Recent result of LEPS and prospects of LEPS2

M. Miyabe Tohoku University LEPS collaboration

as substitute of Dr. Niiyama

Overview of LEPS

LEPS 2001~

LEPS2 2013~

Physics at SPring-8/LEPS

- 🛯 🖓 🗣 🖓 🖓 🖓
 - C³ Reaction mechanism, φ-nucleon interaction [T. Sawada]
- 🛯 Evidence for а к meson [S.H. Hwang]
 - 🛯 Reaction mechanism
- Real Backward meson production
 - Baryon resonance study
- R Exiotic baryons
 - \checkmark $\Lambda(1405)$ Photoproduction up to 3 GeV
 - [Y. Nakatsugawa]
 - Θ + Photoproduction
 - Search for KNN Bound State [A. Tokiyasu]

SPring-8 LEPS

LEPS backward compton scattering photon

- Eγ~2.4GeV, Eγ~2.9GeV Tagged photon
- Polarization ~95%
- > 1 Mcps

Physics run from 2001

Photo production experiment using charged particle spectrometer. Pion, kaon, proton at forward angle.

SV

DC3

K*⁰Σ⁺ photoproduction

-Identified by MMp(γ,K⁺π⁻)

Detected at forward spectrometer. Identified by $M(K^+\pi^-)$.

t-channel exchange is
 dominant

Exchanged particle
 information from Decay
 asymmetory analysis

к meson

Reprint Parity spin asymmetry : $P_{\sigma} = 2 \rho_{1-1}^{1} - \rho_{00}^{1}$ [Similar to photon beam asymmetry.]

- GJ frame : 0.784 ± 0.154 ≤ 0.154
- Helicity frame : 0.758 ± 0.123
- CR Dominance of natural-parity exchange is indicated at forward angles.
 - Consistent with $\kappa(800)$ meson exchange.

$\Lambda(1405)$ production

Study for internal structure of $\Lambda(1405)$ 🛯 qqq, NK, qqqqq **Spectrum shape** Reproduction mechanism C Photon beam symmetry Rarge acceptance detector **C** TPC

Previous result of LEPS (2008) CH2 target

CJJNPS2012

Search for the K [–] pp bound state

CR Theoretical prediction : B.E.=10 – 80 MeV, Γ=30-110 MeV
CS Phys.Lett.B712,132 etc...
CR d (γ, K⁺ π⁺) K⁻pp
CR Unique feature of γ beam
CS direct coupling to K, K^{*} → virtual K, K^{*} beam

🛯 J=1 (spin flip)

Search for the K ⁻ pp bound state

No peak structure was observed

Upper Limit (0.17–0.55), (0.55–1.7) (1.1–2.9) µb at 95% CL for $\Gamma = 20, 60, 100$ MeV

Result of the Θ^+ from LEPS

Constant from 2002-03 Constant from 2002-03

 \bigcirc To clarify the existence of Θ^+

- 3 Higher statistic
- Blind analysis
- ->

2006-07, 2.6 times higher statistic experiment

CJJNPS2012

New Result of Θ⁺ (blind Same cut condition (2002-03) and better calibration in blind analysis

Proton detection by using dE/dx in Start Counter

M(NK⁺) for exclusive samples for each data

- Peak is seen in tagged events for the previous data while not seen in the new data.
- An enhancement is seen in proton rejected events in the both data.

Z-Vertex cut

Proton rejection efficiency becomes large by selecting downstream

Enhance the Neutron event

MC based exclusive analysis

- Important to estimate the proton contribution
- The estimated proton contributions are subtracted from full data sample (without z-vertex and proton tagging cut) using MC.

Unbined fit for M(pK⁻) with MC simulation

 φ and non-resonant KK , $\Lambda(1520)$, $\Lambda(1405)$

2012/10/18

Result of exclusive

- An enhancement is seen both the exclusive analysis.
- Mass and significance estimation is underway.
 - -> New experiment with large SC from this October.

2012/10/18

New experiment setup

Start counter (~ 2007)

New Start counter (2012~)

Improvement of proton tagging

Start counter (~ 2007)

New Start counter (2012~)

Future prospect LEPS2

(%

BNL-E949 base detector Θ + search, Λ (1405) Expansion of LEPS experiment

LEPS2 Laser-Room

SUBARU

LEPS Experimental Hutch

457 m

1

LEPS2 Experimental Building

Booster Synchrotron

SPring-8 8GeV e⁻ 100mA

LEPS2 Project at SPring-8

Physics at LEPS2

RNL-E949 base detector
 Ø⁺, Λ(1405)
 Expansion of LEPS experiment
 BGOEGG detector
 η' mesic nulei
 Baryon resonance study with multi meson production

E949 based spectormeter

LEPS2 laser system

Multi laser injection system

Solution Solut

First beam observation

beam profile is well collimated consistent with the expectation

Energy spectrum with large BGO crystal (\oplus 8 cm x L 30cm)

