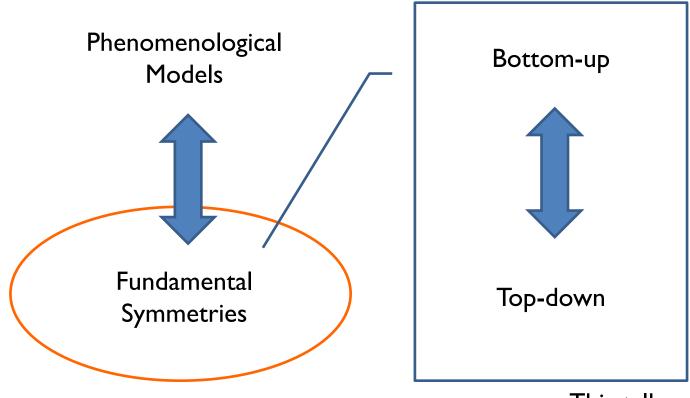

Research Field	Theme	Topics	Example reactions Apparatus	Beam	Production
Molecular	Mass and spectroscopy of rare isotopes	Study of rare isotopes near neutron <u>Dripline</u>	• medium mass n-rich beam • Atomic trap facility	 PB: p(ISOL), ²³⁸U(IF) SB: ¹³²Sn toward neutron drip line E: < 60 keV Intensity: > 1 pps 	· ISOL · IF
	Characterization of new material	Local <u>Electromagneic</u> structure of material	 Low Mass RI beam β-NMR, β-NQR µSR spectroscopy 	 PB : ⁸Li, ¹¹Be, ¹⁵O, ¹⁷Ne, muon E: < ~10 keV Intensit: > 10⁸ pps 	· ISOL · IF
Bio and Medical Science	Understanding	Biological optimization of heavy ion therapy and on- line imaging of dose of nuclear therapy	• Low Mass RI beam • RI irradiation facility	• SB : ⁸ B, ⁹ C, ¹¹ C - E: 200~400 <u>AMeV</u> - Intensity: > 10 ⁷ <u>pps</u>	· ISOL · IF

RISP

Concept of RAON

Schedule and Major Milestone

For the success of RAON

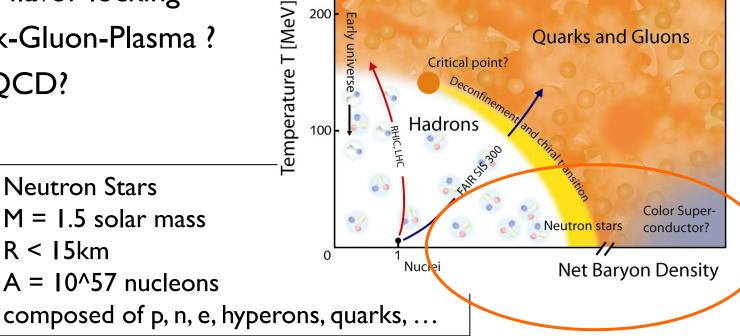

We need your help

My interests & collaborators

Something related to Neutron Stars

- NS equation of states : kaon condensation
 M. Rho, G.E. Brown, et al.
- NS binary evolution, gamma-ray bursts, ...
 G.E. Brown, R.A.M.J. Wijers, et al.

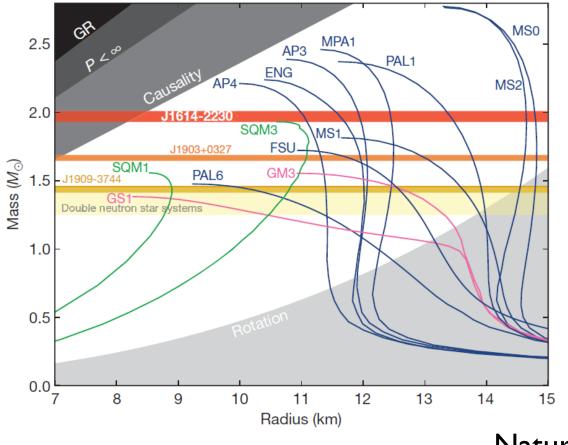
- Ist visit to Hirschegg
- Gravitational-wave radiation from NS binary coalescence
 - with 2 Ph.D. students (Hee-Suk Cho, Young-Min Kim)
 - as a member of KGWG(Korean Gravitational Wave Group) & LSC (LIGO Scientific Collaboration)
- Compact Stars in hQCD 2nd visit to (Y. Kim et al.)
 Hirschegg



