

Three-particle dynamics in a finite volume

Akaki Rusetsky, University of Bonn

In collaboration with M. Döring, H.-W. Hammer, M. Mai, J.-Y. Pang, F. Romero, C. Urbach and J. Wu arXiv:1706.07700, arXiv:1707.02176 + ongoing work

Hirschegg 2018, "Multiparticle resonances in hadrons, nuclei, and ultracold gases,"
15 January 2018

Plan

- Introduction
- Non-relativistic EFT and dimer picture
- Independence from the off-shell effects
- Symmetries of the box and the finite volume spectrum
- Role of the three-body force:
three-particle bound state
shift of the ground-state level
- Conclusions, outlook

Extraction of the observables on the lattice

Motivation:
\hookrightarrow Decays into the three-particle final states (examples: $\eta \rightarrow 3 \pi, \omega \rightarrow 3 \pi$, Roper resonance, etc.)
\hookrightarrow Nuclear physics on the lattice
Three-particle sector: continuum

- bound states
- elastic scattering, rearrangement reactions
- breakup...

Three-particle sector: finite volume

- two-particle and three-particle energy levels both below and above the pertinent thresholds

How does one extract infinite-volume observables from lattice data?

Three particles in a finite volume: the problem

Two-particle scattering: The wave function always in the asymptotic form near the walls: no off-shell effects!

- The three-particle wave function near the box walls is not always described by the asymptotic wave function
- Is the three-particle spectrum determined solely in terms of the S-matrix?

The history

K. Polejaeva and AR, EPJA 48 (2012) 67

Finite volume energy levels determined solely by the S-matrix
M. Hansen and S. Sharpe, PRD 90 (2014) 116003; PRD 92 (2015) 114509

Quantization condition
R. Briceno and Z. Davoudi, PRD 87 (2013) 094507

Dimer formalism, quantization condition
P. Guo, PRD 95 (2017) 054508

Quantization condition in the 1+1-dimensional case
S. Kreuzer and H.-W. Hammer, PLB 694 (2011) 424; EPJA 43 (2010) 229; PLB 673
(2009) 260; S. Kreuzer and H. W. Grießhammer, EPJA 48 (2012) 93

Dimer formalism, numerical solution
M. Mai and M. Döring, EPJA 53 (2017) 240

Three-body unitarity + analiticity
\hookrightarrow The quantization condition rather complicated, not well suited for the analysis of the lattice data
\hookrightarrow What is the convenient set of observables to be extracted?

The strategy

- If $R \ll L$ (large boxes \rightarrow small momenta), the energy spectrum can be calculated, using non-relativistic EFT in a finite volume
- Effective couplings matched to the observables in the infinite volume on the mass shell

Is the information about the S-matrix sufficient to uniquely determine the spectrum? Do the off-shell couplings, which are not fixed from this information, contribute to the finite-volume energies?

- Analysis of the lattice data: determine these couplings from the fit to the spectrum, calculate the S-matrix from the dynamical equations
\hookrightarrow Effective couplings form a convenient set of the parameters to be determined on the lattice \rightarrow contain only exponentially suppressed effects at large L.

NREFT: dimer picture in the two-particle sector

$$
\begin{gathered}
\mathcal{L}=\psi^{\dagger}\left(i \partial_{0}-\frac{\nabla^{2}}{2 m}\right) \psi+\mathcal{L}_{2} \\
\mathcal{L}_{2}=-\frac{C_{0}}{2} \psi^{\dagger} \psi^{\dagger} \psi \psi-\frac{C_{2}}{4}\left(\psi^{\dagger} \nabla^{2} \psi^{\dagger} \psi \psi+\text { h.c. }\right)+\cdots
\end{gathered}
$$

