Elliptic flow and the symmetry energy at supra-saturation density

W. Trautmann GSI Helmholtzzentrum, Darmstadt, Germany

Astrophysics and Nuclear Structure

International Workshop XLI Hirschegg, January 2013

Elliptic flow and the symmetry energy at supra-saturation density

W. Trautmann GSI Helmholtzzentrum, Darmstadt, Germany

Catania:Angelo Pagano, Paolo RussottoPLB 697 (2011)FIAS/Houchou (China):Qingfeng LiGSI:Yvonne Leifels, Maja Zoric (Zagreb)Kraków:Jerzy Łukasik, Piotr PawłowskiLiverpool:Marielle Chartier, Roy Lemmon, Pete WuMünchen:Hermann Wolterreview in IJMPE 21 (2012)

ALADIN/GSI: modified properties; reduced E_{sym} in liquid-drop description of fragments

Texas A&M: PRL104 (2010) $E_{sym} \approx 8 \text{ MeV}$ at $\rho \approx 0.02 \rho_0$ theory: Typel, Röpke et al. ALADIN/GSI: modified properties; reduced E_{sym} in liquid-drop description of fragments

the symmetry energy

Fuchs and Wolter, EPJA 30 (2006)

γ	L (MeV)
0.5	57
1.0	90
1.5	123

 $E_{sym} = E_{sym}^{pot} + E_{sym}^{kin}$ = 22 MeV·(p/p_0)^γ+12 MeV·(p/p_0)^{2/3}

 $L = 3\rho_0 \cdot dE_{sym}/d\rho$ at $\rho = \rho_0$

the symmetry energy

Fuchs and Wolter, EPJA 30 (2006)

γ	L (MeV)
0.5	57
1.0	90
1.5	123

L = 66.5 MeV, I. Vidaña et al. PRC80 (2009) BHF with Argonne V18 plus Urbana phenom. 3BF

L = 45±10 MeV, Hebeler & Schwenk, PRC82 (2010) EFT with chiral three-nucleon forces ($\rho \le \rho_0$)

supra-saturation density

remember: symmetric matter

KAOS data (GSI) K⁺ double ratios Au+Au vs. C+C normalized to <A_{part}> ...

1 A GeV Au+Au

flow data rule out repulsive and super-soft EoS

... favor soft EoS

Danielewicz et al., Science 298 (2002)

Sturm et al., Fuchs et al., PRL 86 (2001)

supra-saturation density

remember: symmetric matter

1 A GeV Au+Au

asymmetric matter (need differential observables)

pre-summary

- the **differential elliptic flow** in neutron-rich systems emerges as an observable sensitive to the strength of the symmetry energy at supra-saturation densities.
- kaon and pion ratios interesting probes but results presently inconclusive.

Danielewicz et al., Science 298 (2002)

isotopic particle (double) ratios FOPI data K⁺/K⁰ ratio X. LOPEZ et al. PRC (2007) static calc. for infinite 1.8 nucl. matter (K⁺/K⁰)_{Ru} / (K⁺/K⁰)_{Zr} 1.6 atio π/π^+ HIC 1.2 ÷ 75 30 100 E_{sym} (MeV, ρ_B=2.5ρ₀) 0.8 DATA THERM. NL NLp ΝLρδ Data Vs Models

HIC scenario:

- fast neutron emission (mean field)
- NN=>N∆ threshold effects
 no chemical equilibrium

see, e,g, di Toro et al., J.Phys.G (2010)

Ferini et al. (RMF) stiffer for ratio up Xiao et al. (IBUU) softer " Feng & Jin (ImIQMD) stiffer " Xie et al. (ImIBL) softer " consequence: extremely stiff (soft) solutions

elliptic flow

differential: neutrons vs. protons t vs. ³He, ⁷Li vs ⁷Be, ... (Bao-An Li PRL (2000) and subsequent work)

UrQMD: significant sensitivity predicted; neutron vs. proton elliptic flows inverted (Qingfeng Li and Paolo Russotto)

reanalysis of FOPI-LAND data Au+Au @ 400 MeV per nucleon: $\gamma_{pot} = 0.9 \pm 0.4$

Russotto, Wu, Zoric, Chartier, Leifels, Lemmon, Li, Łukasik, Pagano, Pawłowski, Trautmann, PLB 697 (2011) 471

Trautmann and Wolter, review in IJMPE 21 (2012)

the symmetry energy

$E_{A}(\rho,\delta) = E_{A}(\rho,0) + E_{sym}(\rho) \cdot \delta^{2} + O(\delta^{4})$ asymmetry parameter $\delta = (\rho_{n} - \rho_{p})/\rho$

param. in transport: UrQMD, Q.F. Li et al.

