Universality with long-range Coulomb interactions - A preliminary status report

in collaboration with H.-W. Hammer E. Hiyama

January 19, 2018

Motivation

- What can we say about a few-body system without knowing much detail about the interaction?
- If interaction is short-range, in first approximation systems can be described by only the scattering length.
- Interesting effects: universal dimer and Efimov trimers if scattering length is large

- Explored in many directions: Bosons, Fermions, mass imbalanced systems, N-body systems ...
- Experimental realisation in ultracold atom systems

Motivation

- Efimov predicted effect for nuclei
- Experimentally difficult because scattering length cannot be tuned
- Charge disturbs effects
- What happens to the universal dimer and Efimov trimers if Coulomb potential is added?
- Candidate system: α particles
 - Bosons
 - Large scattering length
 - Experimental data about α clusters available (⁸Be, Hoyle state..)

Outline

Efimov Effect

Methods EFT ideas GEM Coulomb-modified scattering length

Preliminary Results

Outlook

Resonances

System and Interaction

- N identical bosons (mass m and charge q)
- attractive Gaussian plus repulsive Coulomb potential

$$V_{ij} = V_0 \exp\left(-\frac{r_{ij}^2}{2r_0^2}\right) \qquad \qquad V_{ij}^C = \frac{c_c}{r_{ij}}$$

- Natural length scale: r₀
- Natural energy scale: $E_s = \frac{\hbar^2}{mr_0^2}$
- Natural scale for the strength of the Coulomb potential: $c_s = \frac{\hbar^2}{m_0}$
- c_c contains q^2

Gaussian Expansion Method

Implementation by Hiyama, Kino, Kamimura PPNP 51, 223 (2003)

- Rayleigh-Ritz Variational Method
- Gaussian base functions
- Matrix elements analytic for Gaussian and Coulomb potentials
- Base functions are selected via geometric progression between a minimum and a maximum range
- Fast convergence for a wide range of states
- Find optimized base functions via random sampling

Coulomb-modified scattering length

More Detail in PhD Thesis of S. König (2013)

- Coulomb potential is not short-range
- Scattering length cannot be found by matching inner solution with free waves at zero energy
- Have to use Coulomb Functions as outside solutions
- Cannot calculate for zero energy
- Have to calculate for small energies and extrapolate to zero via fitting

$$C_{\eta,0}^2 p \cot \tilde{\delta}_0(p) + \gamma h(\eta) = -\frac{1}{a_C} + \frac{1}{2} r_{\text{eff}}^C p^2 + \dots$$

Coulomb-modified scattering length

 \rightarrow Calculate a_C, r_{eff}^C for each triplet of V_0, r_0, c_c

Efimov Plot with Coulomb Interaction

Trimers and Dimer for $c_c/c_s = 0.007$ for different Gaussian ranges r_0

Efimov Plot with Coulomb Interaction

Trimers and Dimer for $c_c/c_s = 0.07$ for different Gaussian ranges r_0

Efimov Plot with Coulomb Interaction

Trimers and Dimer for $c_c/c_s = 0.7$ for different Gaussian ranges r_0

Application to Real System: 3α

$c_c pprox 4 imes 1.44 \, { m MeV fm}$

"Efimov Plot" (only Dimer) with $r_0 = 2.3 \,\text{fm}$

The ground state of ¹²C cannot be described!

Summary of Part I

- In natural units the dimer and trimers are universal even with Coulomb.
 - \rightarrow What about tetramer? Under investigation.
- However, for a real system the effective range needs to be fixed as well.
- For the 3α system this leads to the ground state of $^{12}{\rm C}$ being out of range of the underlying EFT
- Can we still do something useful with this?
 - \rightarrow Look at other systems
 - \rightarrow Look at resonances

Resonances

Toy model from Maier, Cederbaum, Domcke. JP B 13, 119 (1980)

- Stabilisation method
- Put system in a harmonic trap
- Vary size b of the trap
- Resonances appear as avoided crossings
- Toy model:

$$V_{
m shift}(r) = A e^{-lpha (r-r_{
m shift})^2} - B e^{-eta r^2}$$

• Able to reproduce values from MCD (1980), but only two-body

Outlook

- Three- and four-body calculations for the bound state sector
- Resonances with Coulomb barrier
- Investigate ⁸Be, the Hoyle state and ¹⁶O
- Look for other systems with charged bosons (e.g. ions)

Thank you for your attention!