C_{0}, C_{2}, \ldots matched to $p \cot \delta(p)=-\frac{1}{a}+\frac{r}{2} p^{2}+\cdots$
dimer:

$$
\mathcal{L}_{2} \rightarrow \mathcal{L}_{2}^{\text {dimer }}=\sigma T^{\dagger} T+\left(T^{\dagger}\left[f_{0} \psi \psi+f_{1} \psi \nabla^{2} \psi+\cdots\right]+\text { h.c. }\right)
$$

- Two frameworks algebraically equivalent
- Higher partial waves can be included: dimers with arbitrary spin
- Can be generalized to the non-rest frames

Off-shell term, two particle sector

$$
\langle\mathbf{p}| \mathcal{L}_{2}|\mathbf{q}\rangle=-2 C_{0}-C_{2}\left(\mathbf{p}^{2}+\mathbf{q}^{2}\right)-C_{4}\left(\mathbf{p}^{2}+\mathbf{q}^{2}\right)^{2}-C_{4}^{\prime}\left(\mathbf{p}^{2}-\mathbf{q}^{2}\right)^{2}+\cdots
$$

Off-shell term can be eliminated with the use of EOM

$$
-\frac{C_{4}^{\prime}}{4}\left(\psi^{\dagger} \nabla^{4} \psi^{\dagger} \psi \psi-\psi^{\dagger} \nabla^{2} \psi^{\dagger} \psi \nabla^{2} \psi+\text { h.c }\right)=\frac{C_{4}^{\prime}}{4} m^{2} \partial_{t}^{2}\left(\psi^{\dagger} \psi^{\dagger} \psi \psi\right)
$$

Insertions of the off-shell term vanish on shell (dim.reg., no scale)

$$
\begin{aligned}
\int \frac{d^{d} \mathbf{k}}{(2 \pi)^{d}}\left(\mathbf{p}^{2}-\mathbf{k}^{2}\right)^{2} \frac{1}{\mathbf{k}^{2}-q_{0}^{2}} f(\mathbf{k}) & =\left(\mathbf{p}^{2}-q_{0}^{2}\right)^{2} \int \frac{d^{d} \mathbf{k}}{(2 \pi)^{d}} \frac{1}{\mathbf{k}^{2}-q_{0}^{2}} f(\mathbf{k}) \\
& + \text { no scale integrals }
\end{aligned}
$$

- The result does not depend on the regularization
- No off-shell term in the dimer formulation: one coupling at each order

Off-shell term in the three-particle sector

$\mathcal{L}_{3}^{(4)}=\frac{D_{4}^{\prime \prime}}{12}\left(\psi^{\dagger} \psi^{\dagger} \nabla^{4} \psi^{\dagger} \psi \psi \psi+2 \psi^{\dagger} \nabla^{2} \psi^{\dagger} \nabla^{2} \psi^{\dagger} \psi \psi \psi-3 \psi^{\dagger} \psi^{\dagger} \nabla^{2} \psi^{\dagger} \psi \psi \nabla^{2} \psi+\right.$ h.c. $)+\cdots$

- Off-shell term proportional to $D_{4}^{\prime \prime}$ can be eliminated using EOM
- In the momentum space, the potential is proportional to

$$
V^{\text {off-shell }} \propto D_{4}^{\prime \prime}(E(\mathbf{p})-E(\mathbf{q}))^{2}, \quad E(\mathbf{p})=\frac{1}{2 m}\left(\mathbf{p}_{1}^{2}+\mathbf{p}_{2}^{2}+\mathbf{p}_{3}^{2}\right)
$$

All insertions of this potential vanish on shell (no-scale integrals)
\hookrightarrow The S-matrix does not depend on $D_{4}^{\prime \prime}$!

$$
\begin{aligned}
\mathcal{L}_{3}^{\text {dimer }} & =h_{0} T^{\dagger} T \psi^{\dagger} \psi+h_{2} T^{\dagger} T\left(\psi^{\dagger} \nabla^{2} \psi+\text { h.c. }\right) \\
& +h_{4} T^{\dagger} T\left(\psi^{\dagger} \nabla^{4} \psi+\text { h.c. }\right)+h_{4}^{\prime} T^{\dagger} T \nabla^{2} \psi^{\dagger} \nabla^{2} \psi+\cdots
\end{aligned}
$$

- Two couplings h_{4}, h_{4}^{\prime} : off-shell coupling $D_{4}^{\prime \prime}$ can be eliminated!