This talk

- Why neutron stars?
- Fundamental symmetries for dense matter
- Dense matter in hQCD
- Prospects
 - The purpose of this talk is not to sell specific hQCD models
 - but, to review my own perspectives on the connection between dense matter physics & hQCD

Ultimate Testing place for physics of dense matter


- Chiral symmetry restoration
- Color superconductivity
- Color-flavor locking
- Quark-Gluon-Plasma ?
- AdS/QCD?

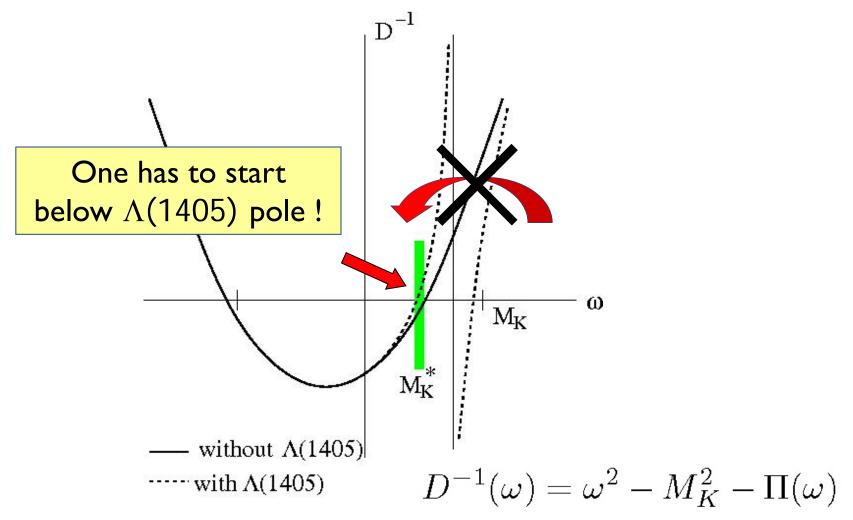
Open Question:

Given the theoretical uncertainties,

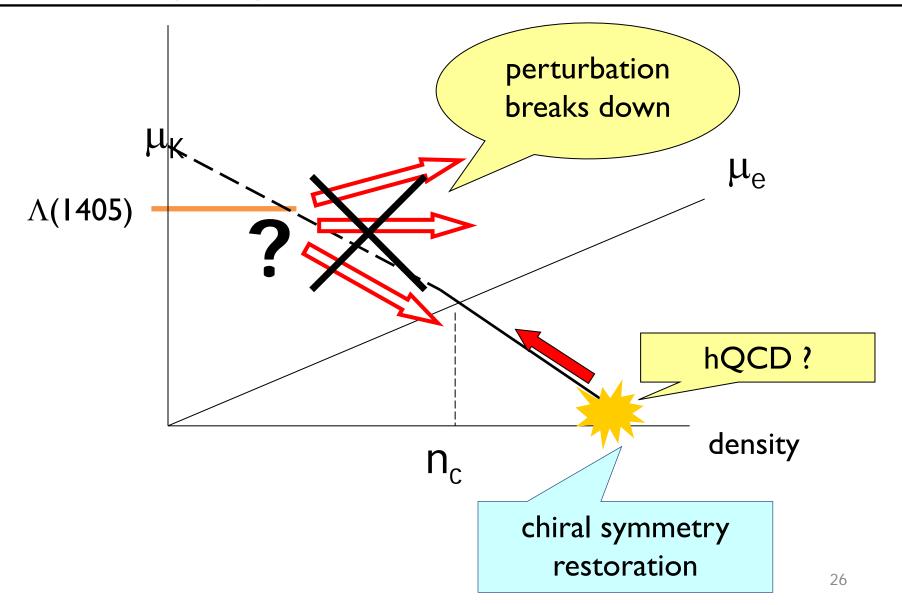
which one is right ?

