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The lattice-calculable region of the phase diagram
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The (lattice) calculable region of the QCD phase diagram
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Sign problem prohibits direct simulation, circumvented by approximate methods:
reweigthing, Taylor expansion, imaginary chem. pot., need

No critical point in the controllable region

Complex Langevin:  lots of progress, but not in all parameter space, no “guarantees”   

µ/T <� 1 (µ = µB/3)
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The calculable region of the phase diagram

T

µ

confined

QGP

Color superconductor

Tc
♥

need

Upper region: equation of state, screening masses, quark number susceptibilities etc.  
under control, but no chiral critical point; some (not yet confirmed) signals at larger 
densities

µ/T <� 1 (µ = µB/3)

New computational avenues in LQCD:

CPU GPU

Here, very old-fashioned approach: BPU!



Biological Processing Unit!

Large densities?     Effective theories!



Effective lattice theory for heavy and dense QCDThe effective lattice theory approach I

Two-step treatment: 

1. Calculate effective theory analytically 
II. Simulate effective theory  

Step I.:  split temporal and spatial link integrations:     

Spatial integration after analytic strong coupling and hopping expansion
                                                                           

Result: 3d spin model of QCD, infinitely many couplings, ordered parametrically

Truncation: valid for heavy quarks, sufficiently close to the continuum

Step II:  sign problem milder: Monte Carlo, complex Langevin

Numerical simulations in 3d without fermion matrix inversion,  very cheap! 

Z =
�

DU0DUi det Q eSg[U ] �
�

DU0e
�Seff [U0] =

�
DL e�Seff [L]
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Truncation valid for heavy quarks on reasonably fine lattices, a~0.1 fm 

Step II.: Mild sign problem, complex Langevin, Monte Carlo  

New Step II.:  Analytic solution by cluster expansion!  

with M.Fromm, J.Langelage, S.Lottini, M.Neuman, J.Glesaaen

Check in SU(2):  Scior, von Smekal 15 



Starting point:  Wilson’s lattice Yang-Mills action

Plaquette:
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Strong coupling expansion (pure gauge)

Wilson action: Plaquette action

Character expansion: 

Character of rep. r:

group element representation matrix of group element

dimension of rep. matrix

Expansion coefficients: combinations of modified Bessel fcns. for SU(N)

all others can be expressed by fundamental one
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The Effective Lattice Theory
Pure gluon contributions
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Integrate over all spatial gauge links

L

L ⇤
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The Effective Lattice Theory
Pure gluon contributions
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What remains is an interaction between Polyakov Loops

L

L ⇤

1/4

Effective one-coupling theory for SU(3) YM

u(�) =
�

18
+ . . . < 1, ⇥ =

1
2am + 8

Character expansion:       LO 3d effective theory for lattice YM

Effective one-coupling theory for SU(3) YM

u(�) =
�

18
+ . . . < 1, ⇥ =

1
2am + 8

Character expansion:       

larger distances between loops, higher power of loops

higher representations of loops

decorations of LO graphs by additional plaquettes

Polonyi, Szachlanyi 82

Strong coupling expansion (pure gauge)

Wilson action: Plaquette action

Character expansion: 

Character of rep. r:

group element representation matrix of group element

dimension of rep. matrix

Expansion coefficients: combinations of modified Bessel fcns. for SU(N)
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Wilson 74: static potential, string tension Münster, Seo 80-82: glueball masses, 
Polonyi, Szachlanyi 82: strong coupling limit of free energy, effective action, Green 83: finite T string
Langelage, Münster, O.P. 08: strong coupling series for finite T

<1,

convergent inside radius of c.
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Langelage, Münster, O.P. 08: strong coupling series for finite T
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convergent inside radius of c.



Effective one-coupling theory for SU(3) YM

L Re L

Im L
(L= Tr W)
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 Langelage, Lottini, O.P. 10

Resummations:

Figure 3. Shape of the most elongated graph contributing to λ1 at order n = 2(q+1), here in the
case q = 3: only systems with Nτ > q can actually accommodate for it.

exponents of the effective couplings, Eq. (2.13), reach their Nτ = ∞ values as soon as

Nτ = n/2. This can be understood as follows. Among all graphs contributing to the

coefficient at order un, the most elongated in the time direction is of the type depicted in

figure 3, with q consecutive lifted plaquettes, which brings in n = 2(q+1) additional powers

of u. Such a graph is included only if Nτ ≥ q + 1 (in the moment-cumulant formalism a

given polymer cannot occupy twice the same plaquette).

