Precision mass measurements for nuclear physics

J. Dilling

TRIUMF/University of British Columbia
Vancouver, Canada

Currently on sabbatical at the
MPI-K Heidelberg
& EMMI

Hirschegg workshop 2015
January 11-16 2015
TRIUMF is owned & operated by a consortium of 19 universities
Founded 45 years ago in Vancouver

Members
University of Alberta
University of BC
Carleton University
University of Guelph
University of Manitoba
Université de Montréal
Queen’s University
Simon Fraser
University of Toronto
University of Victoria
York University

Associate Members
University of Calgary
McMaster University
University of Northern BC
University of Regina
Saint Mary’s University
University of Winnipeg
McGill University
Western University

Canada’s National Laboratory for Particle and Nuclear Physics
TRIUMF’s accelerator complex

ISAC
- Highest Power ISOL RIB facility
 - Nuclear Structure
 - Nuclear Astrophysics
 - Fund. Symmetries
 - CMMS (βNMR)

ISAC-I
- 60 keV, 1.7 AMeV

ISAC-II
- >10 AMeV

Cyclotron
- 500 MeV
- 350 μA

e-LINAC
- 300-500 kW photo-fission driver (2015-2017)

Advanced Rare Isotope Laboratory (ARIEL)

CMMS
- Centre for Molecular and Material Science (μSR)

Particle Physics
- Pienu (- 2012)
- Ultra Cold Neutrons (2015 -)

Nordion
- commercial medical isotope production
- 3 cyclotrons

40 MV SRF Heavy Ion Linac

3 cyclotrons

500 MeV

350 μA
ISOL facility with **highest primary beam intensity** (100 μA, 500 MeV, p)

ISAC II:
- 10 AMeV for A<150
- 16AMeV for A<30

ISAC I:
- 60 keV & 1.7 AMeV

Programs in
- Nuclear Structure & Dynamics
- Nuclear Astrophysics
- Electroweak Interaction Studies
- Material Science
Future Project: ARIEL

- expand RIB program with:
 - 3 simultaneous beams
 - increased number of hours delivered per year
 - new beam species
 - enable long beam times (nucl. astro, fund. symm.)
 - increased beam development capabilities

- New electron linac driver for photo-fission
- New proton beamline

- staged installation
- started 2012
Cyclotron Vault (exiting)

Target Hall

Electron Hall

RIB front end

ARIEL, Civil construction and eLINAC

October 1st: 22.9 MeV e-beam
ARIEL: e-linac for photo-fission
total power: 0.5 MW

TIMELINE:
- 2014 first beam, target R&D
- 2017 new front end (phase II)
- 2017 physics production 8Li
- 2018 photo fission
- 2020 proton beam (3 beams)
Mass difference of 2 nuclei gives energy gain in reactions (like in stars) and for beta decay.

\[\text{binding energy} = N \cdot \bullet + Z \cdot \bullet + Z \cdot \bullet \]

Binding energy includes all effective interactions and reflects the nuclear potential.

Mass difference of 2 nuclei gives energy gain in reactions (like in stars) and for beta decay.

Element Synthesis via r-process (supernova)

The nature of neutrinos and double beta decay

Evolution of Nuclear Shells

\[10^{-6} < \frac{\delta m}{m} < 10^{-5} \]

\[10^{-8} < \frac{\delta m}{m} < 10^{-6} \]

\[\frac{\delta m}{m} = 10^{-7} \]

\[\frac{\delta m}{m} < 10^{-8} \]

Abundance vs. \(A \)

100 120 140 160 180 200 220

10\(^{-1}\) 10\(^{-0}\) 10\(^{0}\) 10\(^{1}\) 10\(^{2}\) 10\(^{3}\) 10\(^{4}\) 10\(^{5}\) 10\(^{6}\) 10\(^{7}\)

Abundance vs. \(A \) graph showing data from Ame2011-preview (G. Audi and W. Meng).

Data from TRIUMF.