- Why neutron stars?
- Fundamental symmetries for dense matter
- Dense matter in hQCD
- Prospects

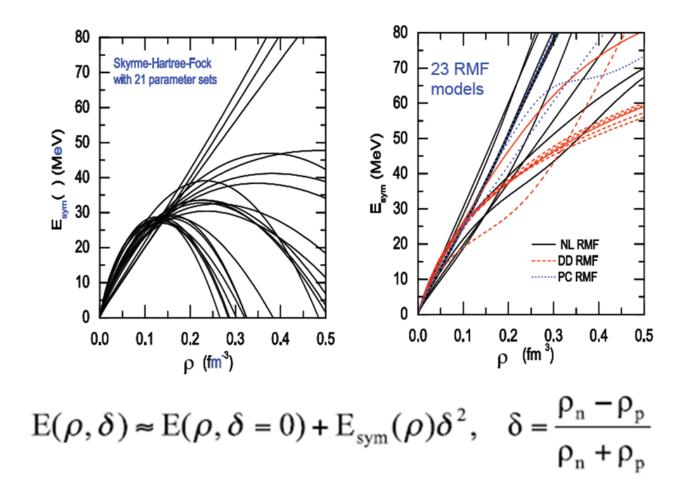
- Construct Lagrangian based on symmetries
- Mean field approximation (locally uniform matter)
 + alpha
- Obtain pressure/energy-density vs density: p(r),e(r)


Two different approaches for dense matter physics

- ✓ Conventional approach :
 - start from zero density where symmetry is broken
- ✓ Top-down approaches :
 - start from high density where symmetry believed to be restored


Example) problems in conventional approaches

- Problem in K⁻p Scattering amplitude: experiment : - 0.65 + i 0.81 fm (repulsive) chiral symmetry : + (attractive !)
- ✓ Problem of Λ(1405)
 pole position of Λ(1405)
 → only 30 MeV below KN threshold


Perturbation breaks down in conventional approach !

Can hQCD give a guideline ?

Symmetry energy from phenomenological models

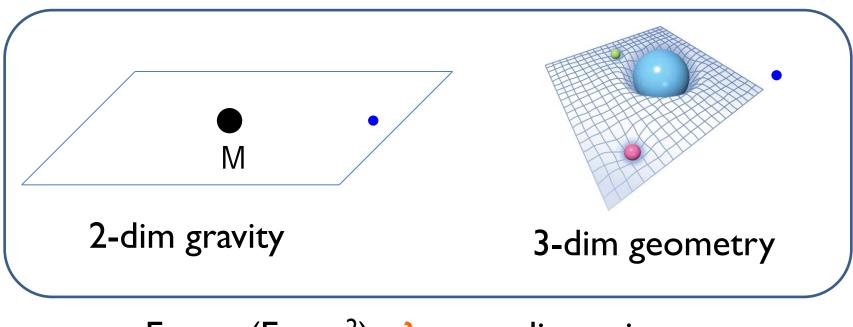
Fundamental symmetries for dense matter physics

In order to understand dense matter physics, we need some guidelines which are based on fundamental symmetries

Contents

- Why neutron stars?
- Fundamental symmetries for dense matter
- Dense matter in hQCD
- Prospects

Motivation for holographic QCD


- Strong interaction in QCD
 - perturbation is impossible
- Holographic QCD
 - strong interaction in QCD might be the result of non-trivial geometry of 5-dim space time
 - \rightarrow find proper geometry which is equivalent to QCD
 - \rightarrow with weak coupling : perturbation is possible