2.4 Higher order terms

There occur several types of higher order graphs: larger numbers of loops involved, Polyakov

loops at distances larger than one and Polyakov loops in higher dimensional representations.

We begin by considering powers of the leading order term. Inspection of higher order

terms shows that one can arrange a subclass of these terms in the following manner

∑

<ij>

(

λ1LiLj −
λ2
1

2
L2
iL

2
j +

λ3
1

3
L3
iL

3
j − . . .

)

=
∑

<ij>

ln (1 + λ1LiLj) . (2.14)

Thus, there are graphs that reproduce the emergence of the logarithm just as in the spatial

strong coupling result, Eq. (2.8). In contrast to that case we have now the full effective

coupling λ1(u,Nτ ) appearing in the logarithm instead of only its leading order term uNτ ,

which results if we restrict Eq. (2.8) to the fundamental representation. To see this, one

calculates the corresponding graphs with L2
iL

2
j or L3

iL
3
j , and the combinatorial factor a(C)

of Eq. (2.6) gives the correct prefactors for the series to represent a logarithm.

Next, let us consider couplings pertaining to next-to-nearest neighbour interactions.

These appear once additional plaquettes are taken into account. Naively, the leading

contribution should correspond to a planar graph with Polyakov loops at distance two.

However, this graph is precisely cancelled by the contribution of the nearest-neighbour

graph squared and its associated combinatorial factor −1 (figure 4). The leading non-zero

contribution therefore comes from L-shaped graphs and is given by

λ2(u,Nτ )S2 = Nτ (Nτ − 1)u2Nτ+2
∑

[kl]

LkLl , (2.15)

where we have two additional spatial plaquettes (figure 5) and we sum over all pairs of

loops with a diagonal distance of
√
2a, abbreviated by [kl]. With the same steps leading

to Eq. (2.14), we finally arrive at the SU(2) partition function

Z =

∫

[dW ]
∏

<ij>

[1 + λ1LiLj]
∏

[kl]

[1 + λ2LkLl] . (2.16)
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Figure 2. Left: First correction to the leading order graph, proportional to Nτ . Middle, right:
Repetitions of this decoration.

Hence, to leading order the first coupling of the effective theory is λ1(u,Nτ ) = uNτ .

For additional terms of the series for λ1, we can use most of the graphs that also appear

in the strong coupling expansion of the Polyakov loop susceptibility [25]. These corrections

involve additional plaquettes, are hence of higher order in u and we call these attached

plaquettes decorations. Let us note that repetitions of lower order decorations attached to

planar graphs exponentiate and we can write

λ1(u,Nτ ) = uNτ exp
[

NτP (u,Nτ )
]

, (2.10)

with some polynomial P (u,Nτ ). This can be seen e.g. from the graphs shown in figure 2

and their corresponding contributions:

Left: Φ1 = uNτ

[

4Nτu
4
]

S1 ;

Middle: Φ2 = uNτ

[
1

2!

(

4Nτu
4
)

· 4(Nτ − 3)u4
]

S1 ;

Right: Φ3 = uNτ

[

4Nτu
4 · 3Nτu

4

]

S1 . (2.11)

Combining the three parts, we can write this, up to higher orders, as

Φ1 + Φ2 + Φ3 = uNτ exp
[

Nτ
(

4u4 − 12u8
)
]

S1 . (2.12)

Of course, the polynomial in the exponential is only part of the complete result for λ1 to

that order. For example, there are other graphs contributing to order u6 which are still

missing in this correction. Nevertheless, in this exponentiated form the effective coupling

corresponds to a partial resummation of higher order terms which may be expected to

improve convergence behaviour. Let us remark that such an exponentiation has been

observed also for the strong coupling expansion of the string tension.