Kepler's supernova remnant, SN 1604
500 MeV protons

Mass Separator

Low-energy beam transport

TITAN

500 MeV protons

ISOL facility with highest primary beam intensity (100 μA, 500 MeV p)

TRIUMF’s Ion Trap for Atomic and Nuclear Science

- High-precision mass measurements
- In-trap decay spectroscopy

ISAC RIB Facility

ISAC-I and ISAC-II Facility

TRIUMF
BNG: fast m/q selection

RFQ: Accumulation, cooling, and bunching

EBIT: ms charge breeding

MPET: mass measurement via cyclotron frequency determination

Future traps:
- MR-TOF MS after RFQ (w/ U. of Giessen)
- Cooler Penning trap before MPET
- Both set-ups installed off-line
Measurement Penning Trap

- Lorentz steerers
- TOF-ICR technique

→ Fast measurements:

 \[T_{1/2} \geq 9 \text{ ms (}^{11}\text{Li}) \]

\[2\pi v_c = \left(\frac{q}{m} \right) \cdot B \]

\[^{31}\text{Na}^+ \]

\[T_{1/2} = 17 \text{ ms} \]

M. Brodeur et al., PRC 80 (2009) 024314; M. Brodeur et al., IJMS 20 (2012) 310
Since PT were developed for ions, they behave the same way for stable or unstable particles! Ideal for systematic test and optimizations.

Accuracy

- exact theoretical description
 - M. König et al., Int. J. Mass Spect. 142, 95 (1995)
- even for non-ideal traps
- off-line tests with stables

\[v_c = \frac{1}{2\pi} \frac{q}{m} B \]
Verification of performance using stable masses (or standard 12C)

K. Blaum et al., EPJ A 15, 245 (2002)
ISOLTRAP: Carbon Cluster tests
$(dm/m)_{res} = 8 \cdot 10^{-9}$

B. Brodeur et al., INJM 310, 20 (2012)
TITAN: Global compensation method
$\Delta R/R_{total} = -4(6) \times 10^{-12} \cdot \Delta (m/q) \cdot V_0$

V.-V. Elomaa et al., NIM A 612, 97 (2009)
JYFLTRAP: Carbon Cluster tests
$\sigma_{res,lim}(r)/r = 7.9 \times 10^{-9}$

C. Droese et al., NIM A 632, 157 (2011)
SHIPTRAP: Temperature stability
$\sigma_o = 1.3(3) \times 10^{-9}/h$

Reached high accuracy and precision: Excellent reliability

Other on-line trap systems do this as well…CPT, LEBIT…
Fast and efficient (but keeping the precision)

\[n = \frac{1}{2\pi} \cdot \frac{q}{m} \cdot B \]

\(\delta m \approx \frac{1}{\nu_c} \cdot \infty \cdot \frac{1}{T_{RF} \cdot q \cdot B \cdot \sqrt{N}} \)

- Improve precision using different excitation modes in the Ramsey (gain factor \(\sim 2 \))
- Precision depends on \(\nu_c \), boosting the frequency key.
 - Can be done with higher excitation modes:
 - Octupole excitation: JYFLTRAP, LEBIT, SHIPTRAP: S. Eliseev et al., PRL. 107, 152501 (2011)
 - Using highly charged ions: developed at SMILETRAP, now also for radioactive beams: TITAN: S. Ettenauer et al., PRL 107, 272501 (2011), IJMS 349 (2013) 79
Developed very fast preparation: (needed to ensure reproducibility of initial conditions)

For ex.: Lorentz-steerer developed at LEBIT: able to reach short half-lives below 100ms:

ISOLTRAP:

32Ar (98 ms) K. Blaum et al.,

74Rb (65ms): A. Kellerbauer et al.,
PRL 93, 072502 (2004)

TITAN: 11Li (9ms) M. Smith et al.,
PRL 101, 202501 (2008)

But we have also done other short-lived species:

12Be (21 ms)

34Mg (20 ms)

31Na (17 ms)

Demonstrated off-line that 5 ms cycle are possible:

Some examples:
A=20,21 Mg & Island of Inversion

- Mg (p-rich, light)
- N-deficient Mg isotopes
- N-rich Na, Al, Mg isotopes (lol)
Mass measurements of Mg masses

Technical difficulty: ISOL production is not selective:
- isobars are co-produced with the isotopes of interest!
- Na, closer to stability, and longer-lived
- much more extracted and delivered to experiment (1,000,000:1 ratio)
- cleaning system required!
Tricks for clean beams:
Go to the source! Ion Guide Laser Ion Source (IG-LIS)

- Suppress normal surface ions (Na).
- Only allow neutral atoms to drift into the laser ionization region.
- Selective ionization of species (Mg).
- Laser ion source still has significant contribution of surface ions.
Performance of the source: IG-LIS

