Charmonium &

charmoniumlike exotics

Changzheng Yuan

Institute of High Energy Physics, Beijing

Hirschegg 2014 Jan. 12 – 18, 2014

Hadrons: normal & exotic

 Hadrons are composed from 2 (meson) quarks or 3 (baryon) quarks

Quark model

QCD doesnot forbid hadrons with other configurations

 $N_{quarks} = 0 (gg, ggg, ...)$

N_{guarks} = 2 (or more) + excited gluon

- glueball :
- hybrid :
- multiquark state : N_{quarks} > 3
- molecule : bound state of more than 2 hadrons

Charmonium spectroscopy

States below charm threshold are all observed now, still many missing states above charm threshold.

GeV

4.8C

There are lots of XYZ states

Not all of them are charmonia!

Outline

- The experiments
- New results on charmonium [spin-singlets +]
- New information on the X(3872)
- Update ISR Y-family analyses and more ...
- Z_c(3900)⁺, Z_c(4020)⁺
- Summary & Outlook

Detailed results from BESIII by Zhiqing on Friday!

Results are from these experiments

$\psi' \rightarrow \pi^0 h_c$ transition [106M ψ' evts]

BESIII: PRL 104, 132002 (2010) Mass: 3525.40±0.13±0.18 MeV Width: 0.73±0.45±0.28 MeV (<1.44 MeV @ 90% C.L.)

CLEOc: PRL101, 182003 (2008) Mass: 3525.28±0.19±0.12 MeV Width: fixed to 0.9 MeV

 $\Delta M_{hf} = \langle M(^{3}P_{J}) \rangle - M(^{1}P_{1})$ Agrees with zero within ~0.5 MeV

Information on spin-spin interaction.

Combined inclusive and E1-photon-tagged spectrum (First measurements)

$$\begin{split} B(\psi^{*} \rightarrow \pi^{0}h_{c}) &= [8.4 \pm 1.3(\text{stat.}) \pm 1.0(\text{syst.})] \times 10^{-4} \\ B(h_{c} \rightarrow \gamma \eta_{c}) &= [54.3 \pm 6.7(\text{stat.}) \pm 5.2(\text{syst.})] \,\% \end{split}$$

Agree with predictions of Kuang, Godfrey, Dudek, et al.

h_c via $\psi' \rightarrow \pi^0 h_c \rightarrow \pi^0 \gamma \eta_c$ transition

PRD86, 092009 (2012)

16 modes, 832 events Mass: 3525.31±0.11±0.15 MeV <u>Width: 0.70±0.28±0.25 MeV</u>

CLEOc: PRL101, 182003 (2008) Mass: 3525.28±0.19±0.12 MeV Width: fixed to 0.9 MeV

Dominant errors in mass and width measurements are from photon energy calibration, resolution calibration, and kinematic fit.

Can be improved with more data!

η_c parameters from $\psi' \rightarrow \gamma \eta_c$

106M ψ ' evts

arXiv:1111.0398, PRL108, 222002 (2012)

Simultaneous fit with modified Breit-Wigner (hindered *M1*) by considering possible **interference** between η_c and non- η_c decays

Mass and width of η_c

arXiv:1111.0398, PRL108, 222002 (2012)

Mass = $2984.3 \pm 0.6 \pm 0.6$ MeV/c² [LQCD found a higher mass!]

Width = $32.0 \pm 1.2 \pm 1.0$ MeV

$\phi = 2.40 \pm 0.07 \pm 0.08$ rad or $4.19 \pm 0.03 \pm 0.09$ rad

(two solutions of the interference) World average in PDG2012 uses earlier measurements.

E1 transition! E γ suppression less severe than in M1 transition! Irreducible non- η_c background is smaller than in ψ ' decays!¹¹

First observation of $\psi' \rightarrow \gamma \eta_c'$

 $106M \psi' \text{ evts}$

arXiv:1205.5103, PRL109, 042003 (2012)

Statistical significance > 10σ

3.7

- Simultaneous fit with:
 - η_c ' signal: modified BW (*M1*) (Resolution extrapolated from χ_{cI})
 - χ_{cI} signal: MC shape smeared with Gaussian
 - BGs from $e^+ e^- \rightarrow KK\pi$ (ISR), $\psi' \rightarrow KK\pi$ (FSR), $\psi' \rightarrow \pi^0 KK\pi$: are measured from data

 $Br(\psi' \rightarrow \gamma \eta_c') = (6.8 \pm 1.1 \pm 4.5) \times 10^{-4}$

CLEO-c: <7.6×10⁻⁴ Potential model: (0.1-6.2)×10⁻⁴ (PRD81,052002(2010)) (PRL89,162002(2002))

