Experimental studies on medium modification of vector mesons

Megumi Naruki (Kyoto Univ.)

- Introduction
- dilepton measurement so far
- near future project at J-PARC

Hadron Mass

- spontaneous chiral symmetry breaking
 - mechanism to generate hadron mass: really visible in universe.
 ~98% of protons' mass.
 - experimental fact : parity doublet patterns
- origin of order parameter not a priori given
 - o quark condensate : $\langle q^{-}q \rangle \langle -\rangle f_{\pi}m_{\pi}$
 - four-quark condenste, strong gluonic interaction

Experimental Approach

- bound system
 pionic atom
 - S236 experiment @ GSI
- nuclear mass number dependence

 width modification
- dilepton measurement

 mass of vector meson in hot/dense matter

hadronic decay, board width ...

pionic atom spectroscopy

K. Suzuki et al., PRL 92(2004) 072302 S236 experiment @ GSI

 π bound state is observed in Sn(d, ³He) pion transfer reaction.

Reduction of the pion decay constant $f^*_{\pi}(\rho)^2/f_{\pi}^2 \approx 0.64$ at the normal nuclear matter density ($\rho = \rho_0$) \leftarrow W-T relation : $b_1/b_1(\rho_e) \approx f_{\pi}(\rho_e)^2/f_{\pi}^2$

from the p-nucleus scattering data, this can be connected to quark condensate in the medium.

$$\frac{\langle \bar{q}q \rangle^*}{\langle \bar{q}q \rangle} \cong \left(\frac{b_1}{b_1^*}\right)^{\frac{1}{2}} \left(1 - \gamma \frac{\rho}{\rho_0}\right)$$

D. Jido et al., PLB670 (2008) 109

37% decrease of $\langle \bar{q}q \rangle$ at ρ_0 \rightarrow chiral symmetry restoration?

Dilepton Measurement

directly access to the properties of vector mesons

Density dependence of Mass

melting at high temperature

van Hees & Rapp NPA806(2008)

•7

HIC vs. cold nuclear matter

Dilepton Measurements History vs. Energy scale

Experimental results at high temperature

CERES @ SPS

e+e- pair measurement in central Pb-Au collisions at 158A GeV/c

within the systematic uncertainty

NA60 @ SPS

invariant mass of $\mu+\mu-$ in In-In at 158 AGeV($\sqrt{s_{NN}}=19.6$ GeV)

PRL 96, 162302 (2006)

 $\Delta M = 23 \text{ MeV}$ at the ϕ

ρ spectrum is reproduced with broadening of ρ (Rapp & Wambach)

space-time evolution: thermal fireball model

PHENIX @ RHIC

invariant mass of e+e- at $\sqrt{s_{NN}}$ =200 GeV

PRC81,034911(2010)

strong enhancement in 150 $< m_{ee} < 750$ MeV: 4.7 \pm 0.4(stat.) \pm 1.5(syst.) \pm 0.9(model)

Comparison w/ Models

• thermal fireball model by Rapp & vanHees

- Hydro dynamical evolution model by Dusling & Zahed
- Transport model by Bratkovskaya & Cassing All models and groups that successfully described the SPS data fail in describing the PHENIX results

PRC81,034911(2010)

•14

Centrality dependence

Strong centrality dependence in the Low-Mass Region.

p_T dependence of low mass enhancement

Low mass excess in Au-Au concentrated at low p_T

STAR in Au+Au collisions

F. Geurts et al., J. Phys., 458 (2013) 012016

clear enhancement over the hadronic cocktail weak centrality dependence

Comparison w/ Model

Thermal model by R. Rapp (priv. comm.) cf. PRC 63 (2001) 054907

rough agreement in M_{ee} > 0.4GeV but overshoot in low-mass side

Transport model by Linnyk et al. PRC85, 024910(2012)

rough agreement with STAR central but not with PHENIX

STAR vs. PHENIX

F. Geurts, presentation at WWND2013 dN/dM (c²/GeV) Mb/Nb Au+Au 200 GeV MinBias STAR Preliminary $\phi \rightarrow ee \& \phi \rightarrow \eta ee$ PHENIX Au+Au MB $\dots \rho \rightarrow ee$ p_τ^e>0.2 GeV/c, |η^e|<0.35,|y_{ee}|<0.5 PHENIX cocktail 10 PHENIX data $\cdots \eta' \rightarrow \gamma ee$ PHENIX $c\overline{c} \rightarrow ee$ STAR with PHENIX acc π^{θ} , η , η' , ω , ϕ $\pi^0 \rightarrow \gamma ee$ $\cdots J/\psi \rightarrow ee$ 10^{-2} $J/\psi, \psi', b\overline{b}, DY$ ---- $c\overline{c} \rightarrow ee$ (PYTHIA) $\eta \rightarrow \gamma ee$ cc PYTHIA 0.96mb $\omega \rightarrow ee \& \omega \rightarrow \pi^0 ee$ — sum 10⁻³ Cocktail Sum STAR preliminary 10⁻⁴ 10⁻⁵ 10⁻⁶ 10⁻⁶ 10⁻⁷ Data/Cocktail 10⁻⁸ 3.5 0.53 1.5 2.5M_{ee} (GeV/c²) 2 Mass(e⁺e⁻) (GeV/c²)

