Tetra-Neutron from Chiral Interactions

Stefan Alexa

Institut für Kernphysik - TU Darmstadt

Stefan Alexa – IKP TUD – Hirschegg 2018 – 1

Motivation

Experiment

- Candidate resonance at (0.83 ± 1.89_{tot}) MeV and Γ ≤ 2.6 MeV Kisamori *et al.*, PRL **116**, 052501 (2016)
- Ongoing Experiments, see talks by Aumann, Shimoura and Marqués

Theory

- Complex scaling and T = 3/2 isospin 3-neutron force Hiyama, Lazauskas, Carbonell, Kamimura PRC 93, 044004 (2016)
- HORSE method with JISP16 potential $E_r = 0.8 \text{ MeV} \Gamma = 1.4 \text{ MeV}$

Shirokov, Papadimitriou, Mazur, Mazur, Roth, Vary, PRL 117, 182502 (2016)

• Quantum Monte-Carlo with local chiral interactions $E_r = 2 \text{ MeV} \Gamma = ? \text{MeV}$

Gandolfi, Hammer, Klos, Lynn, Schwenk PRL 118, 232501 (2017)

■ Gamow-NCSM with two-body chiral interactions $E_r = 7.3 \text{ MeV}$ $\Gamma \ge 3.48 \text{ MeV}$

Fossez, Rotureau, Michel, and Płoszajczak PRL 119, 032501 (2017)

Motivation

Following HORSE method

See A. Shirokov's talk this morning

Shirokov, Mazur, Mazur, Vary, Phys. Rev. C 94, 064320 (2016) Shirokov et al. PRL 117, 182502 (2016)

- Relative coordinate / Jacobi-NCSM
- Application to 4n with modern chiral NN+3N interactions
- Model space convergence and SRG effects
- Benchmark of method with ⁴He+n

HORSE

Harmonic Oscillator Representation of Scattering Equations

$$\tan \left(\delta_{\ell}(k)\right) = -\frac{j_{\ell}(ka) - kaR_{\ell}j_{\ell}'(ka)}{n_{\ell}(ka) - kaR_{\ell}n_{\ell}'(ka)}$$
$$\tan \left(\delta_{\ell}(E)\right) = -\frac{S_{N\ell}(E) - G_{NN}^{\ell}(E)S_{N+2,\ell}(E)}{C_{N\ell}(E) - G_{NN}^{\ell}(E)C_{N+2,\ell}(E)}$$

Single-State HORSE

$$\tan\left(\delta_{\ell}(E_{\nu})\right) = -\frac{S_{N+2,\ell}(E_{\nu})}{C_{N+2,\ell}(E_{\nu})}$$

Post processing of NCSM calculation

Systematic study of N_{max} convergence

For $N_{\text{max}} \rightarrow \infty$ results should be exact

HORSE

Obtaining phase shift curve:

4n

- Vary model space truncation N_{max} (range N_{max} = 0 to 26)
- Vary frequency ħΩ (range ħΩ = 0.5 to 40 MeV)
- Extract lowest energy eigenvalue for each (ħΩ, N_{max})

⁴He+n

- Steps as for 4n for ⁴He and ⁵He
- Subtract ⁴He ground state energy from desired
 ⁵He channel with same ħΩ and N_{max}

Plug into phase shift relation

$$an\left(\delta_\ell(E_
u)
ight)=-rac{S_{N+2,\ell}(E_
u)}{C_{N+2,\ell}(E_
u)}$$

No-Core Shell Model

m-scheme-NCSM

- A-body Slater determinants from HO states
- N_{max} : Total A-body excitation quanta → Impose N_{max} truncation

Jacobi-NCSM

- CoM separation
- Choice of angular momentum channel
- HO basis intrinsic Jacobi-coordinate with good J
- Equivalent N_{max} truncation

 \Rightarrow Diagonalize Hamilton matrix

Jacobi-NCSM

Allows for larger N_{max} due to smaller basis dimension
 Inclusion of full NN+3N matrix elements

Similarity Renormalization Group

$$\frac{\mathrm{d}}{\mathrm{d}\alpha} \boldsymbol{H}(\alpha) = [\boldsymbol{\eta}(\alpha), \boldsymbol{H}(\alpha)]$$
$$\boldsymbol{\eta}(\alpha) = m_N^2 [\boldsymbol{T}_{\mathrm{int}}, \boldsymbol{H}(\alpha)]$$

Unitary transformation

- Decouples high and low momenta ⇒ Improved N_{max} convergence
- BUT: Induced many-body terms $H(\alpha) = H_{\alpha}^{(1)} + H_{\alpha}^{(2)} + H_{\alpha}^{(3)} + H_{\alpha}^{(4)} + ...$ ⇒ Assess via α -dependence