Evidence for the X(3823)

arXiv:1304.3975 (PRL111, 032001 (2013))

FIG. 4: 2D UML fit projection of $M_{\chi_{c1}\gamma}$ distribution for the simultaneous fit of $B^{\pm} \rightarrow (\chi_{c1}\gamma)K^{\pm}$ and $B^{0} \rightarrow (\chi_{c1}\gamma)K^{0}_{S}$ decays for $M_{\rm bc} > 5.27 \text{ GeV}/c^{2}$. The curves used in the fits are described in [31].

BESIII may search for it!

What is the X(3872)?

- Mass: Very close to D
 ⁰D^{*0} threshold ...
- Width: Very narrow, < 1.2 MeV
- J^{PC}=1⁺⁺ [LHCb, talk by Thomas Latham] [™]
- Production
 - in pp/pp collison rate similar to charmonia
 - In B decays KX similar to $c\overline{c}$, K*X smaller than $c\overline{c}$
 - Y(4260) $\rightarrow \gamma$ +X(3872) [BESIII, more by Zhiqing on Friday]
- Decay BR: open charm ~ 50%, charmonium~O(%)
- Nature (very likely exotic)
 - Loosely D⁰D^{*0} bound state (like deuteron?)?
 - Mixture of excited χ_{c1} and D⁰D^{*0} bound state?
 - Many other possibilities (if it is not χ'_{c1} , where is χ'_{c1} ?) 15

Belle, 2003

ISR ψ ' signal is used for mass, and mass resolution calibration. N=1818; ΔM =0.34±0.04 MeV; $\Delta \sigma_M$ =1.14 ±0.07 MeV arXiv: 1310.4101, PRL (in press) M(X(3872)) = 3871.9±0.7±0.2 MeV [PDG: 3871.68 ±0.17 MeV]

Observation of Y(4260) $\rightarrow \gamma X(3872)$

BESI

arXiv: 1310.4101, PRL (in press)

If we take $\mathcal{B}(X(3872) \rightarrow \pi^+\pi^- J/\psi) \sim 5\%$, (>2.6% in PDG) $\frac{\sigma(e^+e^- \rightarrow \gamma X(3872))}{\sigma(e^+e^- \rightarrow \pi^+\pi^- J/\psi)} \sim 10\%$ Large transition ratio !

Y-family states

(vectors observed in Initial State Radiation)

+ $e^+e^- \rightarrow \pi^+\pi^-h_c$ from BESIII

The Y states

Belle: PRL99,142002, 670/fb BaBar: arXiv1211.6271, 520/fb

Y(4008): confirmed by Belle with more data; events observed at BaBar, fit with exponential Wait for BESIII Y(4660): confirmed by BaBar Y(4630): no data, a bit beyond BEPCII/BESIII limit

- 1. Fit with two coherent resonances $|BW_1+BW_2*exp(i\phi)|^2+bkg$.
- 2. Mass of Y(4008) is lower than before
- 3. Fit quality: χ^2 /ndf=101/84, confidence level is 9.3% ²¹

Select $e^+e^- \rightarrow \pi^+\pi^- J/\psi$ at 4.26 GeV

BESIII: PRL110, 252001

- Select 4 charged tracks and reconstruct J/ψ with lepton pair.
- Very clean sample, very high efficiency (~45%).
- $\sigma(e^+e^- \rightarrow \pi^+\pi^- J/\psi)$ = (62.9±1.9±3.7) pb

Cross section of $e^+e^- \rightarrow \pi^+\pi^- J/\psi$

$e^+e^- \rightarrow \pi^+\pi^-h_c(1P)$ at BESIII

- $h_c \rightarrow \gamma \eta_c$, $\eta_c \rightarrow hadrons$ [16 exclusive decay modes]
 - pp, π⁺π⁻K⁺K⁻, π⁺π⁻pp, 2(K⁺K⁻), 2(π⁺π⁻), 3(π⁺π⁻)
 - 2(π⁺π⁻)K⁺K⁻, K_S⁰K⁺π⁻+c.c., K_S⁰K⁺π⁻π⁺π⁻+c.c., K⁺K⁻π⁰
 - $p\overline{p}\pi^{0}$, K⁺K⁻ η , $\pi^{+}\pi^{-}\eta$, $\pi^{+}\pi^{-}\pi^{0}\pi^{0}$, $2(\pi^{+}\pi^{-})\eta$, $2(\pi^{+}\pi^{-}\pi^{0})$