Carrying out the calculations, we get the following results through order u10 in the

corrections relative to the leading order graph:

λ1(u, 2) = u2 exp

[

2

(

4u4 − 8u6 +
134

3
u8 −

49044

405
u10

)]

,

λ1(u, 3) = u3 exp

[

3

(

4u4 − 4u6 +
128

3
u8 −

36044

405
u10

)]

,

λ1(u, 4) = u4 exp

[

4

(

4u4 − 4u6 +
140

3
u8 −

37664

405
u10

)]

,

λ1(u,Nτ ≥ 5) = uNτ exp

[

Nτ

(

4u4 − 4u6 +
140

3
u8 −

36044

405
u10

)]

. (2.13)

For smaller Nτ some graphs do not contribute since the temporal extent of their decoration

is ≥ Nτ so that they do not fit into the lattice. The coefficients of the order n in the

– 5 –
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Numerical results for SU(3), one coupling
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Mapping back to 4d finite T Yang-Mills

Inverting

⇥1(N� , �)� �c(⇥1,c, N� ) ...points at reasonable convergence 

SU(3)
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Continuum limit feasible!

-error bars: difference between last two orders in strong coupling exp.

-using non-perturbative beta-function (4d T=0 lattice)

-all data points from one single 3d MC simulation!
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What does and does not work?

Correlation functions and spectrum:
                        NO
  

couplings over large distances needed

Thermodynamics and critical coupling:
                        YES
  

partition function needed, ultra-local!

e-3p

14

One coupling:
G.Bergner, J.Langelage, O.P. 14,15



Including dynamical Wilson fermions

Including heavy, dynamical Wilson fermions

Similar to de Pietri, Feo, Seiler, Stamatescu 07,  Aarts, Stamatescu 08 ...

17

LO, heavy dense limit: Blum, Hetrick, Toussaint 94

19

The static determinant is then given by neglecting the spatial parts,

det[Qstat] = det[1− T ] = det[1− T+ − T−]

= det
[

1− κeaµ(1 + γ0)U0(x)δx,y−0̂

−κe−aµ(1− γ0)U
†
0(x− 0̂)δx,y+0̂

]

, (2.8)

with propagation in the temporal direction only. Calculating the space and spin
determinant we get

det[Qstat] =
∏

x⃗

det
[

1 + (2κeaµ)NτWx⃗

]2

det
[

1 + (2κe−aµ)NτW †
x⃗

]2

. (2.9)

Note that this includes all windings of Wilson lines around the temporal direction
and thus the full fugacity dependence. A well-known relation valid for SU(3) then

allows us to reformulate this in terms of Polyakov loops,

det[Qstat] =
∏

x⃗

[

1 + cLx⃗ + c2L∗
x⃗ + c3

]2 [
1 + c̄L∗

x⃗ + c̄2Lx⃗ + c̄3
]2
, (2.10)

with the abbreviation

c(µ) ≡ (2κeaµ)Nτ = e
µ−m
T ≡ c̄(−µ) , (2.11)

and the constituent quark mass am = − ln(2κ) = amB

3 , to leading order of eq. (2.49).

When det[Qstat] is exponentiated, the parameter c also constitutes the effective one-
point coupling constant of Sf

1 to leading order [9],

h1 = c, h̄1 = c̄ . (2.12)

2.3 Kinetic quark determinant

In order to compute a systematic hopping expansion about the static limit, we define

the kinetic quark determinant

det[Q] ≡ det[Qstat] det[Qkin] ,

det[Qkin] = det[1− (1− T )−1(S+ + S−)]

≡ det[1− P −M ] = exp [Tr ln(1− P −M)] , (2.13)

which we then split into parts describing quarks moving in positive and negative
spatial directions, P =

∑

k Pk and M =
∑

k Mk. The reason for this is that the

trace occurring in eq. (2.13) is also a trace in coordinate space. This means that
only closed loops contribute and hence we need the same number of P s and Ms in

the expansion of the logarithm. Through O (κ4) we have

det[Qkin] = exp

[

−TrPM − TrPPMM −
1

2
TrPMPM

]

[

1 +O(κ6)
]

(2.14)

=

[

1− TrPM − TrPPMM −
1

2
TrPMPM +

1

2
(TrPM)2

]

[

1 +O(κ6)
]

.

– 5 –

Corrections: exact      expand in spatial hops

the static determinant (heavy dense)



18

18

spatial:

Fromm, Langelage, Lottini, Neuman, Glesaaen, O.P. 12-15



and we see that in this way the Polyakov line receives mass corrections due to inter-

actions. Note that this generates overcounting in higher orders, but in our opinion
the resummation effects of this procedure more than compensates for this additional

care. Let us finally also give the gauge correction for the prefactor of the leading
order of Sf

2

h2 =
κ2Nτ

Nc

[

1 + 2
u− uNτ

1− u
+ . . .