Scaled by all the yields from PHENIX result, STAR reproduces the PHENIX cocktail. •19

Experimental Results in cold nuclear matter

• • •

Signal on the spectrum **Decay inside Nucleus** Decay in vacuum Normal Distribution 4000 **Modified Distribution** (known) 2000 2000 0 0.9 Mass^[GeV/c²] Mass [GeV/c²] 0.9 The superposition will be observed 4000 2000 ο 0.9 1.2 [GeV/c²] 1.1

0

e⁺

CBELSA/TAPS experiment $\omega \rightarrow \pi^{0}\gamma \text{ in }\gamma+A$

advantage:

- $\pi^0 \gamma$ large branching ratio (8 %)
- no ρ -contribution ($\rho \rightarrow \pi^0 \gamma : 7 \cdot 10^{-4}$) <u>disadvantage:</u>
- π^0 -rescattering

Nanova et al., PRC82(2010)035209

CLAS g7a @ J-Lab

Induce photons to Liquid deuterium, Carbon, Titanium and Iron targets, generate vector mesons, and detect e+e- decays with large acceptance spectrometer.

Background Subtracted

well reproduced with the 9% mass decrease at ρ_0 . •27

reproduced with m*/m = 1 - 3.4% $\rho/\rho_0 \& \Gamma/\Gamma_0 = 1 + 2.6 \rho/{\rho_0}^{*29}$

HADES @ GSI

- large acceptance at small M_{e+e-} and p (<1 GeV/c) (first measurement at low p !)
- p+p data are cockail : based on known sources fixed to data $\pi^0 /\eta / \omega / \rho$, Δ with constant eTFF **underestimeted** e+e- yield below VM pole \rightarrow higher resonances (Δ , N^{*})

Summary & Outlook

- Solid Statement: spectral modification of vector meson have been observed in various reactions at various energies.
- **BUT** there is no general consensus on the theoretical interpretations.

31

- "shift" vs. 'broadening" is too naïve. The real effect might be a composition of shift, broadening, dip-like structure etc.
- The spectral modification will largely depend on momentum.
- precise measurement w/ high statistics & resolution
 o systematic study: dispersion relation, system size dependence

J-PARC bird's-eye view, Tokai, Ibaraki, Japan

Materials & Lije

Science Facility

Solve Straction section Sectio

J-PARC E16 at High-momentum

at SM1 high-p beam branches off from the primary line

- 30 GeV primary proton (10¹⁰/s, 10¹²/s)
- 8 GeV primary proton for COMET
- secondary particles (~20 GeV/c)

Di-electron spectrometer to investigate medium mass modification of vector meson (J-PARC E16)

 \rightarrow systematic study of mass modification

Detector R & D

Particle tracking in a magnetic field and measure momentum.

Gas Electron Multiplier (GEM) High Rate Capability (up to 25kHz/mm²) Can cover Large acceptance (No wire) Good resolution & Low material 3 chambers of GEM Tracker @ r=20, 40, 60 cm

One GEM tracker GEM foil (30cm x 30cm) Myler window /esh(Cathode Drift ga GEM Transfer gap Transfer gap 🛔 Induction of Gas X strip Y stri Beam test @ Tohoku ELPH Made in Japan residual add 300 4201/ Enough position σ_{pos} 800 resolution is 100µm 600 achieved 400 \triangleright Ready for mass 200

0-1-0.8-0.6-0.4-0.2 0 0.2 0.4 0.6 0.8 1

production.

Electron identification in large acceptance

Hadron Blind Detector (HBD) Mirror less gas cherenkov counter Csl photocathode (UV sensitive) + **Gas Electron Multiplier (GEM)** Follow PHENIX exp @ BNL

CsI is evaporated on the surface of the top GEM. Photoelectrons are amplified using GEM (like Track

pion rejection factor 100 with e-efficiency 70% achieved Improvement of efficiency is on going.

GEM made in Japan

Expected Signal

0.9

History & Schedule

- 2007 approval
- 2013 Jan.
 - beam line construction budget was approved.
- 2014
 - beam line constructionmass production
- 2015
 - spectrometer construction at the hadron hall
- 2016 Jan.
 - high-momentum beam line is completed.
 - o first commissioning run

Thank you for your attention!