The MUSE experiment at PSI

Michael Kohl <kohlm@jlab.org> *

Hampton University, Hampton, VA 23668 Jefferson Laboratory, Newport News, VA 23606

Supported by NSF grant PHY-1207672, and DOE Early Career Award DE-SC0003884

MUon Scattering Experiment (MUSE) at PSI^{²}

PAUL SCHERRER INSTITUT

Appollo and the nine muses

MUon Scattering Experiment (MUSE) at PSI

- Motivation
- Proposed experiment
 - Muon beamline
 - Detector
 - Expected sensitivity
- Status & Schedule

NY Times, July 12, 2010

The proton radius puzzle in the media

nature **OIL SPILLS** There's more to come PLAGIARISM It's worse than you think

CHIMPANZEES The battle for survival

> New value from exotic atom trims radius by four per cent

THE INTERNATIONAL WEEKLY JOURNAL OF SCIENCE

HOME PAGE TODAY'S PAPER VIDEO MOST POPULAR TIMES TOPICS

Space & Cosmos

WORLD U.S. N.Y. / REGION BUSINESS TECHNOLOGY SCIENCE HEALTH SPORTS OPINION ENVIRONMENT SPACE & COSMOS

For a Proton, a Little Off the Top (or Side) Could Be Big Trouble

By DENNIS OVERBYE Published: July 12, 2010

The New Hork Times

For most of us, 4 percent off around the waist - a couple of belt notches - would be a great triumph.

Enlarge This Image Not so for the proton, the subatomic particle that anchors atoms and is the building block of all ordinary matter, of stars, planets and people. Physicists announced last week that a new experiment had shown that the proton is about 4 percent smaller than they thought.

Instead of celebration, however, the

result has caused consternation. Such a big discrepancy, say the physicists, led by Randolf Pohl of the Max Planck Institute for Quantum Optics in Garching, Germany, could

mean that the most accurate theory in the history of physics, quantum electrodynamics, which describes how light and matter interact, is in trouble.

"What you have is a result that actually shocked us," said Paul Rabinowitz, a chemist from Princeton University, who was a member of Dr. Pohl's team.

ars technica

SCIENTIFIC METHOD / SCIENCE & EXPLORATION

Hydrogen made with muons reveals proton size conundrum

A measurement that's off by 7 standard deviations may hint at new physics.

by John Timmer - Jan 24 2013, 2:01pm EST

The proton accelerator at the Paul Scherrer Institute, which was used to create the muons used in this experiment

Proton Mass Mystery Could Mean New Physics

RECOMMEND

TWITTER

LINKEDIN

E-MAII

PRINT

SHARE

REPRINTS

APR 15, 2013 08:35 PM ET // BY STEPHANIE PAPPAS, LIVESCIENCE

PSI muonic hydrogen measurements

• R. Pohl et al., Nature 466, 09259 (2010): 2S \Rightarrow 2P Lamb shift $\Delta E(meV) = 209.9779(49) - 5.2262 r_p^2 + 0.0347 r_p^3 \Rightarrow r_p = 0.84184 \pm 0.00067 \text{ fm}$

Possible issues: atomic theory & proton structure

UPDATE: A. Antognini et al., Science 339, 417 (2013): 2S⇒2P Lamb + 2S-HFS
 ΔE_L(meV) = 206.0336(15) - 5.2275(10)r_p² + 0.0332(20)_{TPE} ⇔r_p = 0.84087±0.00039 fm

The proton radius puzzle

- >7σ discrepancy between muonic and electronic measurements
- High-profile articles in Nature, NYTimes, etc.
- Puzzle unresolved, possibly New Physics

JLAB ep scattering at low Q²

- Hall A PR07-004, PR08-007 (PAC31/33)
- Recoil polarization, completed 2008
- •Polarized target, completed 2012

Mainz ep scattering at low Q²

Possible resolutions to the puzzle

- The ep (scattering) results are wrong
 Fit procedures not good enough
 Q² not low enough, structures in the form factors
- The ep (spectroscopy) results are wrong Accuracy of individual Lamb shift measurements? Rydberg constant could be off by 5 sigma
- The µp (spectroscopy) result is wrong Discussion about theory and proton structure for extracting the proton radius from muonic Lamb shift measurement
- Proton structure issues in theory

