Neutrino Nucleosynthesis in the outer layers of supernovae

A. Sieverding, L. Huther, G. Martínez-Pinedo, K. Langanke

International Workshop XLIII on Gross Properties of Nuclei and Nuclear Excitations, Hirschegg, Austria
14 January 2015
Outline

1 Introduction
 - Neutrino nucleosynthesis
 - Supernova model

2 Results
 - Production of 7Li, 11B, 19F, 138La, 180Ta
 - Radioactive nuclei

3 Summary and Outlook
Neutrinos and Supernovae

- The core of a massive star collapses after the nuclear burning phases.
- Collapse stops when nuclear densities are reached.
- Hydrodynamic shock triggers explosive nucleosynthesis.
- Cooling core emits neutrinos.
- Neutrinos can influence the nucleosynthesis in outer layers of SNe.
Neutrino nucleosynthesis

- Emission of 10^{59} Neutrinos from the collapsing core
- $\langle E_\nu \rangle \approx 7 - 13$ MeV
- $\langle E_{\nu_e} \rangle < \langle E_{\bar{\nu}_e} \rangle < \langle E_{\nu_{\mu,\tau}} \rangle$
- Charged-current and neutral-current interactions
- Particle evaporation

Neutral current (NC)

\[
\begin{align*}
\frac{A}{Z}N + \nu_x &\rightarrow \frac{A}{Z}N^* + \nu'_x \\
&\rightarrow \frac{A}{Z-1}N + n \\
&\rightarrow \frac{A}{Z-1}N + p \\
&\rightarrow \frac{A}{Z-2}N + \alpha \\
&\rightarrow \ldots
\end{align*}
\]

Charged current (CC)

\[
\begin{align*}
\frac{A}{Z}N + \nu_e &\rightarrow \frac{A}{Z+1}N^* + e^- \\
\frac{A}{Z}N + \bar{\nu}_e &\rightarrow \frac{A}{Z-1}N^* + e^+
\end{align*}
\]
Neutrino nucleosynthesis

- The supernova shock triggers photodissociation and subsequent particle capture reactions
- Regions with sufficient neutrino fluxes but still moderate post-shock temperatures are most promising for ν nucleosynthesis
Neutrino nucleosynthesis

- The supernova shock triggers photodissociation and subsequent particle capture reactions
- Regions with sufficient neutrino fluxes but still moderate post-shock temperatures are most promising for ν nucleosynthesis
- Main candidates for neutrino nucleosynthesis: ^7Li and ^{11}B via $^4\text{He}(\nu_x,\nu'_x \ p/n)$ and $^{12}\text{C}(\nu_x,\nu'_x \ p)$...
Neutrino nucleosynthesis

- The supernova shock triggers photodissociation and subsequent particle capture reactions
- Regions with sufficient **neutrino fluxes** but still moderate post-shock **temperatures** are most promising for ν nucleosynthesis
- Main candidates for neutrino nucleosynthesis:
 - ^7Li and ^{11}B via $^4\text{He}(\nu_x,\nu'_x \ p/n)$ and $^{12}\text{C}(\nu_x,\nu'_x \ p)$...
 - ^{19}F via $^{20}\text{Ne}(\nu_x,\nu'_x \ p/n)$
Neutrino nucleosynthesis

- The supernova shock triggers photodissociation and subsequent particle capture reactions
- Regions with sufficient neutrino fluxes but still moderate post-shock temperatures are most promising for ν nucleosynthesis
- Main candidates for neutrino nucleosynthesis:
 - ^7Li and ^{11}B via $^4\text{He}(\nu_x,\nu_x' \ p/n)$ and $^{12}\text{C}(\nu_x,\nu_x' \ p)$...
 - ^{19}F via $^{20}\text{Ne}(\nu_x,\nu_x' \ p/n)$
 - ^{138}La and ^{180}Ta via $^{138}\text{Ba}(\nu_e,e^-)$ and $^{180}\text{Hf}(\nu_e,e^-)$
- **Neutrino-nucleus cross-sections** have been calculated for almost the whole nuclear chart (L. Huther 2014, PhD. Thesis)
- Simulations including detailed neutrino transport give new estimates for typical neutrino energies: $\langle E_\nu \rangle = 8$-13 MeV compared to 13-25 MeV
- Results from various stellar evolution calculations are available (e.g. Heger et al. 2002)
Supernova model