Background reduction of 6 orders of magnitude!
Penning trap mass measurements

Measured Na contamination at MPET < 1%
Isospin-symmetry breaking in $A = 20, 21$ multiplets with TITAN

$$M(A, T, T_z) = a(A, T) + b(A, T) T_z + c(A, T) T_z^2$$

- G.S. binding energy

<table>
<thead>
<tr>
<th>Nuclide</th>
<th>Exp.</th>
<th>USDA</th>
<th>USDB</th>
<th>NN + 3N</th>
</tr>
</thead>
<tbody>
<tr>
<td>^{20}Mg</td>
<td>-6.94</td>
<td>-6.71</td>
<td>-6.83</td>
<td>-6.89</td>
</tr>
<tr>
<td>^{21}Mg</td>
<td>-21.59</td>
<td>-21.79</td>
<td>-21.81</td>
<td>-23.18</td>
</tr>
</tbody>
</table>

- non-zero d coefficients in all three multiplets, $A=20,0^+, A=21,1/2^+, 5/2^+$

- d_{exp} cannot be explained by USDA/B models

- uncertainties in χEFT calculations too large to be definitive

$^{20}\text{Mg}^+$: 45σ deviation from AME12 & 15x improved precision

^{21}Mg: 14σ deviation & 22x improved precision

Compared to USDA/B & χEFT $NN+3N$ predictions

Excellent collaboration of target/ion source group, experiment and theory
Mass measurements with TITAN:

- Fast (short half-lives !)
- Precise
- Accurate

- Many with very short $T_{1/2}$:
 - ^{32}Na: 12.9 ms
 - ^{31}Na: 17 ms
 - ^{34}Mg: 20 ms

<table>
<thead>
<tr>
<th>Z</th>
<th>N</th>
<th>Isotope</th>
<th>Half-life (ms)</th>
<th>Quantum State</th>
<th>β^+</th>
<th>β^-</th>
</tr>
</thead>
<tbody>
<tr>
<td>16</td>
<td>12</td>
<td>^{19}Mg</td>
<td>130</td>
<td>$3/2^+$</td>
<td>100%</td>
<td>99%</td>
</tr>
<tr>
<td>17</td>
<td>11</td>
<td>^{19}Na</td>
<td>30.5</td>
<td>1^+</td>
<td>100%</td>
<td>58%</td>
</tr>
<tr>
<td>?</td>
<td>22</td>
<td>^{23}Na</td>
<td>3.60</td>
<td>3^+</td>
<td>100%</td>
<td>100%</td>
</tr>
<tr>
<td>21</td>
<td>13</td>
<td>^{23}Al</td>
<td>644</td>
<td>$5/2^+$</td>
<td>100%</td>
<td>1.9%</td>
</tr>
</tbody>
</table>

ISLAND OF INVERSION MASS CARTOGRAPHY (Himpe et al., PLB 658 (2008) 203)
Island-Of-Inversion Mass Cartography

- Island-of-inversion behavior due to correlation energy
- Isomer would have a smaller effect
 - Decay losses excluded 26 ms state

1Rotaru et al. PRL 109 (2012) 092503
BNG: fast m/q selection

RFQ: Accumulation, cooling, and bunching

MPET: mass measurement via cyclotron frequency determination

EBIT: ms charge breeding

J. Dilling *et al.*, NIMB 204 (2003) 492
Enhanced mass measurements: Electron Beam Ion Trap

- Superconducting magnet, Helmholtz configuration
- Design specs up to an electron beam 70 keV & 5 A
- 7 radial ports with recessed Be windows

A. Lapierre et al., NIMA 624 (2010) 54
\[\frac{\delta m}{m} \approx \frac{m}{qB T_{RF} \sqrt{N}} \]

- \(N \): limited by yield/beam time
- \(T_{RF} \): limited by \(T_{1/2} \)
- \(B \): limited by \(\delta B/B \)
- \(q \): up to \(Z+ \)

Boost precision
or
Reduce experimental requirements for the same precision
Increased Resolving Power

\[T_{RF} = 197 \text{ ms} \]
To measure 71Ge Q-value, needed to separate small amount of 71Ge from overwhelming 71Ga contamination

Exploited Z dependence of charge-state distribution & large increase in I_e at closed shells

Ne-like ions could be achieved for $E_e \sim 2$ keV & $Jt \geq 20$ A cm$^{-2}$ s \rightarrow predominantly 71Ga$^{21+}$ and 71Ge$^{22+}$ (CBSIM simulations allow for a systematic approach)

Threshold Charge Breeding

- Charge bred to $^{71}\text{Ga}^{21+}$, $^{71}\text{Ge}^{22+}$

- Select desired q/m by TOF

- Captured isobarically and isolectronically pure ion bunches in MPET

<table>
<thead>
<tr>
<th>Laser:</th>
<th>OFF</th>
<th>ON</th>
</tr>
</thead>
<tbody>
<tr>
<td>$Q = 21+$</td>
<td>^{71}Ga</td>
<td>^{71}Ga, ^{71}Ge</td>
</tr>
<tr>
<td>$Q = 22+$</td>
<td>–</td>
<td>^{71}Ge</td>
</tr>
</tbody>
</table>

