The CBM SIS100 program for hadronic observables

Norbert Herrmann, Universität Heidelberg Claudia Höhne, Universität Giessen & GSI

QCD phase diagram

Baryon density

- SIS 100 beam energy range for Au: up to 11 AGeV ($\sqrt{s_{NN}}$ =4.7 GeV)
- High baryon-densities can be probed at SIS 100
- Expected to persist for a few fm/c
- Characteristics of matter created?

C. Höhne, N. Herrmann

Heavy – Ion Collisions

Hadrons:

- In final state: thermalized?
- From "before": relicts from high density phase still carrying information?

Penetrating probes: ... not this talk ...

Final state particle abundance

Particle yields from central Au+Au/ Pb+Pb collisions

Knowledge about strange (anti-)baryons in FAIR energy range is rather limited

Validity of thermal model for low energies?

Note:

Direct multi-strange hyperon production:

 $\begin{array}{ll} pp \rightarrow \Xi^{\text{-}} \text{K}^{\text{+}} \text{K}^{\text{+}} p & (\text{E}_{thr} = 3.7 \text{ GeV}) \\ pp \rightarrow \Omega^{\text{-}} \text{K}^{\text{+}} \text{K}^{\text{+}} \text{K}^{0} p & (\text{E}_{thr} = 7.0 \text{ GeV}) \end{array}$

C. Höhne, N. Herrmann

Chemical Freeze-out data

Assumption:

thermodynamic equilibrium (Canonical ensemble at lower energies)

Equilibrium as signature for phase transition? Multi-strange Baryons? \$\overline{-meson?}\$

Data sources: A. Andronic, P. Braun-Munzinger, J. Stachel, Nucl. Phys. A772 (2006) 167

J. Cleymans, H. Oeschler, K. Redlich, S. Wheaton, Phys. Rev. C73 (2006) 034905

G. Agakishiev et al. (HADES), Eur. Phys.J. A47 (2011) 21

Errors include systematic errors (if given)

C. Höhne, N. Herrmann

HADES: Sub-threshold E⁻ - production

G. Agakishiev et al. (HADES), PRL103, 132301, (2009)

Ar+KCI reactions at 1.76A GeV

- Ξ^{-} yield by appr. factor 25 higher than thermal yield
- strangeness exchange reactions like

 $\overline{K}Y \to \pi \Xi$ (Y=A, Σ) ?

• ϕ fitted perfectly well

Reminder: Subthreshold Kaons (KAOS)

Excitation function of flow variables (protons)

Flow of protons as "classical" EOS variable:

- Protons represent only minor part of matter at low energies: deuterons, clusters?
- No consistent model description available so far
- Uncertainty in data at 1 GeV/A corresponds to uncertainty in K of 150 MeV
- Largest sensitivity to model parameters (EOS) in energy range 2 5 AGeV

Flow of charged kaons

Properties of mesons in matter?

Ni+Ni at 1.91 AGeV

V.Zinyuk et al. (FOPI) PRC 90 (2014) 025210

Indications from kaon flow: K⁺ repulsive potential K⁻ attractive potential

Sensitivity seen, however: Statistics limited!

20 MeV

-50 MeV

-90 MeV

40 MeV

Transport here use potentials with linear density dependence:

At $\rho = \rho_0$: $U_{HSD}(K^+)$ $U_{IQMD}(K^+)$

 $U_{HSD}(K^{-})$

 $U_{IQMD}(K^{-})$

C. Höhne, N. Herrmann

AGS: K⁰ – flow

Kaons show large flow at AGS energies!

 \rightarrow Kaon flow as barometer in HI collisions?

 \rightarrow Calibrate probe by systematic measurements! centrality, system size, $\sqrt{s_{NN}}$

C. Höhne, N. Herrmann

Fluctuations and critical point

Experiments exploring dense QCD matter

CBM: high rate experiment!

- → Opens up new possibilities!
- High statistics and good systematics on hadronic observables shown before: multi-s baryons, flow, fluctuations
- New (exotic) observables: kaonic clusters, hypernuclei

Relicts of high density phase(?)

Kaonic molecules

Decay by strong interaction $(ppK^{-}) \rightarrow \Lambda + p$

FINUDA M=2255±9 MeV, Γ =64±14 MeV DISTO M=2265±2 MeV, Γ =118±8 MeV

Heavier clusters, e.g.: $(ppnK^{-}) \rightarrow \Lambda + d$

Hypernuclei

Decay by weak interaction

Production in HI – collisions? Recently: STAR, ALICE

Double strange hypernuclei??

C. Höhne, N. Herrmann

Hypertriton production in Ni+Ni at 2 AGeV

Baryon – Strangeness – Correlation

.... If becoming reality:

Proposal: Observable being sensitive to deconfinement!