- Parametrization of temperature and density evolution during the explosion (Woosley et al. 1990)

\[T_{\text{Peak}} = 2.4 \times 10^9 \, \text{K} \times \left(\frac{E_{\text{expl}}}{10^{51} \, \text{erg}} \right)^{1/4} \times \left(\frac{R}{10^9 \, \text{cm}} \right)^{-3/4} \]

Hirschegg 2015

Neutrino nucleosynthesis

Andre Sieverding
Supernova model

- Parametrization of temperature and density evolution during the explosion (Woosley et al. 1990)

\[T_{\text{Peak}} = 2.4 \times 10^9 K \times \left(\frac{E_{\text{expl}}}{10^{51} \text{erg}} \right)^{1/4} \times \left(\frac{R}{10^9 \text{cm}} \right)^{-3/4} \]

- Neutrino flux
 - Exponentially decreasing neutrino luminosity
 - Thermal Fermi-Dirac spectrum
1 Introduction
 - Neutrino nucleosynthesis
 - Supernova model

2 Results
 - Production of ^7Li, ^{11}B, ^{19}F, ^{138}La, ^{180}Ta
 - Radioactive nuclei

3 Summary and Outlook
Production factors normalized to 16O

- 25 M$_{\odot}$ progenitor with solar metallicity

<table>
<thead>
<tr>
<th>Nucleus</th>
<th>no ν</th>
<th>present work</th>
<th>Heger et al. (2005)</th>
</tr>
</thead>
<tbody>
<tr>
<td>7Li</td>
<td>0.0004</td>
<td>0.11</td>
<td>-</td>
</tr>
<tr>
<td>11B</td>
<td>0.003</td>
<td>0.8</td>
<td>1.18</td>
</tr>
<tr>
<td>19F</td>
<td>0.06</td>
<td>0.24</td>
<td>0.32</td>
</tr>
<tr>
<td>138La</td>
<td>0.03</td>
<td>0.63</td>
<td>0.90</td>
</tr>
<tr>
<td>180Ta</td>
<td>0.14</td>
<td>1.80</td>
<td>4.24</td>
</tr>
</tbody>
</table>

- present work: $\langle E_{\nu_e} \rangle = 8.8$ MeV, $\langle E_{\bar{\nu}_e,\nu_x} \rangle = 12.6$ MeV
- Heger et al.: $\langle E_{\nu_e,\bar{\nu}_e} \rangle = 12.6$ MeV, $\langle E_{\nu_x} \rangle = 18.8$ MeV
Production factors normalized to ^{16}O

- $15\ M_{\odot}$ progenitor with solar metallicity

<table>
<thead>
<tr>
<th>Nucleus</th>
<th>no ν</th>
<th>present work</th>
<th>Heger et al. (2005)</th>
</tr>
</thead>
<tbody>
<tr>
<td>^7Li</td>
<td>0.001</td>
<td>0.12</td>
<td>—</td>
</tr>
<tr>
<td>^{11}B</td>
<td>0.007</td>
<td>1.43</td>
<td>1.88</td>
</tr>
<tr>
<td>^{19}F</td>
<td>1.11</td>
<td>1.14</td>
<td>0.60</td>
</tr>
<tr>
<td>^{138}La</td>
<td>0.07</td>
<td>0.67</td>
<td>0.97</td>
</tr>
<tr>
<td>^{180}Ta</td>
<td>0.06</td>
<td>1.14</td>
<td>2.75</td>
</tr>
</tbody>
</table>

- Present work: $\langle E_{\nu_e} \rangle = 8.8\ \text{MeV}$, $\langle E_{\bar{\nu}_e,\nu_x} \rangle = 12.6\ \text{MeV}$
- Heger et al.: $\langle E_{\nu_e,\bar{\nu}_e} \rangle = 12.6\ \text{MeV}$, $\langle E_{\nu_x} \rangle = 18.8\ \text{MeV}$
Production factors normalized to 16O

- 15 M⊙ progenitor with solar metallicity

<table>
<thead>
<tr>
<th>Nucleus</th>
<th>no ν</th>
<th>present work</th>
<th>Heger et al. (2005)</th>
</tr>
</thead>
<tbody>
<tr>
<td>7Li</td>
<td>0.001</td>
<td>0.12</td>
<td>—</td>
</tr>
<tr>
<td>11B</td>
<td>0.007</td>
<td>1.43</td>
<td>1.88</td>
</tr>
<tr>
<td>19F</td>
<td>1.11</td>
<td>1.14</td>
<td>0.6</td>
</tr>
<tr>
<td>138La</td>
<td>0.07</td>
<td>0.67</td>
<td>0.97</td>
</tr>
<tr>
<td>180Ta</td>
<td>0.06</td>
<td>1.14</td>
<td>2.75</td>
</tr>
</tbody>
</table>

