JGU

Hirschegg 2014

XYZ physics at BESIII

Zhiqing Liu (JGU Mainz)

On behalf of BESIII Collaboration

Outline

- Introduction
- Observation of Z_c(3900).
- Observation of Z_c(4020) & Z_c(4025).
- Observation of Y(4260) $\rightarrow \gamma$ X(3872).
- Ongoing analysis & Future plan.
- Summary

Beijing Electron Positron Collider (BEPC II)

BESIII Detector

CsI(TI) calorimeter, 2.5% @ 1 GeV

BEPC II storage ring

```
Double ring:
   symmetric collider
CMS energy:
   2.0 - 4.6 GeV
Design Luminosity (a) \psi(3770):
(70% achieved, \sim20/pb per day)
   1 \times 10^{33} cm<sup>-2</sup>s<sup>-1</sup>
Energy spread:
   1.1 MeV @ 3.686 GeV
No. of bunches:
    93
Bunch length:
   1.5 cm
Total current:
    0.91 A
Circumference:
    237 m
```


The **BESIII** Collaboration

Hong Kong Univ., Hong Kong Chinese Univ.

What can we do at BESIII?

- We have collected world's largest charmonium data sample!
- 225M+~1000M J/ψ events.
 J/ψ decay, light hadrons
- 106M+~500M ψ(2S) events.
 Charmonium
- ~2.9/fb ψ(3770) data.
 D meson

NOT the whole story, XYZ physics !

XYZ Physics at BESIII

XYZ Physics at BESIII

I. Discovery of Z_c(3900)

The Y(4260) $\rightarrow \pi^+\pi^- J/\psi$

- 1. The Y(4260) resonance was observed by BABAR and Belle.
- Based on data set ~10.58 GeV, using the initial-state-radiation (ISR) method.
- 3. The Y(4260) also interpreted to be an exotic hadron candidate.

Study Y(4260) at BESIII

- Effective ISR luminosity (QED).
- L(total)~967 fb⁻¹ @ ~10 GeV.
- ~85 pb⁻¹/20 MeV at 4.26 GeV.
- What's about BESIII?
- ~20 pb⁻¹/day around 4.26 GeV.

- BESIII is a symmetric collider.
- CM energy: 2 GeV 4.6 GeV
- Design Lum=1*10³³ /cm²/s
- Focus on one energy point, then more competitive than B factory

Study Y(4260) at BESIII

- Dec, 2012 to Jan, 2013, BESIII accumulate 525 pb⁻¹ data @ 4.26 GeV, world's largest data set!
- Study e+e- $\rightarrow \pi^+\pi^- J/\psi$ exclusive process.

- 1. Very simple and straightforward analysis.
- 2. The produced vector charmonium(like) state almost in rest frame.
- 3. Y(4260) $\rightarrow \pi^+\pi^- J/\psi$, four charged track detected.

Cross Section at BESIII

- 1. Lum=525 pb⁻¹ @ BESIII
- 2. N(μ⁺μ⁻)=882±33; N(e⁺e⁻)=595±28.
- 3. Born cross section: $\sigma^{B}=(62.9\pm1.9\pm3.7)$ pb @ BESIII.
- 4. Good agreement with Belle and BaBar.
- 5. Analysis is valid and unbiased.

Intermediate state $-Z_c(3900)$

• Requiring J/ψ mass window: [3.08,3.12] GeV, we have 1595 signal events, with purity ~90%.

- 1. Intermediate states both in $M(\pi^+\pi^-)$ mass distribution and $M(\pi^\pm J/\psi)$ mass distribution.
- 2. A clear band in the M($\pi^{\pm}J/\psi$) invariant mass projection.
- 3. Phase space reflection between M(π^+ J/ ψ) and M(π^- J/ ψ).

Intermediate state – Z_c(3900)

- 1. First stage, 1D fit to extract resonant parameters.
- 2. Divided by diagonal line of the dalitz plot and fit $M_{max}(\pi^{\pm}J/\psi)$ mass distribution; best way to avoid cross counting.
- 3. S-Wave Breit Wigner; p*q phase space factor; efficiency corrected.
- 4. M=(3899.0±3.6±4.9)MeV; Γ=(46±10±20)MeV.
- 5. Statistical significance: >8 σ , discovery!

