Few-body resonances from finite-volume calculations

Sebastian König
in collaboration with P. Klos, J. Lynn, H.-W. Hammer, and A. Schwenk

International Workshop XLVI on Gross Properties of Nuclei and Nuclear Excitations:
Multiparticle resonances in hadrons, nuclei, and ultracold gases
Hirschegg, Austria
January 18, 2018

Few-neutron systems

terra incognita at the doorstep...

- bound dineutron state not excluded by pionless EFT

Hammer + SK, PLB 736208 (2014)

- recent indications for a three-neutron resonance state...

Gandolfi et al., PRL 118232501 (2017)

- ... although excluded by previous theoretical work

Offermann + Glöckle, NPA 318, 138 (1979); Lazauskas + Carbonell, PRC 71044004 (2005)

- possible evidence for tetraneutron resonance

Tetraneutron evidence

Physics about browse press collections

Viewpoint: Can Four Neutrons Tango?

Nigel Orr, Laboratoire de Physique Corpusculaire de Caen, ENSICAEN, IN2P3/CNRS et Université de Caen Normandie, 14050 Caen cedex, France

February 3, 2016 . Physics 9, 14
Evidence that the four-neutron system known as the tetraneutron exists as a resonance has been uncovered in an experiment at the RIKEN Radioactive Ion Beam Factory.

Experimental setup

Kisamori et al., PRL 116052501 (2016)

Short (recent) history of tetraneutron states

(1) 2002: experimental claim of bound tetraneutron
(2) 2003: several studies indicate unbound four-neutron system

Bertulani et al.. JPG 29 2431; Timofeyuk, JPG 29 L9; Pieper, PRL 90252501
(3) 2005: observable tetraneutron resonance excluded

Short (recent) history of tetraneutron states

(1) 2002: experimental claim of bound tetraneutron
(2) 2003: several studies indicate unbound four-neutron system

Bertulani et al.. JPG 29 2431; Timofeyuk, JPG 29 L9; Pieper, PRL 90252501
(3) 2005: observable tetraneutron resonance excluded
(9) 2016: RIKEN experiment: possible tetraneutron resonance

$$
E_{R}=\left(0.83 \pm 0.65_{\text {stat. }} \pm 1.25_{\text {syst. }}\right) \mathrm{MeV}, \Gamma \lesssim 2.6 \mathrm{MeV} \text { Kisamori et al,, PRL } 116052501
$$

(0) following this: several new theoretical investigations

- complex scaling \rightarrow need unphys. $T=3 / 2$ 3N force Hiyama et al., PRC 93044004 (2016)
- incompatible predictions:

Short (recent) history of tetraneutron states

(1) 2002: experimental claim of bound tetraneutron
(2) 2003: several studies indicate unbound four-neutron system

Bertulani et al.. JPG 29 2431; Timofeyuk, JPG 29 L9; Pieper, PRL 90252501
(3) 2005: observable tetraneutron resonance excluded
(9) 2016: RIKEN experiment: possible tetraneutron resonance

$$
E_{R}=\left(0.83 \pm 0.65_{\text {stat. }} \pm 1.25_{\text {syst. }}\right) \mathrm{MeV}, \Gamma \lesssim 2.6 \mathrm{MeV} \quad \text { Kisamori et al., PRL } 116052501
$$

(0) following this: several new theoretical investigations

- complex scaling \rightarrow need unphys. $T=3 / 2$ 3N force Hiyama et al, PRC 93044004 (2016)
- incompatible predictions:

- indications for three-neutron resonance. . .
- ... lower in energy than tetraneutron state

Gandolfi et al., PRL 118232501 (2017)
Few-body resonances from finite-volume calculations - p. 4

How to tackle resonances?

Resonances

- metastable states
- decay width \leftrightarrow lifetime

(1) Look for jump by π in scattering phase shift:
\checkmark simple \boldsymbol{X} possibly ambiguous (background), need 2-cluster system

How to tackle resonances?

Resonances

- metastable states
- decay width \leftrightarrow lifetime

(1) Look for jump by π in scattering phase shift:
\checkmark simple \boldsymbol{X} possibly ambiguous (background), need 2-cluster system

(2) Find complex poles in S-matrix:
e.g., Glöckle, PRC 18564 (1978); Borasoy et al., PRC 74055201 (2006);
\checkmark direct, clear signature \boldsymbol{X} technically challenging, needs analytic pot.

How to tackle resonances?

Resonances

- metastable states
- decay width \leftrightarrow lifetime

(1) Look for jump by $\boldsymbol{\pi}$ in scattering phase shift:
\checkmark simple \boldsymbol{X} possibly ambiguous (background), need 2-cluster system

(2) Find complex poles in S-matrix:
e.g., Glöckle, PRC 18564 (1978); Borasoy et al., PRC 74055201 (2006);
\checkmark direct, clear signature \boldsymbol{X} technically challenging, needs analytic pot.
(3) Put system into periodic box!

Finite periodic boxes

- physical system enclosed in finite volume (box)
- typically used: periodic boundary conditions
\rightsquigarrow volume-dependent energies

Finite periodic boxes

- physical system enclosed in finite volume (box)
- typically used: periodic boundary conditions
\rightsquigarrow volume-dependent energies

Lüscher formalism

Physical properties encoded in the L-dependent energy levels!