]

. (2.47)

This correction does not appear to exponentiate.

2.8 Effective action for the cold and dense regime

The terms evaluated in the last sections and displayed in the appendix can now be
added up to provide the complete effective action. Fortunately, simplifications occur

because some terms have the same structure. Moreover, in this work we focus on
the cold and dense regime and mostly simulate with Nτ > 100, for which λ<∼ 10−25,
and terms that are of subleading order in Nτ as well as terms proportional to h̄1 are

neglected, since h̄1 → 0 as T → 0. For Nf = 1 we then simulate the simplified action

−Seff = −log
∑

x⃗

(1 + h1TrWx⃗ + h2
1TrW

†
x⃗ + h3

1)
2 − 2h2

∑

x⃗,i

Tr
h1Wx⃗

1 + h1Wx⃗

Tr
h1Wx⃗+i

1 + h1Wx⃗+i

+ 2
κ4N2

τ

N2
c

∑

x⃗,i

Tr
h1Wx⃗

(1 + h1Wx⃗)2
Tr

h1Wx⃗+i

(1 + h1Wx⃗+i)2

+
κ4N2

τ

N2
c

∑

x⃗,i,j

Tr
h1Wx⃗

(1 + h1Wx⃗)2
Tr

h1Wx⃗−i

1 + h1Wx⃗−i

Tr
h1Wx⃗−j

1 + h1Wx⃗−j

+ 2
κ4N2

τ

N2
c

∑

x⃗,i,j

Tr
h1Wx⃗

(1 + h1Wx⃗)2
Tr

h1Wx⃗−i

1 + h1Wx⃗−i

Tr
h1Wx⃗+j

1 + h1Wx⃗+j

+
κ4N2

τ

N2
c

∑

x⃗,i,j

Tr
h1Wx⃗

(1 + h1Wx⃗)2
Tr

h1Wx⃗+i

1 + h1Wx⃗+i

Tr
h1Wx⃗+j

1 + h1Wx⃗+j

.

(2.48)

For Nf = 2 some care has to be taken when introducing the determinant for the
second flavour, which introduces mixing terms that are not present in the above

expression.

2.9 Hadron masses in strong coupling and hopping expansion

In order to interpret the results in the following sections, it is convenient to also have
the leading order of the meson and baryon masses,

amM = −2 ln(2κ)− 6κ2 − 24κ2 u

1− u
+ . . . ,

amB = −3 ln(2κ)− 18κ2 u

1− u
+ . . . . (2.49)

– 12 –

Simplification for T=0, only leading powers in Nt, fermion contribution:

Current state of the art for fermionic sector:

µ
B

[GeV]

T
[Me

V
]

"Heavy QCD" phase diagram

1

200

� 10

Figure 1. The phase diagram of QCD with very heavy quarks.

and extend the results of [3] in two ways. First, we push the derivation of the effective
action for the cold and dense regime through order u58. Second and most importantly, we
apply linked cluster expansion methods [? ] to our effective theory and demonstrate that
its thermodynamic functions and equation of state can be computed entirely analytically
in the domain of its validity.

2. The effective theory

2.1. Derivation

The derivation of the effective theory has been discussed in previous publications [1–3] so
we only outline the procedure and give our results. Starting point is lattice QCD with the
Wilson plaquette and fermion actions on an N3

s

⇥N
⌧

lattice,

Z =

Z
[dU

µ

] exp [�S
g

]

N

fY

f=1

det

h
Qf

i
, �S

g

=

�

2N
c

X

p

h
TrU

p

+TrU †
p

i
, (2.1)

with elementary plaquettes U
p

, the quark hopping matrix for the flavour f ,

(Qf

)

ab

↵�,xy

= �ab�
↵�

�
xy

(2.2)

�
f

3X

⌫=0

h
eaµf

�

⌫0
(1 + �

⌫

)

↵�

Uab

⌫

(x)�
x,y�⌫̂

+ e�aµ

f

�

⌫0
(1� �

⌫

)

↵�

Uab

�⌫

(x)�
x,y+⌫̂

i
,

– 2 –



The deconfinement transition for heavy quarks

Including heavy, dynamical Wilson fermions

Accuracy ~5%, predictions for Nt=6,8,... available!

� �2
NLO:

Including heavy, dynamical Wilson fermions

Accuracy ~5%, predictions for Nt=6,8,... available!

