Hadrons from Quarks and Gluons Hirschegg 2014

Kleinwalsertal, Austria, 12-18 January

Witold Przygoda Jagiellonian University in Kraków for the HADES Collaboration 15 January 2014

Production and Dalitz decays of baryon resonances in p+p interactions at E_{kin}=1.25 and 3.5 GeV beam energy with HADES

The HADES Spectrometer

G. Agakichiev *et al*. Eur. Phys. J. **A41** (2009) 243

φ: full (6 sectors) θ: 18°-85° e⁺e⁻ pair acceptance ≈ 0.35 ~80.000 channels, segmented solid or LH₂ target

- SIS18 beam: π, p, A
- Δm/m ~ 2-3% at ρ/ω
- Versatile detector for rare particle decays:
- dielectrons (e⁺, e⁻)
- strangeness: Λ , K^{±,0} , Ξ ϕ
- upgrade(2010): new DAQ (~20 KHz), Tof-RPC (σ_{tof} ~80 ps)

p+p @ 1.25 GeV - plan

p + p elementary reactions at E_{kin} = 1.25 GeV below pp η production threshold are well situated to investigate Δ (1232) Dalitz decay

 I. HADRON ANALYSIS (npπ⁺, ppπ⁰)
 II. LEPTON ANALYSIS (ppe⁺e⁻, ppe⁺e⁻)

Production: OPEM

Form factor at vertices:

$$F(q^{2}) = \frac{\Lambda_{\pi}^{2} - m_{\pi}^{2}}{\Lambda_{\pi}^{2} - q^{2}}$$

 Λ_{π} fitted in accordance with the data ($\Lambda_{\pi} = 0.75$) G. Agakishiev *et al.* Eur. Phys. J. A**48** (2012) 74

Δ production (n p π^+)

OPEM (Λ_{π} = 0.75 modified) **\Delta resonance** + FSI + N(1440) small

Δ production (n $\rho \pi^+$) - acceptance corrected

grey band:

correction with various OPEM parametrisations (Λ_{π} = 0.63, 0.75, 1.00) blue curve: modified OPEM (total cross section 19.2 mb)

> cross section: 17.5 ± 2.2 mb

Δ production (p p π^0)

in acceptance

Δ production (**p p** π^0) - acceptance corrected

Acceptance correction:

"fiducial volume" in angular distribution i.e. $-0.6 < \cos \theta < +0.6$

cross section: see dilepton analysis (next slides)

M.I. Krivoruchenko *et al*. Phys. Rev. D**65** (2002) 017502

Δ + identification via pp $\pi^0 \{ \rightarrow e^+e^-\gamma \}$

both channels with 2 protons (**pp** and **ppe⁺e⁻**) support the description of Δ angular distribution according to OPE (modified) with parameter $\Lambda_{\pi} = 0.75$ **Cross section deduced (blue points)** 4.18 ± 0.5 mb

Δ^+ Dalitz decay via $pn\Delta^+ \{ \rightarrow pe^+e^- \}$

$(\Delta \rightarrow pe^+e^-)$ angular observables, BR

p+p @ 3. 5 GeV - plan

p + p elementary reactions at E_{kin} = 3.5 GeV to investigate the wealth of baryonic resonances and their properties

HADRON ANALYSIS (npπ⁺, ppπ⁰)

II. LEPTON ANALYSIS (ppe⁺e⁻)

Inclusive e⁺e⁻ spectrum p+p @ 3.5 GeV

J. Weil *et al*. (**GiBUU**) Eur. Phys. J. A**48** (2012) 111

Cross sections deduction PYTHIA+PLUTO (UrQMD)

6	π^{o}	η
σ_i [mb]:	$18 \pm 2.7 \ (16 \pm 2.6)$	$1.14 \pm 0.2 \ (0.93 \pm \ 0.14)$

$\Delta^{o,+}$	ρ	ω	
7.5 ± 1.3	0.233 ± 0.06	0.273 ± 0.07	

for details, see:

G. Agakishiev *et al*. Eur. Phys. J. A **48** (2012) 64

How to treat $R \rightarrow N e^+ e^-$

- ρ mesons produced via baryonic resonances (**R** → ρ N → e⁺ e⁻ N)
- Resonance model with electromagnetic
 Transition Form Factor from model seems to describe nicely data – only Δ?

Baryon resonances in p+p @ 3.5 GeV

Study of 3 connected exclusive channels:

- pp \rightarrow pn π^+ to fix R (Δ ,N^{*}) cross sections
- $pp \rightarrow pp\pi^0$ to check the result (izospin relations)
- convert R \rightarrow pe⁺e⁻ and check in pp \rightarrow ppe⁺e⁻

J^P	Resonances	$\Gamma_R \ [MeV]$	$BR(N\pi)$	$BR(pe^+e^-)$
$3/2^{+}$	${f \Delta}({f 1232})$	120	1	4.2e-5
$1/2^{+}$	$N^{*}(1440)$	350	0.65	3.06e-6
$3/2^{-}$	$N^{*}(1520)$	120	0.55	3.72e-5
$1/2^{-}$	$N^{*}(1535)$	150	0.46	1.45e-5
$3/2^{+}$	$\Delta(1600)$	350	0.15	0.73e-6
$1/2^{-}$	$oldsymbol{\Delta}(1620)$	150	0.25	1.73e-6
$1/2^{-}$	$N^{*}(1650)$	150	0.8	8.03e-6
$5/2^{-}$	$N^{*}(1675)$	150	0.45	1.02e-6
$5/2^{+}$	$N^{*}(1680)$	130	0.65	1.97e-5
$3/2^{+}$	$N^{*}(1720)$	150	0.2	3.65e-6
$3/2^{-}$	$\mathbf{\Delta}(1700)$	300	0.15	1.38e-5
$5/2^{+}$	$\Delta(1905)$	350	0.15	1.46e-6
$1/2^{+}$	$oldsymbol{\Delta}(1910)$	280	0.25	0.73e-5
$7/2^{+}$	$\Delta(1950)$	285	0.4	3.06e-6

production amplitude given by **incoherent** sum of resonance contributions + isospin relations

For the overlaping resonances only one resonance with largest BR(pe⁺e⁻) selected.