Photon beam intensity ~ 7 MHz (for 0<Eγ<2.4 GeV) @ 3-(355nm) laser

$\eta'(958)$ and $U_A(1)$ anomaly

 α The experimental mass of η' is more than 2 times larger expected value. η' $\bigcirc U_A(1)$ anomaly effect. η_0 α Origin of large η' mass U_A(I) anomaly η π, K, η_8, η_0 Chiral symmetry breaking K π π, K, η_8 $\bigcirc U_{A}(1)$ anomaly massless $m_q = m_s = 0$ $m_q = m_s = 0$

massless
 $m_q = m_s = 0$
 $\langle \bar{q}q \rangle = 0$ massless
 $m_q = m_s = 0$
 $\langle \bar{q}q \rangle \neq 0$ $m_q \neq m_s \neq 0$
 $\langle \bar{q}q \rangle \neq 0$ ChS manifestths broken dynamically
ths broken dynamicallyChS broken dynamically
and explicitlyGenute AHidoko Nagabiro and Satoru Hiror

Daisuke Jido, Hideko Nagahiro, and Satoru Hirer Phys. Rev. C 85 (2012) 032201(R).

No experimental information for U_A(1) anomaly effect

Mass modification in finite density

Mass of η' is possibly modified under the finite density compared with the vacuum

- P. Rehberg, et al. Phys. Rev. C53(1996) p410
- H. Nagahiro, M Takizawa, S. Hirenzaki Phys. Rev. C 74, 045203 (2006)

Measurement of η' in finite density

CR Large mass reduction(150 MeV) of the η' meson in the normal nuclear density

ce existence of a bound state with a nucleus (η'-mesic nuclei)
 ce H. Nagahiro, M. Takizawa, and S. Hirenzaki, Phys. Rev. C 74, 045203 (2006).

If we observe the η' bound state, we achieve the information for UA(1) anomaly effect.

η' -mesic nuclei

LEPS2 BGOEGG project

Egg shape EM detector
Total volume 264L
Total weight 1.9t(crystal)
2-type PMT
H11334 (Metal package)
H6524 (head-on type)
Very few Insensitive regeon

- Without housing materialOnly reflector 3M-ESR film
- (200µm)

R Energy resolution I.3 % for 1GeV e⁺

- **C**³ 1.3 % for IGeV e⁻
- Representation Position resolution

Peripheral detectors

Resistive Plate Chamber Real Focus on mesic nuclei 3m search ☑ 12 MeV forward proton momentum resolution -> 50 psec time resolution at 12 m flight length Resolution (MeV) 25 2m20 15 A THE PARTY AND A 10 32 modules in wall Proton Momentum (GeV/c

2.6

2.8 Egamma (GeV)

Charge identification

ctor R Place at inside of BGOEGG \sim 30 scintillators with overlap. Scintillator size **C3** 5 x 26 x 413 -> covering the inner face of BGOEGG Multi Pixel Photon Counter (MPPC) readout ☑ Effective area 3mm×3mm Bixel size 50um × 50um

Charged particle tracker

cham

Charged particle Positions/angles at forward angle(θ<24°)
6 planes (XX'UU'VV')
80 sense wires / plane
effective area: φ1280mm
16 mm square cell

🕝 σ=130 μm

Yield estimation η' mesic nuclei by η tagging at BGOEGG

- Dominant conversion from η'
 - ~ η'p->ηp

 - η -> γγ (39.3%)
 η -> π⁰π⁰π⁰ -> 6γ (33%)

Multi meson production background Will be suppressed by η tag at BGOEGG!

Expected yield

- \checkmark d² σ /dEd Ω ~2nb/sr/MeV
 - Target ~ Carbon 20mm
- Beam intensity ~ 2Mcps (Tag. Eff~50%)
- Geam intensity ~ 2ivicps (10g. --- ✓ Forward proton with RPC(2x4m)
 - -> 70000 event / month
 - With η tag at BGOEGG -> 2~3000 event / month
 - $(\eta' N \rightarrow \eta N : 50\%$ from bound state)

η' meson production

Geant4 simulation \mathbf{CR} 44.3% $\eta' \rightarrow \pi^+\pi^-\eta$ $\approx 29.5\% \eta' \rightarrow \rho\gamma$ $\propto 20.9\% \eta' \rightarrow \pi^0 \pi^0 \eta \rightarrow 6\gamma$ $\sim 2.1\% \eta' \rightarrow \gamma \gamma$ @ proton target (40mm) α η' mass resolution ~2.8 % α 1,1000 η' event @ LEPS2 per 1-month

First experiment in 2013

LEPS project are collaborating toward next generation experiments LEPS2 at SPring-8 with RIKEN and KEK.

LEPS

- $K^*\Sigma^+$ photoproduction with evidence for κ meson exchange.(PRL108,092001)
- $\Lambda(1520)$ mass spectrum shape shows different in each charge mode.
- KNN bound state search (will be publish soon [PLB, arXiv.1306.5320])
- The Θ^+ is studied via $\gamma d \rightarrow K^+K^-$ pn reaction with high statistics data.
 - Q 2.6 times higher statistics compared with previous data are collected.
 - \mathbf{R} The inclusive M(nK+) spectrum for new data does not show a strong narrow peak.
 - **CR** The significance of the peak in new data is $\sim 2\sigma$ by shape analysis.
 - CRThe exclusive analysis

LEPS2

- LEPS2 has one order of magnitude higher intensity beam and large acceptance coverage.
 - BGOEGG, E949 based detectors.
- BGOEGG calorimeter experiments started in this winter.

2012/10/18

CJJNPS2012