Why are there no off-shell terms in the dimer picture

Off-shell dimers are physical:

$$
\mathbf{p}_{d}^{2} \neq \mathbf{q}_{d}^{2}
$$

The scattering equation

$$
\mathcal{M}(\mathbf{p}, \mathbf{q} ; E)=Z(\mathbf{p}, \mathbf{q} ; E)+\int_{\mathbf{k}}^{\Lambda} Z(\mathbf{p}, \mathbf{k} ; E) \tau(\mathbf{k} ; E) \mathcal{M}(\mathbf{k}, \mathbf{q} ; E)
$$

$$
Z(\mathbf{p}, \mathbf{q} ; E)=\frac{1}{\mathbf{p}^{2}+\mathbf{q}^{2}+\mathbf{p q}-m E}+H_{0}+H_{2}\left(\mathbf{p}^{2}+\mathbf{q}^{2}\right)+\cdots
$$

H_{0}, H_{2}, \ldots are related to the couplings h_{0}, h_{2}, \ldots

$$
\tau^{-1}(\mathbf{k} ; E)=k^{*} \cot \delta\left(k^{*}\right)+\underbrace{\sqrt{\frac{3}{4} \mathbf{k}^{2}-m E}}_{=k^{*}}
$$

Finite volume

$$
\begin{gathered}
\mathbf{k}=\frac{2 \pi}{L} \mathbf{n}, \mathbf{n} \in \mathbb{Z}^{3}, \quad \int_{\mathbf{k}}^{\Lambda} \rightarrow \frac{1}{L^{3}} \sum_{\mathbf{k}}^{\Lambda} \\
\mathcal{M}_{L}(\mathbf{p}, \mathbf{q} ; E)=Z(\mathbf{p}, \mathbf{q} ; E)+\frac{8 \pi}{L^{3}} \sum_{\mathbf{k}}^{\Lambda} Z(\mathbf{p}, \mathbf{q} ; E) \tau_{L}(\mathbf{k} ; E) \mathcal{M}_{L}(\mathbf{k}, \mathbf{q} ; E) \\
\tau_{L}^{-1}(\mathbf{k} ; E)=k^{*} \cot \delta\left(k^{*}\right)-\frac{4 \pi}{L^{3}} \sum_{\mathrm{l}} \frac{1}{\mathbf{k}^{2}+\mathbf{l}^{2}+\mathbf{k l}-m E}
\end{gathered}
$$

\hookrightarrow Poles of $\mathcal{M}_{L} \quad \rightarrow \quad$ finite-volume energy spectrum
$\hookrightarrow k^{*} \cot \delta\left(k^{*}\right)$ fitted in the two-particle sector; H_{0}, H_{2}, \ldots should be fitted to the three-particle energies
$\hookrightarrow S$-matrix in the infinite volume \rightarrow equation with H_{0}, H_{2}, \ldots
\hookrightarrow No-scale arguments apply in the finite volume as well: no off-shell effects in the finite volume spectrum!

quantization condition

The particle-dimer scattering amplitude:

$$
\mathcal{M}_{L}=Z+Z \tau_{L} \mathcal{M}_{L}
$$

The three-particle scattering amplitude:

$$
T_{L}^{(3)}=\tau_{L}+\tau_{L} \mathcal{M}_{L} \tau_{L}=\left(\tau_{L}^{-1}-Z\right)^{-1}
$$

The quantization condition: the three-body energy levels coinside with the poles of $T_{L}^{(3)}$:

$$
\operatorname{det}\left(\tau_{L}^{-1}-Z\right)=0
$$

- Agrees with: Polejaeva and AR, Hansen and Sharpe, Briceno and Davoudi, Mai and Döring
- Differs by the choice of the cutoff on the spectator momentum \mathbf{k}
- The spectrum is determined only by the on-shell input!