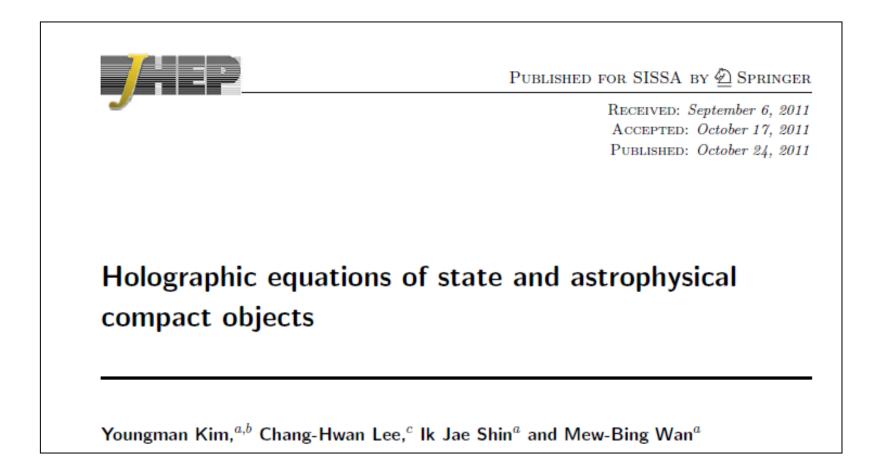
Motivation for holographic QCD

- What is main advantage?
 - less parameters due to symmetries in higher dimension
- How to test?
 - asymptotic freedom at high mementum
 - meson/baryon spectrums in vacuum

-

Q) Are extra dimensions physical ?

Energy(E=mc²) ? new dimension


space(3)+time(1)+extra(1,energy) = 5 dim space

Holographic QCD

- Bottom-up approach : start from QCD and attempt to guess its 5d holographic dual, AdS/CFT dictionaries
 → hard-wall model, soft-wall model, ...
- Top-down approach : start from string theory, set brane configuration with DBI action, reproduce QCD-like theory

 \rightarrow D3/D7, D4/D6, Sakai-Sugimoto ...

Top-down in hQCD

No strangeness, yet : JHEP 10 (2011) 111

String

* one-dimensional object

$$X^{\mu}(\tau,\sigma) = X^{\mu}(\sigma^0,\sigma^1)$$

Nambu-Goto action

$$S_{\rm NG} = -T \int d\mathcal{A} = -T \int d\tau d\sigma \sqrt{(\dot{X} \cdot X')^2 - \dot{X}^2 X'^2}$$

using an induced metric γ_{ab} on the world-sheet

$$\gamma_{ab} = \eta_{\mu\nu} \frac{\partial X^{\mu}}{\partial \sigma^a} \frac{\partial X^{\nu}}{\partial \sigma^b}$$

in the reparametrization invariant form

$$S_{\rm NG} = -T \int d^2 \sigma \sqrt{-\gamma} \quad \text{where} \quad \gamma = \det(\gamma_{ab})$$

• D*p*-brane

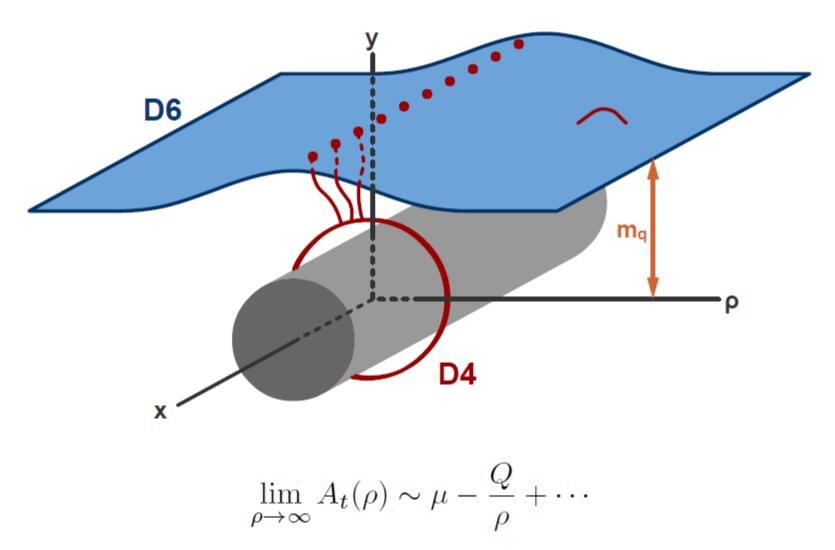
* multi-dimensional object

$$X^{\mu}(\sigma^0, \sigma^1) \longrightarrow X^{\mu}(\sigma^0, \sigma^1, \cdots, \sigma^p)$$