30

20

N(h_c)=416±28 Lum=827/pb σ^{B} = 41.0±2.8±7.4 pb N(h_c)=357±25 Lum=544/pb σ^{B} = 52.3±3.7±9.2 pb

3.51 3.52 3.53 3.54 3.55 3.56 3.57

BESIII: arXiv:1309.1896, PRL111, 242001

3.58

Observation of $e^+e^- \rightarrow \pi^+\pi^-h_c(1P)$

- $\sigma(e^+e^- \rightarrow \pi^+\pi^-h_c) \sim \sigma(e^+e^- \rightarrow \pi^+\pi^-J/\psi)$ but line shape different
- Local maximum ~ 4.23 GeV
- Hint for a vector ccg hybrid? [PRD78, 056003 (Guo); 094504 (Dudek): cc in spin-singlet in hybrids!]

Comparison of $e^+e^- \rightarrow \pi^+\pi^-h_c$ and $\pi^+\pi^-J/\psi$

Broad structure at high energy region? Need more data at high energies to complete the line shape measurement²⁷

Structure in $e^+e^- \rightarrow \pi^+\pi^-h_c$?

Common sys. errors not included in these fits! (cf. arXiv:1310.2190) Narrow structure at 4.22 GeV? More data at around 4.22 GeV! Broad structure at 4.29 GeV? More data at above 4.4 GeV!

CZY: arXiv:1312.6399: fit to BESIII and CLEOc data

What are the Y states?

- Between 4 and 4.7 GeV, at most 5 states expected (3S, 2D, 4S, 3D, 5S), 7 observed
- Hybrids are expected in this mass region
- Molecular states?
- Cannot rule out
 threshold effect/FSI/...
- Y(4260), Y(4360),
 Y(4660) are all narrow and similar
- $\pi^+\pi^-h_c$ add complexity

Z_c: charged charmoniumlike states

• Find a clear signature for exotic state!

- Decays to charmonium thus has a $\overline{c}c$ pair!
- With electric charge thus has two more light quarks!

→
$$N_{quark} \ge 4$$
 !

- Do searches in $\pi^{\pm}J/\psi$, $\pi^{\pm}h_{c}(1P)$, $\pi^{\pm}\psi(2S)$, $\pi^{\pm}\chi_{cJ}$, ...
- BESIII: $e^+e^- \rightarrow \pi^{\pm}+exotics$, $\rho^{\pm}+exotics$, ...

60

50

40

30

20

10

ŏ.2

0.4

Events / 30 MeV/c²

(a)

🕂 data

— MC

--- Z(3900) MC

Sideband

0.6

0.8

 $M(\pi^+\pi^-)$ (GeV/c²)

1.2

1.4

$e^+e^- \rightarrow \pi^+\pi^- J/\psi$ from ISR

(b)

40

35

30

20

10

Events / 20 MeV/c²

Belle: PRL110,252002

- M²(ππ) vs. M²(πJ/ψ) for
 4.15<M(ππJ/ψ) <4.45 GeV
- (inset) Background events in J/ψ-mass sidebands
- Structures both in ππ and πJ/ψ systems
- 689 events in J/ψ signal region, purity~80%

Z_c(3900) observed in two experiments!

BESIII at 4.260 GeV: PRL110,252001

Belle with ISR: PRL110,252002

33

>5.2σ

• >8o

Confirmed with CLEOc data!

What is $Z_c(3900)$?

- Couples to \overline{cc}
- Has electric charge
- At least 4-quarks
- What is its nature?

- DD* molecule?
- Tetraquark state?
- Threshold effect?

Predictions and more experimental information will be essential to understand its nature.

→ A partner <u>below/above</u> Z_c ?

- Obvious structure around 4.02 GeV
- Hints of $Z_c(3900)$

BESIII: PRL111, 242001

 ~1500 events in h_c signal region at 4.230, 4.260 and 4.360 GeV, purity about 65%

$e^+e^- \rightarrow \pi Z_c(4020) \rightarrow \pi^+\pi^-h_c(1P)$

BESIII: PRL111, 242001

Simultaneous fit to 4.23/4.26/4.36 GeV data, 16 η_c decay modes. 8.9 σ $M(Z_{c}(4020)) =$ 4022.9±0.8±2.7 MeV; $\Gamma(Z_{c}(4020)) =$ 7.9±2.7±2.6 MeV Close to \overline{D}^*D^* threshold

 $\sigma(e^+e^- \rightarrow \pi Z_c \rightarrow \pi^+\pi^-h_c)$:

8.7±1.9±2.8±1.4 pb @ 4.230 GeV 7.4±1.7±2.1±1.2 pb @ 4.260 GeV 10.3±2.3±3.1±1.6 pb @ 4.360 GeV

Significance: 8.9σ [Z_c(4020)] No significant $Z_c(3900) (2.1\sigma)_{37}$

X, Y, Z particles are correlated!