Reduction of the quantization condition: the symmetries

- Symmetry in a finite volume: octahedral group O_{h}, including inversions (rest frame), little groups (moving frames)
- Reduction: an analog of the partial-wave expansion in a finite volume
- Analog for a sphere $|\mathbf{k}|=$ const for a cube: shells

$$
s=\left\{\mathbf{k}: \quad \mathbf{k}=g \mathbf{k}_{0}, \quad g \in O_{h}\right\}
$$

- Each shell s is characterized by the reference momentum \mathbf{k}_{0}
- Shells are counted by increasing $|\mathbf{k}|$
- The momenta, unrelated by the O_{h}, but having $|\mathbf{k}|=\left|\mathbf{k}^{\prime}\right|$, belong to the different shells

The expansion in the basis of irreps

For an arbitrary function of the momentum \mathbf{p}, belonging to a shell s,

$$
f(\mathbf{p})=f\left(g \mathbf{p}_{0}\right)=\sum_{\Gamma} \sum_{i j} T_{i j}^{(\Gamma)}(g) f_{j i}^{(\Gamma)}\left(\mathbf{p}_{0}\right), \quad \Gamma=A_{1}^{ \pm}, A_{2}^{ \pm}, E^{ \pm}, T_{1}^{ \pm}, T_{2}^{ \pm}
$$

Projecting back the components:

$$
\frac{G}{s_{\Gamma}} f_{j i}^{(\Gamma)}\left(\mathbf{p}_{0}\right)=\sum_{g \in O_{h}}\left(T_{i j}^{(\Gamma)}(g)\right)^{*} f\left(g \mathbf{p}_{0}\right), \quad G=\operatorname{dim}\left(O_{h}\right)=48
$$

The quantization condition in the new basis partially diagonalizes
See more on this in J.-Y. Pang's talk!

The finite-volume spectrum in the \boldsymbol{A}_{1} irrep, CM frame

- The spectrum both below and above the three-particle threshold is given

Extraction of the three-body couplings from the lattice data

Two different scenarios:

- The three particle bound state exists
- For a single L, the coupling H_{0} (at a given cutoff Λ and scattering length a) can be fitted to the binding energy.
- In order to determine higher-order couplings, more data points are necessary
- The three-particle bound states do not exist
- The energy level displacements can be treated in perturbation theory, are known up to and including $O\left(L^{-7}\right)$
S.R. Beane, W. Detmold and M.J Savage, PRD 76 (2007) 074507;
W. Detmold and M.J. Savage, PRD 77 (2008) 057502;
S.R. Sharpe, PRD 96(2017) 054515
- The leading-order shift of the ground state comes at $O\left(L^{-3}\right)$. The coupling H_{0} contributes at $O\left(L^{-6}\right)$
- Consistency: three-body couplings appear at higher orders in the perturbative expansion of the scattering amplitude

1. Energy shift of the three-particle bound state

Unitary limit $a \rightarrow \infty$: U.-G. Meißner, G. Rios and AR, PRL 114 (2015) 091602
See also M. T. Hansen and S. R. Sharpe, PRD 95 (2017) 034501
Using Poisson's formula. . .

