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Plan

• Introduction

• Non-relativistic EFT and dimer picture

• Independence from the off-shell effects

• Symmetries of the box and the finite volume spectrum

• Role of the three-body force:

three-particle bound state

shift of the ground-state level

• Conclusions, outlook
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Extraction of the observables on the lattice

Motivation:

→֒ Decays into the three-particle final states
(examples: η → 3π, ω → 3π, Roper resonance, etc.)

→֒ Nuclear physics on the lattice

Three-particle sector: continuum

• bound states

• elastic scattering, rearrangement reactions

• breakup. . .

Three-particle sector: finite volume

• two-particle and three-particle energy levels both below and
above the pertinent thresholds

How does one extract infinite-volume observables from lattice data?
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Three particles in a finite volume: the problem

Two-particle scattering: The wave function always in the asymptotic
form near the walls: no off-shell effects!
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• The three-particle wave function near the box walls is not always
described by the asymptotic wave function

• Is the three-particle spectrum determined solely in terms of the
S-matrix?
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The history

K. Polejaeva and AR, EPJA 48 (2012) 67

Finite volume energy levels determined solely by the S-matrix

M. Hansen and S. Sharpe, PRD 90 (2014) 116003; PRD 92 (2015) 114509

Quantization condition

R. Briceno and Z. Davoudi, PRD 87 (2013) 094507

Dimer formalism, quantization condition

P. Guo, PRD 95 (2017) 054508

Quantization condition in the 1+1-dimensional case

S. Kreuzer and H.-W. Hammer, PLB 694 (2011) 424; EPJA 43 (2010) 229; PLB 673

(2009) 260; S. Kreuzer and H. W. Grießhammer, EPJA 48 (2012) 93

Dimer formalism, numerical solution

M. Mai and M. Döring, EPJA 53 (2017) 240

Three-body unitarity + analiticity

→֒ The quantization condition rather complicated, not well suited for
the analysis of the lattice data

→֒ What is the convenient set of observables to be extracted?

A. Rusetsky, Hirschegg, 15 January 2018 – p.5



The strategy

• If R≪ L (large boxes → small momenta), the energy spectrum
can be calculated, using non-relativistic EFT in a finite volume

• Effective couplings matched to the observables in the infinite
volume on the mass shell

Is the information about the S-matrix sufficient to uniquely
determine the spectrum? Do the off-shell couplings, which
are not fixed from this information, contribute to the
finite-volume energies?

• Analysis of the lattice data: determine these couplings from the
fit to the spectrum, calculate the S-matrix from the dynamical
equations

→֒ Effective couplings form a convenient set of the parameters to be
determined on the lattice → contain only exponentially
suppressed effects at large L.
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NREFT: dimer picture in the two-particle sector

L = ψ†

(

i∂0 −
∇2

2m

)

ψ + L2

L2 = −C0

2
ψ†ψ†ψψ − C2

4
(ψ†∇2ψ†ψψ + h.c.) + · · ·

C0, C2, . . . matched to p cot δ(p) = − 1
a + r

2 p
2 + · · ·

+ ... + ...dimer: + +

L2 → Ldimer
2 = σT †T +

(

T †
[
f0ψψ + f1ψ∇2ψ + · · ·

]
+ h.c.

)

• Two frameworks algebraically equivalent

• Higher partial waves can be included: dimers with arbitrary spin

• Can be generalized to the non-rest frames
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Off-shell term, two particle sector

〈p|L2|q〉 = −2C0 − C2(p
2 + q2)− C4(p

2 + q2)2 − C ′
4(p

2 − q2)2 + · · ·

Off-shell term can be eliminated with the use of EOM

−C
′
4

4

(

ψ†∇4ψ†ψψ − ψ†∇2ψ†ψ∇2ψ + h.c

)

=
C ′

4

4
m2∂2t (ψ

†ψ†ψψ)

Insertions of the off-shell term vanish on shell (dim.reg., no scale)

∫
ddk

(2π)d
(p2 − k2)2

1

k2 − q20
f(k) = (p2 − q20)

2

∫
ddk

(2π)d
1

k2 − q20
f(k)

+ no scale integrals

• The result does not depend on the regularization

• No off-shell term in the dimer formulation: one coupling at each
order
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Off-shell term in the three-particle sector

L(4)
3 =

D′′
4

12

(

ψ†ψ†∇4ψ† ψψψ + 2ψ†∇2ψ†∇2ψ† ψψψ − 3ψ†ψ†∇2ψ† ψψ∇2ψ + h.c.
)

+ · · ·

• Off-shell term proportional to D′′
4 can be eliminated using EOM

• In the momentum space, the potential is proportional to

V off−shell ∝ D′′
4 (E(p)− E(q))2 , E(p) =

1

2m
(p2

1 + p2
2 + p2

3)

All insertions of this potential vanish on shell (no-scale integrals)

→֒ The S-matrix does not depend on D′′
4 !

Ldimer
3 = h0T

†Tψ†ψ + h2T
†T (ψ†∇2ψ + h.c.)