� �2
NLO:

The critical point

Mapping back to QCD:
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Convergence properties: �c(chiral)

 eff. theory        4d MC, WHOT     4d MC,de Forcrand et al

Accuracy ~5%, predictions for Nt=6,8,... available!

21

Friman, Lo, Redlich 14
Fischer, Lücker, Pawlowski 15

Fromm, Langelage, Lottini, O.P.  11 

Continuum:



The fully calculated deconfinement transition
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The fully calculated deconfinement transition
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Cold and dense QCD: static strong coupling limitCold and dense QCD I: static, strong coupling limit

For T=0 (at finite density) anti-fermions decouple

Free gas of baryons!

Sivler blaze property + saturation!

Nf = 1, h1 = C, h2 = 0

Quarkyonic?

Cold and dense QCD I: static, strong coupling limit

For T=0 (at finite density) anti-fermions decouple

Free gas of baryons!

Sivler blaze property + saturation!

Nf = 1, h1 = C, h2 = 0

Quarkyonic?

Cold and dense QCD I: static, strong coupling limit

For T=0 (at finite density) anti-fermions decouple

Free gas of baryons!

Sivler blaze property + saturation!

Nf = 1, h1 = C, h2 = 0

Quarkyonic?

Fromm, Langelage, Lottini, Neuman, O.P. , PRL 13 



3.3 The static strong coupling limit for Nf = 2 at finite baryon density

For β = 0, the partition function consists of the static determinant factors only

Z(β = 0) =
[

∫

[dW ]
∏

x⃗

(1 + huLx⃗ + h2
uL

∗
x⃗ + h3

u)
2(1 + h̄uL

∗
x⃗ + h̄2

uLx⃗ + h̄3
u)

2 (3.10)

(1 + hdLx⃗ + h2
dL

∗
x⃗ + h3

d)
2(1 + h̄dL

∗
x⃗ + h̄2

dLx⃗ + h̄3
d)

2
]V

= zV0 .

We again consider the zero temperature limit at µ > 0, for which the anti-quark
contributions vanish. After the gauge integration the result reads

z0 = (1 + 4h3
d + h6

d) + (6h2
d + 4h5

d)hu + (6hd + 10h4
d)h

2
u + (4 + 20h3

d + 4h6
d)h

3
u

+(10h2
d + 6h5

d)h
4
u + (4hd + 6h4

d)h
5
u + (1 + 4h3

d + h6
d)h

6
u . (3.11)

All exponents of hn
uh

m
d come in multiples of three, n + m = mod 3. Just as in the

one-flavour case (with hd = 0), this has the form of a free baryon gas where the
prefactors give the degeneracy of the spin multiplets. Note that for Nf = 2 we also

find the standard spin 1/2 nucleons and many more combinations. To illustrate the
prefactors, consider the example h2

uhd. There is the spin 1/2 doublet, the proton,

as well as a spin 3/2 quadruplet, the ∆+, i.e. six states altogether. The states
corresponding to h2

dhu are the neutron and the ∆0, while h3
u, h

3
d are the ∆++,∆−

quadruplets, respectively. It continues with six-quark states. For example, h4
uh

2
d has

10 allowed spin-flavour combinations, corresponding to three spin 1 triplets and one
spin 0 singlet. These are consistent with an interpretation as di-baryon states built of

∆++∆0 or pp. Thus, eq. (3.11) contains all baryonic spin-flavour multiplets that are
consistent with the Pauli principle, i.e. up to a maximum of 12 constituent quarks.
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In the high density limit numerator and denominator are dominated by the term
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Free gas of baryons: complete spin flavor structure of vacuum states!
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Figure 3. Continuum approach of the baryon number.

extending the range where our effective action is reliable. Fig. 2 (right) shows the same
exercise for the largest  considered in this work, this time increasing the orders of the
character expansion. We observe good convergence up to � ⇠ 6, which is a sufficiently
weak coupling to allow for continuum extrapolations. It is interesting to note that the
convergence properties are not determined by the size of the expansion parameters alone.
Even though the u(�)-values far exceed the -values employed in the figures, convergence
in u(�) appears to be faster. The gain in convergence region by the additional orders in
the effective action can be exploited to study the systematics of our effective theory.