$$
\begin{aligned}
& \mathcal{M}_{L}(\mathbf{p}, \mathbf{q} ; E)=Z(\mathbf{p}, \mathbf{q} ; E)+8 \pi \int_{\mathbf{k}}^{\Lambda} Z(\mathbf{p}, \mathbf{q} ; E) \hat{\tau}_{L}(\mathbf{k} ; E) \mathcal{M}_{L}(\mathbf{k}, \mathbf{q} ; E) \\
& \hat{\tau}_{L}(\mathbf{k} ; E)=\frac{1+\sum_{\mathbf{n} \neq \mathbf{0}} e^{i L \mathbf{n k}}}{\tau^{-1}(\mathbf{k} ; E)+\underbrace{\Delta_{L}(\mathbf{k} ; E)}_{\text {zeta-function }}}=\tau(\mathbf{k} ; E)+\sum_{\mathbf{n} \neq \mathbf{0}} e^{i L \mathbf{n k}} \tau(\mathbf{k} ; E)+\cdots \\
& \\
& \hookrightarrow \Delta E=8 \pi \int_{\mathbf{k}}^{\Lambda}[\Psi(\mathbf{k})]^{2} \sum_{\mathbf{n} \neq \mathbf{0}} e^{i L \mathbf{n k}} \tau(\mathbf{k} ; E)+\cdots
\end{aligned}
$$

Normalization condition

$-8 \pi \int_{\mathbf{p}}^{\Lambda}[\Psi(\mathbf{p})]^{2} \frac{\partial \tau(\mathbf{p} ; E)}{\partial E}-(8 \pi)^{2} \int_{\mathbf{p}}^{\Lambda} \int_{\mathbf{q}}^{\Lambda} \Psi(\mathbf{p}) \tau(\mathbf{p} ; E) \frac{\partial Z(\mathbf{p}, \mathbf{q} ; E)}{\partial E} \tau(\mathbf{q} ; E) \Psi(\mathbf{q})=1$
Faddeev-Minlos solution: $\Lambda \rightarrow \infty$ and $H(\Lambda)=0$.

$$
\Psi_{0}(p)=i N_{0} \frac{\kappa}{p} \sin \left(s_{0} u\right), \quad u=\ln \left(\frac{\sqrt{3}}{2} \frac{p}{\kappa}+\sqrt{\frac{3 p^{2}}{4 \kappa^{2}}+1}\right), \quad E=\frac{\kappa^{2}}{m}
$$

Asymptotic normalization coefficient

$$
\mathcal{A}=\lim _{p \rightarrow 0} \Psi(p) / \Psi_{0}(p)
$$

No derivative couplings: $\mathcal{A}=1+O(\kappa / \Lambda)$
Derivative couplings: $\mathcal{A} \neq 1$

Energy shift in the unitary limit

U.-G. Meißner, G. Rios and AR, PRL 114 (2015) 091602

$$
\frac{\Delta E}{|E|}=c(\kappa L)^{-3 / 2} \mathcal{A}^{2} \exp \left(-\frac{2 \kappa L}{\sqrt{3}}\right)
$$

$\mathcal{A}=1+O(\kappa / \Lambda)$ in the absence of derivative couplings

Going beyond unitary limit

$$
\Delta E \propto \int_{\mathbf{p}}^{\Lambda} \frac{[\Psi(\mathbf{p})]^{2} e^{i L \mathbf{n} \mathbf{p}}}{-a^{-1}+\sqrt{\frac{3}{4} \mathbf{p}^{2}+\kappa^{2}}}, \quad|\mathbf{n}|=1
$$

$\Psi(\mathbf{p})$ is only weakly singular in the low-momentum region \rightarrow const.

$$
\Delta E=\frac{\#}{a L} \exp \left(-\frac{2}{\sqrt{3}} \sqrt{\kappa^{2}-\frac{1}{a^{2}}} L\right)+\frac{\#}{(\kappa L)^{3 / 2}} \exp \left(-\frac{2 \kappa L}{\sqrt{3}}\right)+\cdots
$$

1. Lüscher equation, bound state of a particle and a dimer
2. Three-particle bound state in the unitary limit

2. Energy shift of the three-particle ground state

$$
\begin{gathered}
\Delta E_{2}=\frac{4 \pi \alpha}{m L^{3}}\left(1+\frac{c_{1}}{L}+\frac{c_{2}}{L^{2}}+\frac{c_{3}}{L^{3}}\right)+O\left(L^{-7}\right) \\
\Delta E_{3}=\frac{12 \pi a}{m L^{3}}\left(1+\frac{d_{1}}{L}+\frac{d_{2}}{L^{2}}+\frac{\bar{d}_{3}}{L^{3}} \ln L+\frac{d_{3}}{L^{3}}\right)+O\left(L^{-7}\right)
\end{gathered}
$$