Fuchs and Wolter, EPJA 30 (2006)

γ	L (MeV)
0.5	57
1.0	90
1.5	123

 $E_{sym} = E_{sym}^{pot} + E_{sym}^{kin}$ = 22 MeV·(ρ/ρ_0)^{γ}+12 MeV·(ρ/ρ_0)^{2/3}

 $L = 3\rho_0 \cdot dE_{sym}/d\rho$ at $\rho = \rho_0$

 $L \approx 80 \text{ MeV}$

sensitivity of elliptic flow: UrQMD predictions

(Qingfeng Li and Paolo Russotto)

FOPI result for Z=1

FOPI/LAND experiment

neutron squeeze-out: Y. Leifels et al., PRL 71, 963 (1993)

main yield here

neutron/hydrogen FP1: $\gamma = 1.01 \pm 0.21$ FP2: $\gamma = 0.98 \pm 0.35$ **neutron/proton** FP1: $\gamma = 0.99 \pm 0.28$ FP2: $\gamma = 0.85 \pm 0.47$ **adopted:** $\gamma = 0.9 \pm 0.4$

results from FOPI/LAND Experiment

parameters in UrQMD

parameterizations in UrQMD

Medium modifications (FU1, ...) and momentum dependence (FP1, ...) of **nucleon-nucleon elastic Xsections**

Qingfeng Li et al., Mod. Phys. Lett. A 9 (2010)

v₂ 40% larger with FP2

small effect on ratios

parameter test with Tübingen QMD*)

M.D. Cozma, PLB 700, 139 (2011)

difference of neutron and proton squeeze-outs Au + Au @ 400 A MeV

*) V.S. Uma Maheswari, C. Fuchs, Amand Faessler, L. Sehn, D.S. Kosov, Z. Wang, NPA 628 (1998)

the symmetry energy

Fuchs and Wolter, EPJA 30 (2006)

force developed by Das, Das Gupta, Gale, and Bao-An Li, Phys. Rev. C 67 (2003) 034611 with explicit momentum dependence in the isovector part

summary and outlook

- L \approx 60 MeV ($\gamma \approx$ 0.6) from nuclear structure and reactions probing densities of \approx 2/3 ρ_0 ; **big expectations** on PREXII
- increasingly more precise data from **neutron-star** observations, typically L \approx 40 MeV; e.g. Steiner, Lattimer and Brown, ApJ (2010)
- high-densities probed in reactions at SIS energies;
 γ_{pot} = 0.9 ± 0.4 from FOPI/LAND elliptic flow;
 super-soft ruled out; study of model invariance under way;
 analysis of ASY-EOS experiment in progress!
- kaon and pion ratios interesting probes but results presently inconclusive: **new activity** at RIKEN (Samurai) and MSU; HADES kaon data for Ar+KCl and Au+Au potentially useful
- interesting new results from effective field theory
- new facilities under construction worldwide

The Asy-Eos Collaboration

authors of proposal 2009

Co-Spokespersons: R.C. Lemmon¹ and P. Russotto²

Collaboration

F. Amorini², A. Anzalone¹⁷, T. Aumann³, V. Avdeichikov¹², V. Baran²³, Z. Basrak⁴, J. Benlliure¹³, I. Berceanu¹¹, A. Bickley¹⁴, E. Bonnet⁶, K. Boretzky³, R. Bougault³⁰, J. Brzychczyk⁸, B. Bubak²², G. Cardella⁷, S. Cavallaro², J. Cederkall¹², M. Chartier⁵, M.B. Chatterjee¹⁶, A. Chbihi⁶, M. Colonna¹⁷, D. Cozma¹¹, B. Czech¹⁰, E. De Filippo⁷, K. Fissum¹², D. Di Julio¹², M. Di Toro², M. Famiano²⁷, J.D. Frankland⁶, E. Galichet¹⁸, I. Gasparic⁴, E. Geraci¹⁵, V. Giordano², P. Golubev¹², L. Grassi¹⁵, A. Grzeszczuk²², P. Guazzoni²¹, M. Heil³, J. Helgesson³¹, L. Isaksson¹², B. Jacobsson¹², A. Kelic³, M. Kis⁴, S. Kowalski²², E. La Guidara²⁰, G. Lanzalone²⁹, N. Le Neindre³⁰, Y. Leifels³, Q. Li⁹, I. Lombardo², O. Lopez³⁰, J. Lukasik¹⁰, W. Lynch¹⁴, P. Napolitani³⁰, N.G. Nicolis²⁴, A. Pagano⁷, M. Papa⁷, M. Parlog³⁰, P. Pawlowski¹⁰, M. Petrovici¹¹, S. Pirrone⁷, G. Politi¹⁵, A. Pop¹¹, F. Porto², R. Reifarth³, W. Reisdorf³, E. Rosato¹⁹, M.V. Ricciardi³, F. Rizzo², W.U. Schroder²⁸, H. Simon³, K. Siwek-Wilczynska²⁶, I. Skwira-Chalot²⁶, I. Skwirczynska¹⁰, W. Trautmann³, M.B. Tsang¹⁴, G. Verde⁷, E. Vient³⁰, M. Vigilante¹⁹, J.P. Wieleczko⁶, J. Wilczynski²⁵, P.Z. Wu⁵, L.Zetta²¹, W. Zipper²²

SAMURAI dipole magnet at RIKEN

TPC project for SAMURAI Tsang, Isobe, McIntosh, Murakami et al.

Superconducting Analyzer for MUlti-particle from RAdio Isotope Beam with 7Tm of bending power