Good News

$Z_c(3885)^{\pm} \rightarrow (DD^*)^{\pm}$

Partial reconstruction technique

We only reconstruct the bachelor pion and a single D.
1. If we tag a π⁺ and D⁰, we select the events: π⁺D⁰D^{*-} and π⁺D⁻D^{*0} (D^{*0} → γ/π⁰ D⁰)
2. If we tag a π⁺ and D⁻, we select the events: π⁺D⁰D^{*-} (D^{*-} → π⁰ D⁻) and π⁺D⁻D^{*0} (D^{*0} → γ/π⁰ D⁰)
3. Sometimes there are cross feeding events, but it's OK.

Recoil mass of πD

$\pi^+ D^0$ tagging method

Dots with error bars: Data Solid: $e^+e^- \rightarrow \pi^+ D^0 D^{*-}$ Dash: $e^+e^- \rightarrow \pi^+ D^- D^{*0}$, where DD* from Z_c Hatch: Events from D⁰ sideband

$\pi^+ D^-$ tagging method

Dots with error bars: Data

Solid: $e^+e^- \rightarrow \pi^+D^-D^{*0}$

Dash: $e^+e^- \rightarrow \pi^+ D^0 D^{*-}$, where DD* from Z_c Hatch: Events from D⁻ sideband

- Clear signal of D*
- Mass constraint to D*, $\chi^2 < 30$

Mass Spectrum by recoil π

- Peak near threshold.
- Angular distribution (π D) disfavor DD₁ component.
- Fit with mass dependent BW, report pole position.
- Polynomial background.
 Z_c(3885)=Z_c(3900)
 Production rate are much higher than π[±]J/ψ !

	$Z_c(3885) \rightarrow D\bar{D}^*$
Mass (MeV/c^2)	$3883.9 \pm 1.5 \pm 4.2$
Γ (MeV)	$24.8 \pm 3.3 \pm 11.0$
$\sigma \times \mathcal{B} (pb)$	$83.5 \pm 6.6 \pm 22.0$

21

Spin-Parity of Z_c(3885)

JP	L	$dN/d \cos\theta_{\pi} $
1+	S-wave	flat
0-	P-wave	$sin^2 \theta_{\pi}$
1-	P-wave	$1+\cos^2\theta_{\pi}$

The nature of Z_c(3900)?

1. Tetraquarks

- arXiv:1110.1333, 1303.6857
- arXiv:1304.0345, 1304.1301...
- 2. Hadronic molecules
- arXiv:1303.6608, 1304.2882, 1304.1850...

Y(4260

Y(4260

- 3. Four quark state
- arXiv:1304.0380...
- 4. Meson loop
- arXiv:1303.6355
- arXiv:1304.4458...
- 5. ISPE model
- arXiv:1303.6842...

Meson loop

 $J/\psi(h_c)$

(c)

Y(4260)

V(426

 J/ψ

ISPE model

D(*)

Z_c(4020) & Z_c(4025)

	\sqrt{s} (GeV)	\mathcal{L} (pb ⁻¹)
$a^+a^- \rightarrow \pi^+\pi^-h$	3.900	52.8
	4.009	482.0
	4.090	51.0
Data above/near 4 GeV, with luminosity 3.3 fb ⁻¹		43.0
$h_c \rightarrow \gamma \eta_c, \eta_c \rightarrow hadrons [16 exclusive decay modes]$	4.210	54.7
> p pbar, $\pi^+\pi^-K^+K^-$, $\pi^+\pi^-p$ pbar, $2(K^+K^-)$, $2(\pi^+\pi^-)$, $3(\pi^+\pi^-)$	4.220	54.6
$\geq 2(\pi^{+}\pi^{-})K^{+}K^{-}, K_{S}^{0}K^{+}\pi^{-}+c.c., K_{S}^{0}K^{+}\pi^{-}\pi^{+}\pi^{-}+c.c., K^{+}K^{-}\pi^{0}$	4.230	1090.0
	4.245	56.0
> ppbar π^0 , K ⁺ K ⁻ n, $\pi^+\pi^-$ n, $\pi^+\pi^-\pi^0\pi^0$, $2(\pi^+\pi^-)$ n, $2(\pi^+\pi^-\pi^0)$	4.260	826.8
> ~50% h_c decay & 40% of η_c decay.	4.310	44.9
	4.360	544.5
	4.390	55.1
	4.420	44.7