- The coupling d_{3} contains two-body contributions (scattering length, effective radius) as well as the three-body term
- Three-bedy contributions can be separated, if the many-body states (4,5,... particles) are included
- Multipion systems in lattice QCD has been considered S.R. Beane, W. Detmold, T.C. Luu, K. Orginos, M.J. Savage and A. Torok, PRL 100 (2008) 082004

Energy shift in the φ^{4} theory

F. Romero-Lopez, A. Rusetsky and C. Urbach, in preparation

$$
S=\sum_{x}\left(-\kappa \mu\left(\varphi_{x}^{*} \varphi_{x+\mu}+c . c .\right)-\lambda\left(\left|\varphi_{x}\right|^{2}-1\right)+\left|\varphi_{x}\right|^{2}\right)
$$

- The calculations are performed for different values of L
- For our choice of parameters λ and κ : perturbative, the phase shift does nor exceed few degrees
- Single particle mass: perfectly fits the one-loop expression:

$$
M(L)-M=\mathrm{const} \frac{K_{1}(M L)}{(M L)^{1 / 2}} \sim \mathrm{const} \frac{\exp (-M L)}{(M L)^{3 / 2}}
$$

- Extracting H_{0} at small L : does one have control over exponentially suppressed contributions?

Exponentially suppressed contribitions: 2-body levels

Using quasi-potential reduction of the Bethe-Salpeter equation. . .

$$
\begin{gathered}
E_{2}-2 M(L)=\frac{1}{L^{3}} T_{L}\left(\mathbf{0}, \mathbf{0}, E_{2}\right) \\
T_{L}=\bar{T}_{L}+\bar{T}_{L}\left(g_{L}^{\prime}-g_{\infty}\right) T_{L}, \quad \bar{T}_{L}=V_{L}+V_{L} g_{\infty} \bar{T}_{L}
\end{gathered}
$$

Leading exponentially suppressed term:

$$
V_{L}-V_{\infty} \sim \frac{\exp (-M L)}{(M L)^{1 / 2}} \quad \hookrightarrow E_{2}-\left.2 M(L)\right|_{\exp } \sim \frac{\exp (-M L)}{(M L)^{7 / 2}}+\cdots
$$

\hookrightarrow The difference $E_{2}-2 M(L)$ already captures the leading exponentially suppressed contribution. The correction coming from the potential is suppressed by an additional factor L^{-2}

Preliminary results of simulations

- The single-particle mass $M(L)$, as well as two- and three-particle levels E_{2} and E_{3} have been measured for different values of L from $L=4$ until $L=24$.
- The two-body scattering lenght a and the effective radius r have been extracted
- The three-body force has been extracted: definitely different from zero!

Conclusions

- An EFT formalism in a finite volume is proposed to analyze the data in the three-particle sector
- The low-energy couplings H_{0}, H_{2}, \ldots are fitted to the spectrum; S-matrix is obtained through the solution of equations
- A systematic approach: allows the inclusion of higher partial waves, derivative couplings, two \rightarrow three transitions, relativistic kinematics,...
- Equivalent to other known approaches, much easier to use!
- Reduction of the quantization condition is possible, according to the octahedral symmetry
- Extraction of the three-body couplings both in non-perturbative and perturbative regimes is discussed, backed by the lattice results in the φ^{4} theory

Outlook

- Three-particle Lellouch-Lüscher formula
- Three-nucleon interactions: inclusion of the long-range forces
- Inclusion of relativistic effects, higher partial waves, spin, partial wave mixing, etc
- Full group-theoretical analysis of the three-particle equation in the rectangular box including moving frames and the higher partial waves