Off-shell proton in two-photon exchange leading to enhanced effects differing between μ and e Hadronic effects different for μp and ep: e.g. proton polarizability (*effect* $\propto m_l^4$)

 Physics beyond Standard Model differentiating µ and e Lepton universality violation, light massive gauge boson Constraints on new physics from kaon decays

New measurements are on their way

• Additional measurements needed / in preparation

- Spectroscopy with μ D, μ He, and regular H; Rydberg constant
- ep-, ed-scattering (PRad at Jlab, ISR-ep and ed elastic at MAMI; MESA)
- µ[±]p- and e[±]p-scattering in direct comparison at PSI (MUSE)
- Searches for lepton universality violating light bosons (e.g kaon decay such as TREK/E36 at J-PARC)

r _p (fm)	ер	μ ρ
Spectroscopy	0.8758 ± 0.077	0.84087 ± 0.00039
Scattering	0.8770 ± 0.060	???

Need more precision for extraction from scattering More insights from comparison of ep and µp scattering

Proton radius from Mainz A1 data

- Low Q² J. Bernauer et al., PRL105 (2010) 242001
- Left: world + Mainz fit; Middle: Mainz raw data; Right rebinned GE
- Large difference in slope between r = 0.84 and 0.88 fm
- Floating normalization, higher-order Q² terms present
- Need yet higher precision

The PRad proton radius proposal (JLAB)

- Low intensity beam in Hall B @ Jlab into windowless gas target
- Scattered ep and Moller electrons into HYCAL at 0°
- Lower $Q^2 > 2x10^{-4}$. Very forward angle, insensitive to 2γ , G_M
- Conditionally approved by PAC38 (Aug 2011): ``Testing of this result is among the most timely and important measurements in physics."
- Approved by PAC39 (June 2012), graded "A"

TREK (E36) at J-PARC

Measurement of $\Gamma(K^+ \rightarrow e^+v)/\Gamma(K^+ \rightarrow \mu^+v)$ and

Search for heavy sterile neutrinos using the TREK detector system

Official website: http://trek.kek.jp

Scheduled to run beginning of 2015

Dark photon exclusion limit $K^+ \rightarrow \mu^+ v e^+ e^-$

- Mixing parameter: dark photon framework, universal coupling
- Simulated signal channel $K^+ \rightarrow \mu^+ \nu A'$ for resolution
- Simulated background distribution with BR($K^+ \rightarrow \mu^+ \nu e^+ e^-$)=2.5e-5
- Obtain exclusion limit for signal > 2x background fluctuation
- Exclusion limit dependent on resolution and number of accepted K⁺

Search for a new particle in $K^+ \rightarrow \mu^+ v e^+ e^-$

Search for a new particle in $K^+ \rightarrow \mu^+ \nu e^+ e^-$

HUGE signals predicted, E36 very stringent test

Motivation for µp scattering

Lepton scattering and charge radius

Sachs form factors:

$$G_E(Q^2) = F_1(Q^2) - \tau F_2(Q^2)$$

$$G_M(Q^2) = F_1(Q^2) + F_2(Q^2)$$

Fourier transform (in the Breit frame) gives spatial charge and magnetization distributions

Derivative in $Q^2 \rightarrow 0$ limit:

$$\begin{split} \left| \left\langle r_E^2 \right\rangle &= \left. -6 \frac{dG_E^p(Q^2)}{dQ^2} \right|_{Q^2 \to 0} \\ \left\langle r_M^2 \right\rangle &= \left. -6 \frac{dG_M^p(Q^2)/\mu_p}{dQ^2} \right|_{Q^2 \to 0} \end{split}$$

Expect identical result for ep and µp scattering

e-µ universality in lepton scattering

1960s-1970s: several experiments tested e-µ universality in scattering

Elastic µp scattering:

Elastic µp: Kostoulas et al., PRL 32 (1974)

- DIS µp scattering: Entenberg et al., PRL 32 (1974) $\sigma_{\mu\rho}/\sigma_{ep} \approx 1.0 \pm 0.04$ (±8.6% systematics)
- e-C, and µ-C are in agreement