- present work: $\langle E_{\nu_e} \rangle = 8.8$ MeV, $\langle E_{\bar{\nu}_e, \nu_x} \rangle = 12.6$ MeV
- Heger et al.: $\langle E_{\nu_e, \bar{\nu}_e} \rangle = 12.6$ MeV, $\langle E_{\nu_x} \rangle = 18.8$ MeV
Production of ^7Li, ^{11}B, ^{19}F, ^{138}La, ^{180}Ta

Radioactive nuclei

Production factor of ^{19}F normalized to ^{16}O

- without neutrinos
- $\langle E_{\nu_e}\rangle = 8.8 \text{ MeV}, T_{\nu_x} = 12.6 \text{ MeV}$
- $\langle E_{\nu_e,\bar{\nu}_e}\rangle = 12.6 \text{ MeV}, T_{\nu_x} = 18.8 \text{ MeV}$
Production of 19F

Without neutrinos:
- H- and He-shell burning create regions enriched in 18O and 15N

Production of 7Li, 11B, 19F, 138La, 180Ta

Radioactive nuclei

Introduction

Results

Summary and Outlook

Hirschegg 2015

Neutrino Nucleosynthesis

Andre Sieverding
Production of 19F

Without neutrinos:
- H- and He-shell burning create regions enriched in 18O and 15N
- High shock temperatures enhance 15N(α, γ) and 18O(p, γ)

$T_{\text{max}} = 0.3\text{--}0.8\text{ GK}$

15N(α, γ)$\sim T^{9.25}$

15N

14N

17O

18O

20Ne

19F

16O

18F

15N(α, γ)
Production of 19F

Without neutrinos:
- H- and He-shell burning create regions enriched in 18O and 15N
- High shock temperatures enhance 15N(α, γ) and 18O(p, γ)
- Very sensitive to temperature
Production of 19F

Without neutrinos:
- H- and He-shell burning create regions enriched in 18O and 15N
- High shock temperatures enhance 15N(α, γ) and 18O(p,γ)
- Very sensitive to temperature

Neutral-current neutrino reactions on 20Ne
Production factor of 19F normalized to 16O

Hirschegg 2015

Neutrino Nucleosynthesis

Andre Sieverding
Stellar composition

Production of ^7Li, ^{11}B, ^{19}F, ^{138}La, ^{180}Ta radioactive nuclei

Hirschegg 2015

Neutrino Nucleosynthesis

Andre Sieverding
Stellar composition

Production of ^7Li, ^{11}B, ^{19}F, ^{138}La, ^{180}Ta radioactive nuclei

Stellar composition

Enclosed mass /M_\odot

Mass fraction

^{4}He ^{12}C ^{16}O ^{20}Ne ^{28}Si 'Fe'

O/Ne C/O He

Hirschegg 2015

Neutrino Nucleosynthesis

Andre Sieverding
Stellar composition

![Graph showing mass fraction vs. enclosed mass for different elements in stellar composition.]

- Production of ^7Li, ^{11}B, ^{19}F, ^{138}La, ^{180}Ta
- Radioactive nuclei

Hirschegg 2015
Neutrino Nucleosynthesis
Andre Sieverding
Stellar composition

Production of ^7Li, ^{11}B, ^{19}F, ^{138}La, ^{180}Ta

Radioactive nuclei

Hirschegg 2015

Neutrino Nucleosynthesis

Andre Sieverding
Production of 19F for a 15 M_{\odot} progenitor

- Initial conditions

![Graph showing mass fraction enriched in 18O and 19F as a function of enclosed mass (in M_{\odot}).]
Production of 19F for a 15 M_\odot progenitor

- Explosive nucleosynthesis without neutrinos

![Graph showing mass fraction of 18O pre-SN and without neutrinos versus enclosed mass/M$_\odot$.]
Production of 19F for a 15 M$_\odot$ progenitor

- Including neutrino interactions

![Graph showing the production of 19F with and without neutrinos](image)
Production of 19F for a 15 M⊙ progenitor