4230 MeV

4260 MeV

4360 MeV

^{(23,2} 3.15 3.15 3.1 3.1 3.1 3.05 ^{3.2} 3.15 (CeA/c²) 3.15 (CeA/c²) 3.15 (CeA/c²) 3.15 (CeA/c²) 3.15 (CeA/c²) 3.15 (CeA/c²) (20/29) 1000 (CeV/c2) 1000 (Ce 25 50 40 20 2 15 2.95 2.95 2.95 -20 10 2.9 29 2.9 10 2.85 2.85 2.85 2.8 3.5 3.51 3.52 3.53 3.54 3.55 3.56 3.57 3.58 3.59 3.6 M^{recoil}(GeV/c²) ^{2.8} 3.5 3.51

 $e^+e^- \rightarrow \pi^+\pi^-h_c$

Good h_c signal.
 h_c signal region: [3.518, 3.538] GeV, sideband: [3.49, 3.51] & [3.56, 3.58].

3. Events accumulate around M($\pi^{\pm}h_{c}$)~16 GeV²

- 1. 1D projection of $M(\pi^{\pm}h_{c})$ invariant mass distribution.
- 2. Signal: BW function convolving Gaussian+bkg; efficiency has been applied; phase space included.
- 3. M[Z_c(4020)]=(4022.9±0.8±2.7) MeV; Γ[Z_c(4020)]=(7.9±2.7±2.6) MeV.

$e^+e^- \rightarrow \pi^- (D^*\underline{D}^*)^+ + c.c.$ at BESIII

- 827 pb⁻¹ data at Ecm=4.26 GeV
- Tag a D⁺ and a bachelor π⁻, reconstruct one π⁰ to suppress the background.

Topology of the decays of the signal process. Thick line circled D^+ and π^- are detected in the final states and at least one of the dashed line circled π_1^0 or π_2^0 is tagged.

BESIII: 1308.2760

 $e^+e^- \rightarrow \pi^- (D^*D^*)^+ + c.c.$ at BESIII

Y(4260)→γX(3872)

Produce X(3872) at BESIII

$e^+e^- \rightarrow \gamma(\pi^+\pi^- J/\psi)$ at BESIII

arXiv: 1310.4101

M=(3871.9 \pm 0.7 \pm 0.2) MeV Γ <2.4 MeV Significance: 6.3 σ Fit with:

- 1. Y(4260): χ²/ndf=0.49/3
- 2. E1 PHSP: χ²/ndf=8.7/3
- 3. Linear: χ^2 /ndf=5.5/2

What's next @ BESIII

- 1. PWA of Y(4260) $\rightarrow \pi^+\pi^- J/\psi$ with more data, more precise mass and width measurement of $Z_c(3900)$ +Spin-parity.
- 2. line shape study of $\pi^+\pi^-J/\psi$, also πZ_c (3900).
- 3. Try to distinguish different multi-quark models: tetraquark, hadron molecule: search for new decay modes, production rate...
- 4. Neutral partners, such as Z⁰ and Z⁰'
- 5. Take more data, search for strange partner...
- 6. Other puzzling XYZ states...

Summary

- BESIII observed a charged Charmonium-like state Z_c(3900).
- Possible partner particle $Z_c(4020) \& Z_c(4025)$ also found.
- Observed Y(4260)→γX(3872) radiative transition for the first time.
- Understand them with more data & effort.

Thank you !