Compare $_{\Lambda}$ t/³He production to Λ /p: Local correlation between baryon number and strangeness

	Region A1	Region A2
_∧ t/³He	0.029 +/- 0.002	<0.003 +/- 0.002
Λ/р	0.0020 +/- 0.0005	0.0028 +/- 0.0005
$_{\Lambda}$ t/ 3 He / Λ /p	10 +/- 3	< 0.95 +/- 0.6

C. Höhne, N. Herrmann

Strange baryonic bound states

Whole range of predictions/ proposals well accessible at SIS 100 energies:

• Single and double strange hypernuclei in heavy ion collisions

C. Höhne, N. Herrmann

 Strange matter in the form of strange dibaryons and heavy multi-strange shortlived objects.

Ad – correlations

Ni+Ni at 1.91 AGeV

Signal found consistently in FOPI 2003 and 2008 data. Inconsistent with cusp (Σ – d – threshold) and FINUDA.

(FOPI, unpublished)

Current scenario:

Data taking: 2 weeks, DAQ rate: 1kHz Event sample: ~ 100 M events, Statistical significance: ~ 5, Production probability: $P \sim 10^{-4}$

Significance does not include LEE – Look elsewhere effect (?)

Needed :

Sensitivity at level $P \sim 10^{-6}$ Significant increase of DAQ rate

CBM: PID with ToF particle ID: Au+Au @ 10AGeV

C. Höhne, N. Herrmann

SIS 100- Hyperons

- CBM: Silicon Tracking system for fast and high resolution tracking
- Simulation: central (b=0fm) Au+Au collisions at 8 AGeV, 1M events
- Massively parallel data reconstruction and selection in real-time
- 100 kHz archival rate:
 - \rightarrow 500k Ω^{-} /week
 - \rightarrow flow, correlations, ...
 - → strange hypernuclei?

C. Höhne, N. Herrmann

Generic anti-particle selection: \overline{p} - candidates

Run time in 10 MHz mode:

Run time in 100 kHz mode:

C. Höhne, N. Herrmann

Central Au+Au at 10 AGeV from UrQMD current global track – TofHit matching performance

total efficiency:	$\varepsilon = 0.36$		
contamination:	$\kappa = 4$.		
Event selection rate:	$R = R_{ev} \cdot f_{ce}$	$_{n} \cdot \mathbf{P}_{probe} \cdot \mathcal{E} \cdot (1 + \kappa)$	
@10MHz:	$R=10^{7} \cdot 0.1$	$1 \cdot 7 \cdot 10^{-3} \cdot 0.36 \cdot 5.Hz$	
	=12.6 kH	Hz	
$\Delta T(10^5 \overline{p})$	$=40 \ s$	time on target to	archive 100.000 \overline{p} .

Extrapolation to central Au+Au at 4 AGeV:

total efficiency: $\varepsilon = 0.55$
 $\kappa = 1000.$ background scaled
with total multiplicityEvent selection rate: $R=R_{ev} \cdot f_{cen} \cdot P_{probe} \cdot \varepsilon \cdot (1+\kappa)$ @10MHz: $R=10^7 \cdot 0.1 \cdot 1.5 \cdot 10^{-5} \cdot 0.55 \cdot 1.10^3 \text{ Hz} = 8.2 \text{ kHz}$ $\Delta T (10^5 \bar{p})$ = 3.5 h@100kHz: $R=10^5 \cdot 0.1 \cdot 1.5 \cdot 10^{-5} \cdot 0.55 \text{ Hz} = 8 \text{ Hz}$ $\Delta T (10^5 \bar{p})$ = 350 h = 14 d

Facility for Antiproton & Ion research

Building application for SIS 100 handed in end of 2015 Submission of building application for CBM cave will follow this year

- 10% AU UP to 11 GeV/U
- 10⁹/s C, Ca, ... up to 14 GeV/u
- 10¹¹/s p up to 29 GeV

100 m

FAIR phase 1

FAIR phase 2

Strategy in view of FAIR delay

Install, commission and use 10% of the CBM TOF modules including read-out chain at STAR/RHIC

Participation in STAR Beam Energy Scan (BES II) in 2019/2020

Operation of ~30 CBM TOF modules and electronics (A~10m², ~10.000 channels)

Benefits

- > Get experience with detector system, develop online calibration and monitoring tools
- Develop TOF analysis strategies for particle ID under experimental conditions
- Participate in physics analysis (e.g. baryon and strangeness fluctuations)
- ▶ Complementary to CBM: low rate, high energy, 7.7 GeV $< \sqrt{s_{NN}} < 20$ GeV

CBM physics program at SIS 100

Hadronic observables

- Multi-strange Baryons, (*\phi*-meson)
 - \rightarrow thermalization?
 - \rightarrow sensitivity to EOS, baryon density, QCD phase
- Flow
 - \rightarrow sensitivity to EOS
 - \rightarrow extend to strangeness sector!
- Fluctuations of baryons, strangeness, net-charge, ….
 → sensitivity to phase transition, CP?
- *Exotic strange objects:* hypernuclei, kaonic molecules

Di-leptons (penetrating probes) – *not covered here*

- Photons, low-mass vector mesons, Charm sector
 - → electromagnetic radiation from baryon dense phase QCD phase, phase transition, baryon dynamics in medium, …?