What are they? Are they all molecules?

Summary

- There were lots of progress in charmonium and charmoniumlike studies recently
- BESIII started study of the XYZ particles
- Observation of Y(4260) $\rightarrow \gamma X(3872)$
- New information on the Y's from BaBar and Belle. Y(4660) confirmed, Y(4008) not confirmed; large $\pi^+\pi^-h_c$ production rate above 4.2 GeV
- First confirmed exotic state with at least four quarks, Z_c(3900)⁺, at BESIII & Belle [close to M(DD^{*})]
- Observation of the Z_c' at BESIII [close to M(D*D*)]
- More study from BESIII, BelleII, Panda?

Thanks a lot!

谢谢!

Vielen Dank!

Who can answer?

"Where Do They Come From? What Are They? Where Are They Going?"

Belle observed Z(4430)[±]→ψ(2S)π[±]

- Found in $\psi(2S)\pi^+$ from $B \rightarrow \psi(2S)\pi^+K$. Z parameters from fit to $M(\psi(2S)\pi^+)$
- Confirmed through Dalitz-plot analysis of $B \rightarrow \psi(2S)\pi^+K$
- $B \rightarrow \psi(2S)\pi^+K$ amplitude: coherent sum of Breit-Wigner contributions
- Models: all known $K^* \rightarrow K\pi^+$ resonances only

all known K* \rightarrow K π ⁺ and Z⁺ \rightarrow ψ (2S) π ⁺ \Rightarrow favored by data

- [cu][cd] tetraquark? neutral partner in ψ'π⁰ expected
- D*<u>D</u>₁(2420) molecule? should decay to D*<u>D</u>*π

PRL100, 142001

(2008)

Spin-parity of the Z(4430)[±]

• $B \rightarrow \psi(2S)\pi^+K$ amplitude: coherent sum of Breit-Wigner contributions

arXiv: 1306.4894

BaBar doesn't see a significant Z(4430)+

PRD79, 112001 (2009)

"For the fit ... equivalent to the Belle analysis...we obtain mass & width values that are consistent with theirs,... but only ~1.9 σ from zero; fixing mass and width increases this to only ~3.1 σ ."

BF(B⁰→Z⁺K)×**BF**(Z⁺→ψ(2S)π⁺) < 3.1 ×10⁻⁵ Belle PRL: (4.1±1.0±1.4)x10⁻⁵

Belle observed Two $Z^{\pm}{\rightarrow}\chi_{c1}\pi^{\pm}$

- Dalitz-plot analysis of $\underline{B}^0 \rightarrow \chi_{c1} \pi^+ K^- \chi_{c1} \rightarrow J/\psi \gamma$ with 657M B<u>B</u>
- Dalitz plot models: known $K^* \rightarrow K\pi$ only

K*'s + one Z $\rightarrow \chi_{c1} \pi^{\pm}$

PRD 78, 072004 (2008)

K*'s + two Z[±] states \Rightarrow favored by data

BaBar doesn't see significant $Z^{\pm} \rightarrow \chi_{c1} \pi^{\pm}$

$$\mathcal{B}(\bar{B}^{0} \to Z_{1}(4050)^{+}K^{-}) \times \mathcal{B}(Z_{1}(4050)^{+} \\ \to \chi_{c1}\pi^{+}) < 1.8 \times 10^{-5},$$
Belle: $(3.0^{+1.5}_{-0.8}^{+3.7}_{-1.6}) \times 10^{-5}$

$$\mathcal{B}(\bar{B}^{0} \to Z_{2}(4250)^{+}K^{-}) \times \mathcal{B}(Z_{2}(4250)^{+} \\ \to \chi_{c1}\pi^{+}) < 4.0 \times 10^{-5},$$
Belle: $(4.0^{+2.3}_{-0.9}^{+19.7}_{-0.5}) \times 10^{-5}$

PRD85, 052003 (2012)

"We find that it is possible to obtain a good description of our data without the need for additional resonances in the $\chi_{c1}\pi$ system." 46

$M(\pi\pi J/\psi) \in [4.2, 4.4]$ GeV via ISR