+ h4T
†T (ψ†∇4ψ + h.c.) + h′4T

†T∇2ψ†∇2ψ + · · ·

• Two couplings h4, h
′
4: off-shell coupling D′′

4 can be eliminated!

A. Rusetsky, Hirschegg, 15 January 2018 – p.9



Why are there no off-shell terms in the dimer picture

Off-shell dimers are physical:

p
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p2
d = (p1 + p2)

2 , q2
d = (q1 + q2)

2

p2
d 6= q2

d
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The scattering equation
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= + + +

M(p,q;E) = Z(p,q;E) +

∫ Λ

k

Z(p,k;E)τ(k;E)M(k,q;E)

Z(p,q;E) =
1

p2 + q2 + pq−mE
+H0 +H2(p

2 + q2) + · · ·

H0, H2, . . . are related to the couplings h0, h2, . . .

τ−1(k;E) = k∗ cot δ(k∗) +

√

3

4
k2 −mE

︸ ︷︷ ︸

=k∗
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Finite volume

k =
2π

L
n , n ∈ Z

3 ,

∫ Λ

k

→ 1

L3

Λ∑

k

ML(p,q;E) = Z(p,q;E) +
8π

L3

Λ∑

k

Z(p,q;E)τL(k;E)ML(k,q;E)

τ−1
L (k;E) = k∗ cot δ(k∗)−4π

L3

∑

l

1

k2 + l2 + kl−mE

→֒ Poles of ML → finite-volume energy spectrum

→֒ k∗ cot δ(k∗) fitted in the two-particle sector; H0, H2, . . .should be

fitted to the three-particle energies

→֒ S-matrix in the infinite volume → equation with H0, H2, . . .

→֒ No-scale arguments apply in the finite volume as well: no
off-shell effects in the finite volume spectrum!
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quantization condition

The particle-dimer scattering amplitude:

ML = Z + ZτLML

The three-particle scattering amplitude:

T
(3)
L = τL + τLMLτL = (τ−1

L − Z)−1

The quantization condition: the three-body energy levels coinside

with the poles of T
(3)
L :

det(τ−1
L − Z) = 0

• Agrees with: Polejaeva and AR, Hansen and Sharpe, Briceno and Davoudi,

Mai and Döring

• Differs by the choice of the cutoff on the spectator momentum k

• The spectrum is determined only by the on-shell input!
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Reduction of the quantization condition: the symmetries

• Symmetry in a finite volume: octahedral group Oh, including
inversions (rest frame), little groups (moving frames)

• Reduction: an analog of the partial-wave expansion in a finite
volume

• Analog for a sphere |k| = const for a cube: shells

s =

{

k : k = gk0 , g ∈ Oh

}

• Each shell s is characterized by the reference momentum k0

• Shells are counted by increasing |k|
• The momenta, unrelated by the Oh, but having |k| = |k′|, belong

to the different shells
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The expansion in the basis of irreps

For an arbitrary function of the momentum p, belonging to a shell s,

f(p) = f(gp0) =
∑

Γ

∑

ij

T
(Γ)
ij (g)f

(Γ)
ji (p0) , Γ = A±

1 , A
±
2 , E

±, T±
1 , T

±
2

Projecting back the components:

G

sΓ
f
(Γ)
ji (p0) =

∑

g∈Oh

(T
(Γ)
ij (g))∗f(gp0) , G = dim(Oh) = 48

The quantization condition in the new basis partially diagonalizes

See more on this in J.-Y. Pang’s talk!
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The finite-volume spectrum in the A1 irrep, CM frame
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• The spectrum both below and above the three-particle threshold
is given
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Extraction of the three-body couplings from the lattice data

Two different scenarios:

• The three particle bound state exists

- For a single L, the coupling H0 (at a given cutoff Λ and
scattering length a) can be fitted to the binding energy.

- In order to determine higher-order couplings, more data
points are necessary

• The three-particle bound states do not exist

- The energy level displacements can be treated in

perturbation theory, are known up to and including O(L−7)
S.R. Beane, W. Detmold and M.J Savage, PRD 76 (2007) 074507;

W. Detmold and M.J. Savage, PRD 77 (2008) 057502;

S.R. Sharpe, PRD 96(2017) 054515

- The leading-order shift of the ground state comes at O(L−3).

The coupling H0 contributes at O(L−6)

- Consistency: three-body couplings appear at higher orders
in the perturbative expansion of the scattering amplitude
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1. Energy shift of the three-particle bound state

Unitary limit a→ ∞: U.-G. Meißner, G. Rios and AR, PRL 114 (2015) 091602

See also M. T. Hansen and S. R. Sharpe, PRD 95 (2017) 034501

Using Poisson’s formula. . .

ML(p,q;E) = Z(p,q;E) + 8π

∫ Λ

k

Z(p,q;E)τ̂L(k;E)ML(k,q;E)

τ̂L(k;E) =
1 +

∑

n 6=0
eiLnk

τ−1(k;E) + ∆L(k;E)
︸ ︷︷ ︸

zeta-function

= τ(k;E) +
∑

n 6=0

eiLnkτ(k;E) + · · ·

→֒ ∆E = 8π

∫ Λ

k

[
Ψ(k)

]2
∑

n 6=0

eiLnkτ(k;E) + · · ·
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Normalization condition

−8π

∫ Λ

p

[

Ψ(p)
]2 ∂τ(p;E)

∂E
− (8π)2

∫ Λ

p

∫ Λ

q

Ψ(p)τ(p;E)
∂Z(p,q;E)

∂E
τ(q;E)Ψ(q) = 1

Faddeev-Minlos solution: Λ → ∞ and H(Λ) = 0.