DBI action

$$S_{\mathrm{D}_p} = -T_p \int d^{p+1} \sigma \sqrt{-\det P[g]}$$

using a pull-back metric $P[g]_{ab}$ on the world-volume


$$P[g]_{ab} = g_{\mu\nu} \frac{\partial X^{\mu}}{\partial \sigma^a} \frac{\partial X^{\nu}}{\partial \sigma^b}$$

including a gauge field A_a on the world-volume

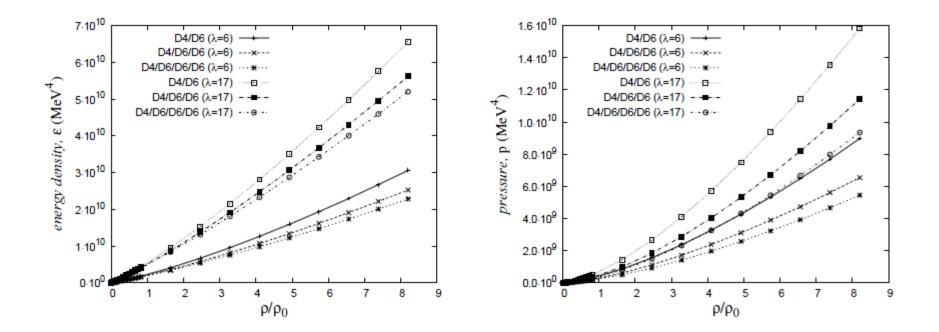
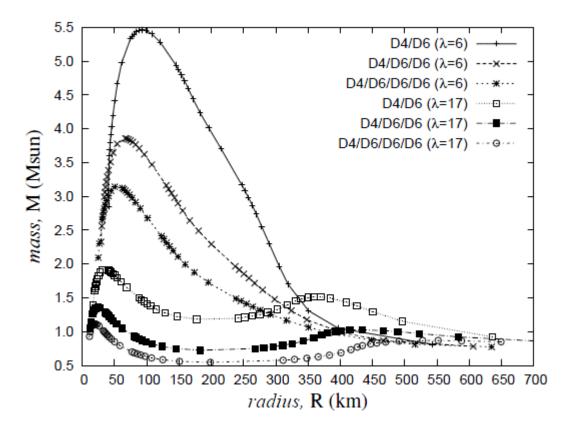
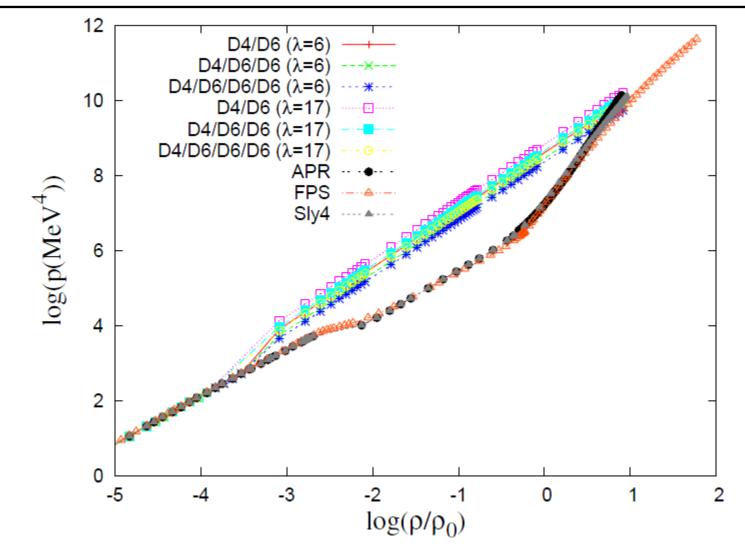

$$S_{\text{DBI}} = -T_p \int d^{p+1} \sigma \sqrt{-\det\left(P[g] + 2\pi\alpha' F\right)}$$

figure by D. Yi


• add compact D4 branes \Rightarrow Baryon

Equation of states



energy density $\epsilon(\rho)$ and pressure $p(\rho)$

Far from realistic : what is the problem ?

Comparison of pressure

- Proper attraction is missing in large Nc limit & large t'Hooft coupling limit
- \checkmark Mass of scalar field is bigger than that of vector field
- ✓ No unique way of putting baryons
- \checkmark How to introduce strangeness

- ✓ hQCD has been partly successful in explaining meson/baryon mass spectrum in vacuum.
- however, hQCD is not so successful in explaining compact stars, yet.
- ✓ in the future, hQCD may be able to contribute to the real physics by providing more guidelines to QCD effective models.

Many Thanks