3.2. Continuum approach

An important question for any lattice investigation concerns the continuum limit. Fig. 3
(left) shows the baryon number as a function of chemical potential and highlights a severe
issue of lattice QCD at finite baryon density, irrespective of the sign problem or the accuracy
of effective actions: cut-off effects at finite density cause not only quantitative systematic
errors, but alter the qualitative behaviour of the system. Because of the finite number
of lattice sites available, the Pauli principle leads to a saturation density of nsat

B

= 2N
f

baryons per site, which does not exist in the continuum. Once lattice saturation is reached,
a further increase of chemical potential makes no sense. Thus lattices have to be made
finer before higher densities can be addressed. On finer lattices the saturation density in
physical units grows and in the continuum limit moves to infinity. This lattice artefact
starts to make itself felt already quite early, as is also apparent in the numerical behaviour
of the Polyakov loop [8] and related to the half-filling symmetry of the static action [15].

The difficulty is also reflected in Fig. 3 (right), where the slopes of the continuum ap-
proach rapidly increase with growing chemical potential, such that a continuum extra-
polation is increasingly difficult to control. The figure shows results from our previous
simulations obtained with the 4 action at two values of µ > µ

c

, i.e. beyond the nuclear
onset transition, and compares it with the new 8 action. The baryon density just about
reaches the domain with leading cut-off effects linear in a, which are expected for standard
Wilson fermions. In this context it should prove particularly valuable to work with an im-

– 7 –

Continuum approach  ~a  as expected for Wilson fermions  

Cut-off effects grow rapidly beyond onset transition

Finer lattice necessary for larger density to avoid saturation 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Onset transition to cold nuclear matter 
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The equation of state for nuclear matter, Nf=2
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consistent with the location of the onset transition 

Minimum:  access to nucl. binding energy, nucl. saturation density!
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Nuclear physics

~100 years old, still no fundamental description, Bethe-Weizsäcker droplet model: 
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QFT descriptions: Fetter-Walecka model, Skyrme model, ...

Ab initio Hamiltonian descriptions

New computational avenues in LQCD:

CPU GPU

Here, very old-fashioned approach: BPU!

Biological Processing Unit!

Large densities?     Effective theories!

The effective lattice theory approach I

Two-step treatment: 

1. Calculate effective theory analytically 
II. Simulate effective theory  

Step I.:  split temporal and spatial link integrations:     

Spatial integration after analytic strong coupling and hopping expansion
                                                                           

Result: 3d spin model of QCD, infinitely many couplings, ordered parametrically

Truncation: valid for heavy quarks, sufficiently close to the continuum

Step II:  sign problem milder: Monte Carlo, complex Langevin

Numerical simulations in 3d without fermion matrix inversion,  very cheap! 
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Experimentally established phase diagram:
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Convergence of the effective theory  
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Figure 2. Left: Convergence of the baryon density as a function of h2, computed with effective
actions of different orders in the hopping expansion. Right: Convergence in u.

3. Simulation of the effective theory

Our first task is to assess the range of validity of this new action. One expects the additional
orders in  to extend the convergence region, within which the description of thermodynamic
functions by the effective action is reliable. We test this by computing the baryon number
density at fixed values of temperature and chemical potential slightly beyond the onset
transition. We begin by investigating the hopping expansion in the strong coupling limit.
(left) shows the results obtained with effective actions of increasing order in . One observes
clearly how two adjacent orders stay together for larger values of h2 as the order is increased,
thus extending the range where our effective action is reliable. Fig. 2 (right) shows the
same exercise for the larges  considered in this work, this time increasing the orders of
the character expansion. We observe good convergence up to � ⇠ 6, which is a sufficiently
weak coupling to allow for continuum extrapolations. It is interesting to note that the
convergence properties are not determined by the size of the expansion parameters alone.
Even though the u(�)-values far exceed the -values employed in the figures, convergence
in u(�) appears to be faster.

The gain in convergence region can be exploited in two ways. Firstly, at fixed temperature
and quark masses it allows for the use of finer lattices, which can be employed in a continuum
extrapolation. Fig. 3 shows results from our previous simulations obtained with the 4

action at two values of µ > µ
c

. The baryon density just about reaches the domain with
leading cut-off effects linear in a, as expected for Wilson fermions. The break-off from this
behaviour (circled data points) is due to truncation errors and indicates the limit of validity
of the effective action. The new data generated with the 8-action indeed smoothly extends
the linear section towards the continuum limit. We conclude that the hopping expansion is
systematic and controlled, with additional orders in the action allowing for simulations on
finer lattices. For sufficiently heavy masses a continuum extrapolation appears possible.