Tetra-Neutron

Interactions

JISP16

NN only

Shirokov, Vary, Mazur, Weber, PLB 644, 33 (2007)

- EM/N
 - SRG evolved $\alpha = (0.04, 0.06, 0.08) \text{ fm}^4$
 - Cut-off of $\Lambda_{3N} = 400$ and 500 MeV
 - Full 3N and 3N induced

NN: Entem and Machleidt, PRC **68**, 41001 (2003) 3N: Navratil, Few-Body Syst. **41**, 117 (2007)

N2LO SAT

- SRG evolved $\alpha = (0.04, 0.08) \text{ fm}^4$
- Cut-off of $\Lambda = 500$ MeV

Ekström et al., PRC 91, 051301 (2015)

EMN 2017

- Only SRG induced 3N forces
- SRG evolved $\alpha = (0.04, 0.08)$ fm⁴
- Cut-off of $\Lambda = 500 \text{ MeV}$
- Chiral order from N2LO to N4LO

Entem, Machleidt, Nosyk, PRC 96, 024004 (2017)

NCSM Data

Tetra-Neutron

Model Space Convergence

Stefan Alexa – IKP TUD – Hirschegg 2018 – 12

Phase Shift - Convergence

Phase Shift - Convergence

Resonance Parameters

Interpolation of phase shift points

- **Large model space (** $N_{max} = 26$ **) due to Jacobi-NCSM**
- Phase shift not fully converged
- Inflection point as indicator for resonance energy
- Resonance parameters compatible with experiment

Tetra-Neutron

Interaction effects, influence of SRG and cut-off

Stefan Alexa – IKP TUD – Hirschegg 2018 – 17

- Resonance parameters robust w.r.t to interactions
- REMINDER:
 - N_{max} = 26 not fully converged
 - Inflection point only indicators of resonance energy

Benchmark

⁴He+n scattering

W.I.P.

Benchmark: ⁴He+n scattering

Data: Navratil, Roth, Quaglioni, Phys. Rev. C 82, 034609 (2010) States All

Stefan Alexa – IKP TUD – Hirschegg 2018 – 25

Benchmark: ⁴He+n scattering

Data: Navratil, Roth, Quaglioni, Phys. Rev. C 82, 034609 (2010)

Stefan Alexa - IKP TUD - Hirschegg 2018 - 26

Summary

Summary

- HORSE method enables phase shift extraction from NCSM
- Relative coordinate NCSM allows for large N_{max}
- Phase shift convergence w.r.t to N_{max} not fully reached
- Results compatible with experiment
- Little sensitivity to interactions

Outlook

- Uncertainty quantification
- Resonance parameter extraction
- Full HORSE technically possible with Jacobi-NCSM
- Complementary Gamow-NCSM
- Results of experiments
- Tri-neutron

Thanks to my group & collaborators

D. Derr, E. Gebrerufael, A. Geißel, T. Hüther, R. Roth, S. Schulz, C. Stumpf, A. Tichai, K. Vobig, R. Wirth Institut für Kemphysik, TU Darmstadt

Thank you for your attention!

Deutsche Forschungsgemeinschaft

DFG

Exzellente Forschung für Hessens Zukunft

Bundesministerium für Bildung und Forschung

COMPUTING TIME

BACKUP

Stefan Alexa – IKP TUD – Hirschegg 2018 – 29

Results - Convergence

- Exponential fit
- Variation in number of points considered in fit

Obtaining resonance parameters

Parametrize phase shift

$$\delta_\ell(E) = \delta_R(E) + \boldsymbol{\phi}(E)$$

Resonant part

$$\delta_R(E) = -\tan^{-1}\left(rac{a\sqrt{E}}{E-b^2}
ight)$$

Resonance energy

$$E_R = b^2 - \frac{a^2}{2}$$

Resonance width

$$\Gamma = 2a\sqrt{b^2 - \frac{a^2}{4}}$$

Obtaining resonance parameters

Background

Taylor expansion

$$\phi_1(E) = c\sqrt{E} + d\sqrt{E}^3 + f\sqrt{E}^5$$
$$\phi_2(E) = c\sqrt{E} + \dots + h\sqrt{E}^9$$

Padé expansion

$$\phi_3(E) = \frac{w_1 \sqrt{E} + w_3 \sqrt{E}^3 + c \sqrt{E}^5}{1 + w_2 E + w_4 E^2 + w_6 E^3 + d E^4}$$

Results - Resonance energy and width

Results - Resonance energy and width

Results - Resonance energy and width