Constraints are not very good

e-µ universality in lepton scattering

1960s-1970s: several experiments tested e-µ universality in scattering

Constraints are not very good

Two-photon exchange tests in µp-elastic

Carbon radius and e-µ universality

- ¹²C radius determinations from eC scattering, µC scattering, and µC atoms agree
- → Cardman et al. eC: 2.472 ± 0.015 fm
- → Offermann et al. eC: 2.478 ± 0.009 fm
- → Schaller et al. µC X rays: 2.4715 ± 0.016 fm
- → Ruckstuhl et al. µC X rays: 2.483 ± 0.002 fm
- → Sanford et al. μ C elastic: 2.32^{+0.13}_{-0.18} fm
- If carbon is right \rightarrow e's and µ's are the same
- If hydrogen is right \rightarrow e's and µ's are different
- If both are right opposite effects for proton and neutron canceling in carbon?
- Investigate µd, µHe
- Muonic H + eH/D isotope shift r r_d = 2.12771(22) fm (A. Antognini et al.)
- ed elastic scattering: $r_d = 2.130(10)$ fm
- Muonic D consistent (preliminary, unpublished, large polarizability correction)

MUon Scattering Experiment (MUSE) at PSI

23

Use the world's most powerful low-energy separated $e/\pi/\mu$ beam for a direct test if μp and ep scattering are different:

- to higher precision than previously
- in the low Q² region (same as Mainz and latest JLab experiment just completed) for sensitivity to radius
- measure both µ[±]p and e[±]p for direct comparison and a robust, convincing result
- depending on the results, 2nd generation experiments (lower Q², μ[±]n,D,He, higher Q², ...) might be desirable

MUon Scattering Experiment (MUSE) at PSI²⁴

Use the world's most powerful low-energy separated $e/\pi/\mu$ beam for a direct test if μp and ep scattering are different:

- Simultaneous, separated beam of $(e^{+}/\pi^{+}/\mu^{+})$ or $(e^{-}/\pi^{-}/\mu^{-})$ on liquid H₂ target
- \rightarrow Separation by time of flight
- \rightarrow Measure absolute cross sections for ep and µp
- \rightarrow If radii differ by 4%, then form factor slope by 8%, x-section slope by 16%
- \rightarrow Measure e+/µ+, e-/µ- ratios to cancel certain systematics
- Directly disentangle effects from two-photon exchange (TPE) in e+/e-, μ+/μ-
- Multiple beam momenta 115-210 MeV/c to separate G_E and G_M (Rosenbluth)

Separation of e, π , μ by RF time

Requirement: particle separation in time for PID 50 MHz RF \rightarrow 20 ns between bunches

Timing of particles in target region wrt electron ($\beta = 1$)

Minimum time separation of particles in target region

p = 115, 153, and 210 MeV/c

_μ

 $-\pi$

250

(MeV/c)

300

Beamline and target considerations

Target: \rightarrow 4 cm LH2, thickness constrained by effects of multiple scattering

Beamline Cerenkov: provide redundant PID, and provide cross check for RF timing calibration

Background considerations

Requirement: low backgrounds or background rejection

Scattering from electrons:

Muons from π decays

Suppression of $\mu \rightarrow evv$ background with offline time-of-flight (8-20 σ)

10³

Scattered particle considerations

Bange (g/cm²) in scintillator

Large angle, very low energy Moller / Bhabha e's lose large fraction of energy in target Recoil protons E loss so large that all except forward angle recoil protons stopped in target All the low-energy electron and proton backgrounds are ranged out in the first scintillator layer

MUSE beamline and experiment layout

πM1: 100-500 MeV/c Momentum measurement RF+TOF separated π, μ, e

Beam particle tracking Liquid hydrogen target Scattered lepton detection

Reference design

- Limited beam flux (5 MHz) \rightarrow Large angle, non-magnetic detectors
- Secondary beam → Tracking of beam particles to target
- Mixed beam → Identification of beam particle in trigger

Beamline instrumentation

Beam and target sci-fi arrays and scintillator: \rightarrow Flux, PID, Trigger, TOF, momentum

Particles well separated at IFP:

Beam Cerenkov (quartz or sapphire) → Timing: beam TOF, scattered particle TOF

GEM telescope

- \rightarrow Determine incident angle to 0.5 mr
- \rightarrow Third GEM to reject ghost tracks
- → Existing chambers from OLYMPUS (Hampton University)