- 20% uncertainty in T_{peak} or 18% uncertainty in radius
Production of 19F for a $25\,M_{\odot}$ progenitor

- With the $25\,M_{\odot}$ progenitor the neutrino-induced production dominates

\[T_{\text{Peak}} = 0.43 \text{ GK} \]

Enclosed mass/M_{\odot}

Mass fraction

- pre-SN 18O
- without neutrinos
- including neutrinos
Production of 7Li, 11B, 19F, 138La, 180Ta
Radioactive nuclei

Outline

1. **Introduction**
 - Neutrino nucleosynthesis
 - Supernova model

2. **Results**
 - Production of 7Li, 11B, 19F, 138La, 180Ta
 - Radioactive nuclei

3. **Summary and Outlook**
γ-ray astronomy

<table>
<thead>
<tr>
<th>Isotope</th>
<th>Decaytime</th>
<th>Decay Chain</th>
<th>γ-Ray Energy (keV)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(^{7}\text{Be})</td>
<td>77 d</td>
<td>(^{7}\text{Be} \rightarrow ^{7}\text{Li})*</td>
<td>478</td>
</tr>
<tr>
<td>(^{56}\text{Ni})</td>
<td>111 d</td>
<td>(^{56}\text{Ni} \rightarrow ^{56}\text{Co}* \rightarrow ^{56}\text{Fe}* + e^+)</td>
<td>847, 1238</td>
</tr>
<tr>
<td>(^{57}\text{Ni})</td>
<td>390 d</td>
<td>(^{57}\text{Co} \rightarrow ^{57}\text{Fe})*</td>
<td>122</td>
</tr>
<tr>
<td>(^{22}\text{Na})</td>
<td>3.8 y</td>
<td>(^{22}\text{Na} \rightarrow ^{22}\text{Ne}* + e^+)</td>
<td>1275</td>
</tr>
<tr>
<td>(^{44}\text{Ti})</td>
<td>89 y</td>
<td>(^{44}\text{Ti} \rightarrow ^{44}\text{Sc}* \rightarrow ^{44}\text{Ca}* + e^+)</td>
<td>1157, 78, 68</td>
</tr>
<tr>
<td>(^{26}\text{Al})</td>
<td>1.04 (10^6) y</td>
<td>(^{26}\text{Al} \rightarrow ^{26}\text{Mg}* + e^+)</td>
<td>1809</td>
</tr>
<tr>
<td>(^{60}\text{Fe})</td>
<td>2.0 (10^6) y</td>
<td>(^{60}\text{Fe} \rightarrow ^{60}\text{Co})*</td>
<td>1173, 1332</td>
</tr>
<tr>
<td>Isotope</td>
<td>Decaytime</td>
<td>Decay Chain</td>
<td>γ-Ray Energy (keV)</td>
</tr>
<tr>
<td>---------</td>
<td>-----------</td>
<td>-------------</td>
<td>--------------------------</td>
</tr>
<tr>
<td>7Be</td>
<td>77 d</td>
<td>7Be \rightarrow 7Li*</td>
<td>478</td>
</tr>
<tr>
<td>56Ni</td>
<td>111 d</td>
<td>56Ni \rightarrow 56Co* \rightarrow 56Fe*+e$^+$</td>
<td>847, 1238</td>
</tr>
<tr>
<td>57Ni</td>
<td>390 d</td>
<td>57Co \rightarrow 57Fe*</td>
<td>122</td>
</tr>
<tr>
<td>22Na</td>
<td>3.8 y</td>
<td>22Na \rightarrow 22Ne*+ e$^+$</td>
<td>1275</td>
</tr>
<tr>
<td>44Ti</td>
<td>89 y</td>
<td>44Ti \rightarrow 44Sc* \rightarrow 44Ca*+e$^+$</td>
<td>1157, 78, 68</td>
</tr>
<tr>
<td>26Al</td>
<td>1.04×10^6 y</td>
<td>26Al \rightarrow 26Mg* + e$^+$</td>
<td>1809</td>
</tr>
<tr>
<td>60Fe</td>
<td>2.0×10^6 y</td>
<td>60Fe \rightarrow 60Co*</td>
<td>1173, 1332</td>
</tr>
</tbody>
</table>
Summary and Outlook

Radioactive nuclei

Sensitivity to the progenitor mass

![Graph showing sensitivity to the progenitor mass](image)