Electron beam: 70 mA / 2.0 kV

TOF [μs]

Mean TOF [μs]

EBIT background (no injection of $A=71$ beam)
Investigating the 71Ga Anomaly

- SAGE & GALLEX measured solar v_e flux
- Deficit in measured-to-predicted 71Ge event rates of 13% or 2.5σ
- Need to verify underlying nuclear-physics assumptions
 - C.E. experiment verified contributions from lowest-lying 71Ge states
 - Remaining uncertainties from Confirmation of 71Ga and 51Cr nuclear structure.
 The discrepancy persists.

Getting new isotopes: In-trap Feeding

- Original question: How to populate ^{34m}Al (1+, 26 ms)?
- Produce isomers or nuclides unavailable via ISOL production through in-trap decay
- Proof of principle with ^{30}Al
 - $^{30}\text{Mg}^+$ parent yield $\approx 10^6$ pps
 - Good separation of $T_{1/2}$
 - Expected observables:
 - x-rays & γ-rays
 - HCl spectra on MCP
 - Resonances in MPET

In-trap Feeding: $^{30}\text{Mg}^{8+}$ Mother

$\text{t}_{CB} = 500 \text{ ms}$
$\text{t}_{BG} = 300 \text{ ms}$

Mean Time of Flight [ms]

$\nu_{RF} - 15\,154\,066$ [Hz]

30Mg^{8+}

In-trap Feeding: $^{30}\text{Al}^{11+}$ Daughter

Preliminary

$t_{\text{CB}} = 500 \text{ ms}$

$t_{\text{BG}} = 300 \text{ ms}$

$^{30}\text{Al}^{11+}$

$t_{\text{CB}} = 4 \text{ s}$

A.A. Kwiatkowski, R. Klawitter, A. Lennarz, et al., in preparation
In-trap Decay Spectroscopy

- **Advantages:**
 - No backing material
 - High purity sample
 - Background material \(\rightarrow\) precision and sensitivity

- **Objective:** determine 2ν2EC NME by measuring branching ratios of intermediate nuclei

- Up to 7 SiLi detectors w/ CuPb shields

- 1 HPGe detector for normalization

- Electrons are guided away from SiLi detectors and can be detected on a PIPS detector

 OR

- Electron beam can be used to improve confinement

D. Frekers *et al.*, CJP 85(2007)57; K.G. Leach *et al.*, arXiv 1405.7209
In-trap Decay Spectroscopy

- Commissioning of SiLi array with 124Cs$^{Q+}$
- Trap is completely emptied between runs
- No positron-annihilation radiation

• RFQ space-charge limit 10,000× smaller than EBIT

• Inject multiple ion bunches:
 • Open trap for singly charged ions
 • Close trap for singly charged ions (ΔV)
 • After charge breeding, ions experience deep potential well (ΔV·Q)
Multi-Reflection Time-of-Flight Mass Separator:
- Tested in Giessen to $M/\Delta M \approx 50\,000$
- Will improve beam-purity capability from 1:200 to $1:10^4$ desired ion to contamination ratio
- Arrived at TRIUMF 10th of September
- Off-line commissioning Spring 2015, on-line December 2015
Summary & Outlook

- Penning-trap mass measurements of very short-lived species
 - Measurements in the $N = 20$ island of inversion
 - IMME Mg isotopes at $A=20$
- Charge breeding
 - Systematic approach w/ simulations
 - To boost precision
 - To increase resolving power
 - To improve beam purity (threshold charge breeding)
- In-trap feeding demonstrated
 - Populate a specific ground state or a nuclide not produced with ISOL technique
- In-trap decay spectroscopy
 - Electron beam to improve observation time and confinement
 - SiLi array commissioned with 124Cs
 - Ion stacking demonstrated
 - Exploring HCl effects

- ISAC offers excellent experimental opportunities
- New developments with the e-linac and photo-fission and extra proton beam line

TITAN technical developments:
- MR-TOF
 - For isobaric contaminant removal & fast mass measurements
 - Tested off-line at Giessen
 - Delivered to TRIUMF in September
 - Off-line commissioning on-going
 - On-line planned for Dec 2015
Thank you!

Thanks to my theory colleagues for the collaboration and help

Owned and operated as a joint venture by a consortium of Canadian universities via a contribution through the National Research Council Canada

Propriété d’un consortium d’universités canadiennes, géré en coentreprise à partir d’une contribution administrée par le Conseil national de recherches Canada