Resonance production (HADES acceptance)

Gottfried-Jackson, Heliciy frames $n p \pi^+$

Gottfried-Jackson, Heliciy frames

within the HADES acceptance

GJ

0.5

0.5

0

Н

0

<mark>ρρ</mark>π⁰

agreement in various projections

model used for acceptance correction

One pion production: acceptance corrected

• Δ^{++} (1232)

very good description of ⊿-line shape ("Monitz" parametr.)

Exclusive ω/η production in p+p @ 3.5 GeV

Cross sections (HADES, Teis et al., GiBUU, UrQMD)

Resonances	$\sigma_R \ [mb]$	$\sigma_R^{Teis}(GiBUU)$	σ_R^{UrQMD}
$\Delta(1232)$	2.53 ± 0.31	2.0(2.2)	1.7
$N^{*}(1440)$	1.5 ± 0.37	0.83(3.63)	1.15
$N^{*}(1520)$	1.8 ± 0.3	0.22(0.27)	1.7
$N^{*}(1535)$	0.152 ± 0.015	0.53~(0.53)	0.8
$\Delta(1600)$	0.24 ± 0.1	0.70(0.14)	0.4
$oldsymbol{\Delta}(1620)$	0.1 ± 0.03	0.60 (0.1)	0.2
$N^{*}(1650)$	0.81 ± 0.13	0.23(0.24)	0.4
$N^{*}(1675)$	1.65 ± 0.27	2.26(0.94)	1.2
$N^{*}(1680)$	0.9 ± 0.15	0.21 (0.22)	1.2
$N^{*}(1720)$	4.41 ± 0.72	0.15(0.14)	0.68
$oldsymbol{\Delta}(1700)$	0.45 ± 0.16	$0.1 \ (0.06)$	0.35
$\Delta(1905)$	0.85 ± 0.53	0.1 (0.06)	0.25
$oldsymbol{\Delta}(1910)$	0.38 ± 0.11	$0.71 \ (0.14)$	0.08
$\Delta(1950)$	0.1 ± 0.06	0.08~(0.1)	0.25

Z. Teis <i>et al.,</i>	J. Weil <i>et al</i> . (GiBUU)
Phys. A 356 (1997) 421	Eur. Phys. J. A 48 (2012) 111

S.A. Bass *et al*. (**UrQMD**) Prog. Part. Nucl. Phys. **41** (1998) 255

Z. F

Cross sections (GiBUU – model1, UrQMD – model2)

less

Resonances	HADES	Teis <i>et al</i> .	GiBUU	UrQMD
Δ(1232)	2.53			
N*(1440)	1.5			
N*(1520)	1.8			
N*(1535)	0.15			
Δ(1620)	0.1			
N*(1680)	0.9			
Δ(1700)	0.45			
Δ(1910)	0.38			

Δ(1232) missing in UrQMD N*(1440) much more in GiBUU N*(1520) much less in GiBUU N*(1440) and N*(1520) similar in UrQMD N*(1535) much larger in the transport codes N*(1680) overshoots in UrQMD

similar

more

Exclusive p+p @ 3.5 GeV (dileptons)

- ✓ constant eTTF
- ✓ no off shell coupling to VM
- → lower limit for e⁺e⁻ emission
- experimental σ
 for ω/ρ used
- missing yield related to low mass resonances

p+p @ 3.5 GeV (pN coupling)

Branchi	ng ratios	(in perc	cent) for	$R \rightarrow$	N ho
Resonances	GiBUU	UrQMD	KSU	BG	CLAS
$N^{*}(1520)$	21	15	20.9(7)	10(3)	13(4)
$\Delta(1620)$	29	5	26(2)	12(9)	16
$N^{*}(1720)$	87	73	1.4(5)	10(13)	-
$\Delta(1905)$	87	80	< 14	42(8)	-

KSU: M. Shresta, D.M. Manley Phys. Rev. C**86** (2012) 055203

BG: A.V. Anisovich *et al*. Eur. Phys. J. A**48** (2012) 15

CLAS: V. Mokeev *et al*. Phys. Rev. C**86** (2012) 035203

SUMMARY remarks

- combined analysis of exclusive channels
 - one pion production described within the resonance model with the angular anisotropic production modified
- cross sections of R production deduced
 - pp@1.25 △ Dalitz decay identified (BR) in pe⁺e⁻ channel
 - PWA (Bonn-Gatchina group) for pp@1.25:
 - confirms the Δ resonance contributions and cross sections
 - higher PW necessary for good description (i.e. ¹G₄, ³H₄)
- pp@3.5 constraints both for eTTF investigation and transport models
 - PWA for pp@3.5 in plans for this year

CREDITS

The HADES Collaboration

Piotr Salabura (spokesperson)

me