CBM: high statistics, systematic measurements (centrality, system size, $\sqrt{s_{NN}}$)

C. Höhne, N. Herrmann QCD matter: dense and hot, Hirschegg, January 2016

Dileptons at CBM

- Photons: access to early temperatures
 → excitation function?
- Low-mass vector mesons: inmedium properties of ρ
 → strength due to coupling to baryons (see HADES)
 → go to real dense matter!
- Intermediate range: acces to fireball radiation (see NA60): QGP, 4π- or ρ-a₁ chiral mixing → quarkyonic phase?
- J/ψ: charm as a probe for dense baryonic / partonic matter
 → propagation of charm?
 - \rightarrow distribution amongst hadrons?

Dileptons at CBM

- Photons: access to early temperatures
 → excitation function?
 - Low-mass vector mesons: inmedium properties of ρ
 → strength due to coupling to baryons (see HADES)
 → go to real dense matter!
 - Intermediate range: acces to fireball radiation (see NA60): QGP, 4π or ρ -a₁ chiral mixing \rightarrow quarkyonic phase?

 J/ψ: charm as a probe for dense baryonic / partonic matter
 → propagation of charm?

 \rightarrow distribution amongst hadrons?

Summary / Conclusion

- Phase structure of QCD will not be revealed by a single measurement.
- QCD matter physics needs a facility for systematic studies. and a third generation experiment -> CBM rate capability: 10 MHz interaction rate
- CBM physics program many open physics questions EOS in-medium modifications of hadrons phase transition to quarkyonic matter (?) substantial discovery potential at SIS100 / 300 significant contribution to STAR BESII run

CBM strategy

systematic measurement of multi-dimensional observables of (rare) probes; use detector components as tool kit.

CBM status

well advanced with respect to overall FAIR timeline.

The CBM collaboration

Croatia: Split Univ. China: CCNU Wuhan Tsinghua Univ. USTC Hefei CTGU Yichang Czech Republic: CAS, Rez Techn. Univ.Prague France: IPHC Strasbourg

Hungary: KFKI Budapest Budapest Univ.

Germany: Darmstadt TU FAIR Frankfurt Univ. IKF Frankfurt Univ. FIAS Frankfurt Univ. ICS **GSI** Darmstadt Giessen Univ. Heidelberg Univ. P.I. Heidelberg Univ. ZITI HZ Dresden-Rossendorf **KIT Karlsruhe** Münster Univ. Tübingen Univ. Wuppertal Univ. **ZIB Berlin**

India:

Aligarh Muslim Univ. Bose Inst. Kolkata Panjab Univ. Rajasthan Univ. Univ. of Jammu Univ. of Kashmir Univ. of Calcutta B.H. Univ. Varanasi VECC Kolkata IOP Bhubaneswar IIT Kharagpur IIT Indore Gauhati Univ. Korea: Pusan Nat. Univ.

Poland:

AGH Krakow Jag. Univ. Krakow Silesia Univ. Katowice Warsaw Univ. Warsaw TU

Romania:

NIPNE Bucharest Univ. Bucharest

Russia:

IHEP Protvino INR Troitzk ITEP Moscow Kurchatov Inst., Moscow LHEP, JINR Dubna LIT, JINR Dubna MEPHI Moscow PNPI Gatchina SINP MSU, Moscow St. Petersburg P. Univ. Ioffe Phys.-Tech. Inst. St. Pb.

Ukraine:

T. Shevchenko Univ. Kiev Kiev Inst. Nucl. Research

26th CBM Collaboration meeting in Prague, CZ 14 -18 Sept. 2015

Fluctuations and critical point

Event-by-event fluctuations of conserved quantities like strangeness, baryons, and net-charge are related to susceptibilities χ and correlation length ξ .

$$\begin{split} \delta N &= N - \left\langle N \right\rangle \\ \left\langle \left(\delta N \right)^2 \right\rangle &\approx \xi^2, \left\langle \left(\delta N \right)^3 \right\rangle &\approx \xi^{4.5}, \left\langle \left(\delta N \right)^4 \right\rangle &\approx \xi^7 \\ S\sigma &\approx \frac{\chi_B^3}{\chi_B^2}, \qquad \kappa \sigma^2 \approx \frac{\chi_B^4}{\chi_B^2} \end{split}$$

Sensitive to tails of multiplicity distributions (centrality selection, detector biases, ...)

References:

- STAR: PRL105, 22303(10); ibid, 032302(14)
- M. Stephanov: *PRL*102, 032301(09) // R.V. Gavai and S. Gupta,
- *PLB696*, 459(11) // F. Karsch et al, *PLB695*, 136(11) // S.Ejiri et al, PLB633, 275(06)
- A. Bazavov et al., PRL109, 192302(12) // S. Borsanyi et al., PRL111, 062005(13) //
- V. Skokov et al., PRC88, 034901(13)