Ψ0(p) = iN0
κ

p
sin(s0u) , u = ln

(

√
3

2

p

κ
+

√

3p2

4κ2
+ 1

)

, E =
κ2

m

Asymptotic normalization coefficient

A = lim
p→0

Ψ(p)/Ψ0(p)

No derivative couplings: A = 1 +O(κ/Λ)

Derivative couplings: A 6= 1
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Energy shift in the unitary limit

U.-G. Meißner, G. Rios and AR, PRL 114 (2015) 091602

0 0.5 1 1.5 2 2.5
u

0

0.5

1

1.5

Exact w.f.
MF w.f.
ratio

ANC

∆E

|E| = c(κL)−3/2A2 exp

(

−2κL√
3

)

A = 1 +O(κ/Λ) in the absence of derivative couplings
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Going beyond unitary limit

∆E ∝
∫ Λ

p

[
Ψ(p)

]2
eiLnp

−a−1 +
√

3
4 p

2 + κ2
, |n| = 1

Ψ(p) is only weakly singular in the low-momentum region → const.

∆E =
#

aL
exp

(

− 2√
3

√

κ2 − 1

a2
L

)

+
#

(κL)3/2
exp

(

−2κL√
3

)

+ · · ·

1. Lüscher equation, bound state of a particle and a dimer

2. Three-particle bound state in the unitary limit
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2. Energy shift of the three-particle ground state

∆E2 =
4πα

mL3

(

1 +
c1
L

+
c2
L2

+
c3
L3

)

+O(L−7)

∆E3 =
12πa

mL3

(

1 +
d1
L

+
d2
L2

+
d̄3
L3

lnL+
d3
L3

)

+O(L−7)

• The coupling d3 contains two-body contributions (scattering
length, effective radius) as well as the three-body term

• Three-bedy contributions can be separated, if the many-body
states (4,5,. . . particles) are included

• Multipion systems in lattice QCD has been considered
S.R. Beane, W. Detmold, T.C. Luu, K. Orginos, M.J. Savage and A. Torok, PRL

100 (2008) 082004
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Energy shift in the ϕ4 theory

F. Romero-Lopez, A. Rusetsky and C. Urbach, in preparation

S =
∑

x

(

−κµ(ϕ∗
xϕx+µ + c.c.)− λ(|ϕx|2 − 1) + |ϕx|2

)

• The calculations are performed for different values of L

• For our choice of parameters λ and κ: perturbative, the phase
shift does nor exceed few degrees

• Single particle mass: perfectly fits the one-loop expression:

M(L)−M = const
K1(ML)

(ML)1/2
∼ const

exp(−ML)

(ML)3/2

• Extracting H0 at small L: does one have control over
exponentially suppressed contributions?
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Exponentially suppressed contribitions: 2-body levels

Using quasi-potential reduction of the Bethe-Salpeter equation. . .

E2 − 2M(L) =
1

L3
TL(0,0, E2)

TL = T̄L + T̄L(g
′
L − g∞)TL , T̄L = VL + VLg∞T̄L

Leading exponentially suppressed term:

p1

p2 q2

q1

k 1k+p −q1

VL − V∞ ∼ exp(−ML)

(ML)1/2
→֒ E2 − 2M(L)

∣
∣
∣
∣
exp

∼ exp(−ML)

(ML)7/2
+ · · ·

→֒ The difference E2 − 2M(L) already captures the leading

exponentially suppressed contribution. The correction coming from

the potential is suppressed by an additional factor L−2
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Preliminary results of simulations

• The single-particle mass M(L), as well as two- and

three-particle levels E2 and E3 have been measured for different
values of L from L = 4 until L = 24.

• The two-body scattering lenght a and the effective radius r have
been extracted

• The three-body force has been extracted: definitely different
from zero!
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Conclusions

• An EFT formalism in a finite volume is proposed to analyze the
data in the three-particle sector

• The low-energy couplings H0, H2, . . . are fitted to the spectrum;
S-matrix is obtained through the solution of equations

• A systematic approach: allows the inclusion of higher partial
waves, derivative couplings, two→three transitions, relativistic
kinematics,. . .

• Equivalent to other known approaches, much easier to use!

• Reduction of the quantization condition is possible, according to
the octahedral symmetry

• Extraction of the three-body couplings both in non-perturbative
and perturbative regimes is discussed, backed by the lattice

results in the ϕ4 theory
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Outlook

• Three-particle Lellouch-Lüscher formula

• Three-nucleon interactions: inclusion of the long-range forces

• Inclusion of relativistic effects, higher partial waves, spin, partial
wave mixing, etc

• Full group-theoretical analysis of the three-particle equation in
the rectangular box including moving frames and the higher
partial waves
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