Fig. 3 highlights an important issue regarding simulations of finite baryon density, irre-
spective of algorithms and full vs. effective actions. Because of the finite number of lattice
sites available, the Pauli principle leads to a saturation density of nsat

B

= 2N
f

baryons per

– 6 –

hopping expansion strong coupling expansion 8



Linked cluster expansion of effective theory
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Figure 4. Baryon number density as a function of pion mass.

4.1. General framework

We begin by summarising the basic features of the linked cluster expansion, for a more
thorough review, see [? ]. Consider an N -component scalar field with a 2-point coupling,
which may also extend over larger distances than nearest neighbour,

Z =

Z
D� e�S0[�]+
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2
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x,y

P
i,j
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i

(x)v

ij

(x,y)�

j

(y) . (4.1)

All information on the interaction is encoded in v
ij

(x, y), which we assume to be small. Our
goal is to study thermodynamic quantities, so we are interested in the free energy rather
than the partition function,

W = � lnZ . (4.2)

The linked cluster expansion is thus defined by the series expansion of W in powers of the
coupling,
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�ṽ
ij

(x, y)

◆�
W [ṽ]
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ṽ=0

. (4.3)

A systematic way of taking the derivatives with respect to the coupling is by introducing
source terms to define the generating functionals
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Z
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A derivative in v is now replaced by
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+
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The derivatives of the free energy with respect to the sources are the cumulants or connected
n-point functions, e.g.
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(x)�J
j

(y)
= h�

i
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i

(x)ih�
j

(y)i . (4.6)
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Consider spin model with 2-point interactions
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Linked cluster expansion of  “free energy”:

Finally, setting the interaction to zero means that the cumulants only give a contribution
for fields on the same site, which we use to define the n-leg expressions M

i1...in ,
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Thus we get the series expansion of W ,
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4.2. Graphs and embeddings

The last expression suggests a graphical notation where the M ’s are n-legged nodes and
the v’s are bonds connecting them. It is apparent that the order of a node is determined
by the number of bonds entering it, e.g.,

= M
ijklmn

(x) ⇠ v6 . (4.9)

With this notation we can express the expansion (4.8) by graphs,

W = +

1

2

+

1

2

+

1

4

+O(v3) . (4.10)

The prefactors give the symmetry factor of a graph, which is the inverse number of ways
one can label the nodes while keeping the same mathematical expression (i.e. connecting
the same pairs). The expansion of W to some power n of v now requires computing all
graphs with n bonds.

So far the graphical notation does not contain information about the spatial dependence
of a graph. For a translationally invariant theory all spatial dependence can be summed
up in a single embedding number, which counts the number of ways to put a graph on
the lattice. It depends on the type and lattice distance of the interaction, as well as the
dimension and geometry of the lattice we are working on. For example the v3 term

cannot be put on a square lattice, and thus its embedding number is 0, while on a triangular
lattice it would be non-zero. A quick summary of the lowest order graphs with symmetry
factors and embeddings is given in table 1.
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factors and embeddings is given in table 1.
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Required generalization:  n-point interactions

4.3. Higher order couplings

At O(4) we are confronted with 3-point couplings. Fortunately, introducing higher n-
point interactions to the linked cluster expansion is straightforward. In our case we need a
generalised partition function
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The geometry of the interaction term is contained in u
ijk

(x, y, z). For example if we take �

as a two-component field, � =
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corresponding to a wedge and a link, respectively. In this case the linked cluster expansion
of W is the sum of all diagrams which can be made out of these two components,

W = +

1

2

+

1

2

+

1

4

+

1

2

+

1

2

+O(v3) (4.18)

Where the two new diagrams come from the 3-point wedge term. Note that now directions
are necessary to distinguish a node W

2,1

from W 2

1,1

. This also changes the symmetry factor.
It is thus possible to go ahead and write down all graphs from combining elements up to a
certain order, carefully calculating symmetry factors as one goes along.