Main detector instrumentation

- 2 planes of scintillators (CLAS12 design)
- 94 bars (2 sides + beam)
- High precision (40-50ps) timing
- PID and trigger, background rejection

- Straw Tube Tracker (STT), ~3000 straws
- Determine scattered particle trajectory
- Existing PANDA design 140µm resolution
- Thin walled (25µm), overpressured (2 bar)
- Directly coupled to fast readout boards

Trigger and DAQ

- FPGA design for beam PID (custom or v1495)
- SciFi + Beam RF + Cerenkov -> Beam PID
- Count particles and reject pions
- Need 99.9% pion rejection efficiency

- Custom signal splitters
- FPGAs as front end discriminator/amplifier, custom designed TDCs (PADIWA/TRB3)
- High channel density (256ch/board).
- Standard CAEN ADCs

Responsibilities for new equipment

Detector	Who	Technology
Beam SciFi	Tel Aviv	conventional
GEMs	Hampton	detector exists
Sapphire Cerenkov	Rutgers	prototyped (Albrow et al)
FPGAs	Rutgers	conventional
Target	George Washington	conventional - very low power
Straw Tube Tracker	Hebrew U	copy existing system (PANDA)
scintillators	South Carolina	copy existing system
DAQ	George Washington	conventional, except TRB3

First beam tests

Beam spot with GEM – May 23, 2013

More tests in Dec. 2013

Composition of the $\pi M1$ secondary beam

Projected sensitivity

RMS charge radius [fm]

Projected sensitivity

MUon Scattering Experiment – MUSE

- Proton Radius Puzzle still unresolved ~4 years later
- MUSE Experiment at PSI
 - Measure μp and ep scattering and compare μ +/e+ and μ -/e- directly
 - Measure e+/e- and µ+/µ- to study/constrain TPE effects

Technical Challenges

PID, timing, background rejection, momentum and flux determination

Timeline

- Initial proposal February 2012
- Technical review July 2012
- First beam tests in fall 2012
- PAC-approved in January 2013
- Further beam tests in summer and December 2013
 - Funding & construction 2014–2015
- Production running 2016–2017 (2x 6 months)

MUon Scattering Experiment – MUSE

47 MUSE collaborators from 24 institutions in 6 countries:

R. Gilman (Contact person),¹ E.J. Downie (Spokesperson),² G. Ron (Spokesperson),³
A. Afanasev,² J. Arrington,⁴ O. Ates,⁵ C. Ayerbe-Gayoso,⁶ F. Benmokhtar,⁷ J. Bernauer,⁸
E. Brash,⁹ W. J. Briscoe,² K. Deiters,¹⁰ J. Diefenbach,¹¹ C. Djalali,¹² B. Dongwi,⁵ L. El Fassi,¹ S. Gilad,⁸ K. Gnanvo,¹³ R. Gothe,¹⁴ D. Higinbotham,¹⁵ Y. Ilieva,¹⁴ M. Jones,¹⁵
M. Kohl,⁵ G. Kumbartzki,¹ J. Lichtenstadt,¹⁶ A. Liyanage,⁵ N. Liyanage,¹³ M. Meziane,¹⁷
Z.-E. Meziani,¹⁸ D. Middleton,¹¹ P. Monaghan,⁵ K. E. Myers,¹ C. Perdrisat,⁶ E. Piasetzsky,¹⁶
V. Punjabi,¹⁹ R. Ransome,¹ D. Reggiani,¹⁰ P. Reimer,⁴ A. Richter,²⁰ A. Sarty,²¹ Y. Shamai,²²
N. Sparveris,¹⁸ S. Strauch,¹⁴ V. Sulkosky,⁸ A.S. Tadepalli,¹ M. Taragin,²³ and L. Weinstein²⁴

Rutgers University, George Washington University, Hebrew University of Jerusalem, Argonne National Lab, Hampton University, College of William & Mary, Duquesne University, Massachusetts Institute of Technology, Christopher Newport University, Paul Scherrer Institut, Johannes Gutenberg-Universität Mainz, University of Iowa, University of Virginia, University of South Carolina, Jefferson Lab, Tel Aviv University, Duke University, Temple University, Norfolk State University, Technical University of Darmstadt, St. Mary's University, Soreq Nuclear Research Center, Weizmann Institute, Old Dominion University

Backup