Hirschegg 2015

Neutrino Nucleosynthesis

Andre Sieverding
Production of 22Na

Different mechanisms:
- indirect enhancement of p-captures
- direct charged-current channel

Hirschegg 2015

Neutrino Nucleosynthesis

Andre Sieverding
Production of ^{22}Na

Different mechanisms:
- indirect enhancement of p-captures
- direct charged-current channel
- direct neutral-current channels

Balance of the different channels is sensitive to stellar structure and neutrino spectra.
Production of 22Na

Different mechanisms:
- indirect enhancement of p-captures
- direct charged-current channel
- direct neutral-current channels

Balance of the different channels is sensitive to stellar structure and neutrino spectra.
Production of ^{22}Na

For a $15 \, M_\odot$ progenitor

![Graph showing the production of ^{22}Na as a function of enclosed mass.](image-url)
Production of ^{22}Na

For a 15 M_\odot progenitor
Production of 22Na

- For a 15 M$_\odot$ progenitor

Indirect effect: 20Ne($\nu,\nu'\ p$) enhances 21Ne(p,γ)22Na

Diagram:
- 22Na
- Charged-current only
- Neutral-current only

Axes:
- Enclosed mass / M$_\odot$
- Mass fraction

Legend:
- Neutral current dominated
- O/Ne layer
- Charged-current only
- Neutral-current only

Equations:
- 20Ne($\nu,\nu'\ p$)
- 21Ne(p,γ)22Na

Note:
- Hirschegg 2015
- Neutrino Nucleosynthesis
- Andre Sieverding
Production of ^{22}Na

For a 15 M_\odot progenitor

- Neutral current dominated
- Charged current dominated

Neutral current dominated:
- O/Ne layer
- C/O layer enriched in ^{22}Ne, $^{22}\text{Ne}(\nu_e,e^-)^{22}\text{Na}$

Charged current dominated:
- Charged-current only
- Neutral-current only

Hirschegg 2015

Neutrino Nucleosynthesis

Andre Sieverding
Summary

- Nuclear reaction network calculations including an extended set of neutrino-nucleus reactions
- Calculations with updated neutrino spectra
- Explore the sensitivity to stellar structure and composition
- Study the effect on nuclei that are relevant for γ-ray astronomy, like 22Na and 26Al
Summary

- Nuclear reaction network calculations including an extended set of neutrino-nucleus reactions
- Calculations with updated neutrino spectra
- Explore the sensitivity to stellar structure and composition
- Study the effect on nuclei that are relevant for γ-ray astronomy, like 22Na and 26Al

Outlook

- Study a larger range of progenitor models, especially lower mass
- Explore effects of metallicity
- Improve thermodynamic description
- Improve neutrino spectra
- Effects of neutrino oscillations
Thank you, for your attention
Neutrino cross sections

- Two step process: Excitation and decay
 \[\sigma_{X \rightarrow Y}^{k}(E_{\nu}) = \sum_{i} \sigma_{i}^{RPA}(X) \times P_{k}(Y) \]

- Excitation spectra from RPA
- Decay rates from Hauser-Feshbach statistical models
- Including evaporation of up to 4 particles
Stellar composition

Hirschegg 2015

Neutrino Nucleosynthesis

Andre Sieverding
Supernova model

- Simple thermodynamic parametrization
- Temperature and density constant until the passage of the shock at t_0
- **Peak temperature** in the shock: $T_P = E_{\text{expl}}^{1/4} \times R^{-3/4}$
- Exponential decrease of temperature with time scale $\tau_{\text{dyn}} \propto \frac{1}{\sqrt{\rho_{\text{initial}}}}$
- Expansion with **constant velocity** of 5000 km/s
- Explosion energy of 10^{51} ergs
Parametrization of the supernova event

Example for thermodynamic trajectory
Description of ν emission

- Decreasing Luminosity
 \[L_\nu \propto \exp \left(-\frac{t}{\tau_\nu} \right) \]
- Isotropic emission
- Emission of 10^{53} ergs for each flavour
- Fermi-Dirac distributed energies,
 \[\langle E_\nu \rangle = 3.15 \times T_\nu \]
 - $T_{\nu_e} = 4$ MeV
 - $T_{\bar{\nu}_e} = 4$ MeV
 - $T_{\nu_{\mu,\tau}} = 8$ MeV