Alternatively and as an independent check, one can use the idea of embedding graphs
from the effective action onto the basic graph topologies of the cluster expansion. As an
example, consider the square graph

symmetry: 8 . (4.19)
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�ũ
ijk

(x, y, z)

◆�
W [ṽ, ũ]
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where the derivative with respect to ũ is once more given by the cumulants,

�W

�u
ijk

(x, y, z)
=

�3W

�J
i

(x)�J
j

(y)�J
k

(z)
+

�W

�J
i

(x)

�2W

�J
j

(y)�J
k

(z)
+

�W

�J
j

(y)

�2W

�J
i

(x)�J
k

(z)

+

�W

�J
k

(z)

�2W

�J
i

(x)�J
j

(y)
+

�W

�J
i

(x)

�W

�J
j

(y)

�W

�J
k

(z)
. (4.16)

The geometry of the interaction term is contained in u
ijk

(x, y, z). For example if we take �

as a two-component field, � =

�
W

1,1

,W
2,1

 
, the first O(4) term has an interaction tensor

u
1jk

(x, y, z) = 2h2
2

N
f

X

â,
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Analytic Calculations
N-point Linked Cluster Expansion

Effective Action Term Skeleton Graph

embedding
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Mapping of the effective theory by embedding:

Glesaaen, Neuman, O.P. 15



Fun with diagrams….



Compare continuum extrapolated results

Continuum comparison
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Figure 1. The phase diagram of QCD with very heavy quarks.

and extend the results of [3] in two ways. First, we push the derivation of the effective
action for the cold and dense regime through order u58. Second and most importantly, we
apply linked cluster expansion methods [? ] to our effective theory and demonstrate that
its thermodynamic functions and equation of state can be computed entirely analytically
in the domain of its validity.

2. The effective theory

2.1. Derivation

The derivation of the effective theory has been discussed in previous publications [1–3] so
we only outline the procedure and give our results. Starting point is lattice QCD with the
Wilson plaquette and fermion actions on an N3
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EoS fitted by polytrope, non-relativistic fermions!

Can we understand the pre-factor?   Interactions, mass-dependence… 

Equation of state of heavy nuclear matter, continuum 
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Figure 9. Left: Convergence of the resummation-improved results. Right: Baryon number density
as a function of pion mass including chain resummation. The convergence region is extended
compared to Fig. 4.
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Figure 10. Baryon number density as a function of pion mass obtained analytically with the chain
resummation. Error bars reflect different orders in the expansion as well as varying number of
points used in the continuum extrapolation.

one sees a comparable increase in convergence to that from the Padé approximation. This
is both expected and reassuring as both approaches produce rational expressions, and the
superior convergence of the Padé is expected due to the fact that it is not restricted to a
particular class of diagrams and might therefore predict higher order behaviour.

In Fig. 9 (right) we have repeated the pion mass convergence plot and one can see that
the resummation extends the convergence region in a natural way.

We now give our final result, the equation of state for nuclear matter with heavy quarks
calculated fully analytically, Fig. 10. The error bars represent the uncertainty resulting
from continuum extrapolations including a varying number of points. The line represents
a fit to a polytropic equation of state for non-relativistic fermions,
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Resummations + reach in mass range
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Figure 9. Left: Convergence of the resummation-improved results. Right: Baryon number density
as a function of pion mass including chain resummation. The convergence region is extended
compared to Fig. 4.
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Resumming long range non-overlapping chains, gain in mass range ‘’sobering’’  



Conclusions

Nuclear matter directly from QCD in “one-parameter distortions”:  

Heavy dense QCD near continuum with fully analytic methods 

Chiral dense QCD on coarse lattices (not shown here)  

Larger than nuclear densities out of reach because of lattice saturation



Conclusions

Finite density QCD enormous challenge, but urgently needed

QCD description of nuclear densities now possible for  
 
-heavy quarks near continuum  
 
-chiral quarks on coarse lattices

Can this be pushed far enough to cover light quarks near the continuum?

Backup slides



Strong coupling expansion (pure gauge)

Wilson action: Plaquette action

Character expansion: 

Character of rep. r:

group element representation matrix of group element

dimension of rep. matrix

Expansion coefficients: combinations of modified Bessel fcns. for SU(N)

all others can be expressed by fundamental one

12

Wilson 74: static potential, string tension Münster, Seo 80-82: glueball masses, 
Polonyi, Szachlanyi 82: strong coupling limit of free energy, effective action, Green 83: finite T string
Langelage, Münster, O.P. 08: strong coupling series for finite T

<1,

convergent inside radius of c.



Subleading couplings



Comparison with 4d Monte Carlo
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