- infinite-volume S-matrix governs discrete finite-volume spectrum
- PBC natural for lattice calculations...
- ... but can also be implemented with other methods

Bound states

$$
\hat{H}\left|\psi_{B}\right\rangle=-\frac{\kappa^{2}}{2 \mu}\left|\psi_{B}\right\rangle
$$

binding momentum κ
\leftrightarrow intrinsic length scale

Asymptotic wavefunction overlap

$$
\Delta B(L)=\sum_{|\mathbf{n}|=1} \int_{\text {M. Luscher, Commun. Math. Phys. } 104} \mathrm{~d}^{3} r \psi_{B}^{*}(\mathbf{r})(\text { (1986) }) ~ V(\mathbf{r}) \psi_{B}(\mathbf{r}+\mathbf{n} L)+\mathcal{O}\left(\mathrm{e}^{-\sqrt{2} \kappa L}\right)
$$

- for S -wave states, one finds $\Delta B(L)=-3 \pi|\gamma|^{2} \frac{\mathrm{e}^{-\kappa L}}{\mu L}+\mathcal{O}\left(\mathrm{e}^{-\sqrt{2} \kappa L}\right)$
- in general, the prefactor is a polynomial in $1 / \kappa L$

General bound-state volume dependence

 volume dependence \leftrightarrow overlap of asymptotic wave functions

Volume dependence of N-body bound state

$$
\begin{aligned}
& \Delta B_{N}(L) \propto\left(\kappa_{A \mid N-A} L\right)^{1-d / 2} K_{d / 2-1}\left(\kappa_{A \mid N-A} L\right) \\
& \sim \exp \left(-\kappa_{A \mid N-A} L\right) / L^{(d-1) / 2} \quad \text { as } L \rightarrow \infty
\end{aligned}
$$

$$
\text { (} L=\text { box size, } d \text { no. of spatial dimensions, } K_{n}=\text { Bessel function) }
$$

SK and D. Lee, arXiv:1701.00279 [hep-lat]

- channel with smallest $\kappa_{A \mid N-A}$ determines asymptotic behavior

General bound-state volume dependence

 volume dependence \leftrightarrow overlap of asymptotic wave functions

Volume dependence of N-body bound state

$$
\begin{aligned}
& \Delta B_{N}(L) \propto\left(\kappa_{A \mid N-A} L\right)^{1-d / 2} K_{d / 2-1}\left(\kappa_{A \mid N-A} L\right) \\
& \sim \exp \left(-\kappa_{A \mid N-A} L\right) / L^{(d-1) / 2} \quad \text { as } L \rightarrow \infty
\end{aligned}
$$

($L=$ box size, d no. of spatial dimensions, $K_{n}=$ Bessel function)
SK and D. Lee, arXiv:1701.00279 [hep-lat]

- channel with smallest $\kappa_{A \mid N-A}$ determines asymptotic behavior
- $\Delta B_{N}(L)$ prop. to ANC of $A \mid N-A$ system \rightsquigarrow extract from L-dep.!

Numerical results

\hookrightarrow straight lines \leftrightarrow excellent agreement with prediction

N	B_{N}	$L_{\text {min }} \ldots L_{\text {max }}$	$\kappa_{\text {fit }}$	$\kappa_{1 \mid N-1}$
$d=1, V_{0}=-1.0, R=1.0$				
2	0.356	$20 \ldots 48$	$0.59536(3)$	0.59625
3	1.275	$15 \ldots 32$	$1.1062(14)$	1.1070
4	2.859	$12 \ldots 24$	$1.539(3)$	1.541
5	5.163	$12 \ldots 20$	$1.916(21)$	1.920
$d=3, V_{0}=-5.0, R=1.0$				
2	0.449	$15 \ldots 24$	$0.6694(2)$	0.6700
3	2.916	$4 \ldots 14$	$1.798(3)$	1.814

Bound-state summary

(1) leading volume dependence known for arbitrary bound states
(2) reproduces known results, checked numerically
(3) calculate ANCs, single-volume extrapolations possible!
(9) applications to lattice QCD, EFT, cold-atomic systems

Bound-state summary

(1) leading volume dependence known for arbitrary bound states
(2) reproduces known results, checked numerically
(3) calculate ANCs, single-volume extrapolations possible!
(9) applications to lattice QCD, EFT, cold-atomic systems
(6) typically, one exponential dominates, but not necessarily:

- three-body system unbound
- asymptotic slope from $2 \mid 2$ separation

Finite-volume resonance signatures

Lüscher formalism: phase shift \leftrightarrow box energy levels

$$
p \cot \delta_{0}(p)=\frac{1}{\pi L} S(\eta), \quad \eta=\left(\frac{L p}{2 \pi}\right)_{\text {Lüscher, Nucl. Phys. B } 354531}^{2}, \quad p=p(E(L))
$$

resonance contribution \rightsquigarrow avoided level crossing
Wiese, Nucl. Phys. B (Proc. Suppl.) 9, 609 (1989);

Finite-volume resonance signatures

Lüscher formalism: phase shift \leftrightarrow box energy levels

$$
p \cot \delta_{0}(p)=\frac{1}{\pi L} S(\eta) \quad, \quad \eta=\left(\frac{L p}{2 \pi}\right)^{2} \quad, \quad p=p(E(L))
$$

resonance contribution \rightsquigarrow avoided level crossing
Wiese, Nucl. Phys. B (Proc. Suppl.) 9, 609 (1989);

Finite-volume resonance signatures

Lüscher formalism: phase shift \leftrightarrow box energy levels

$$
p \cot \delta_{0}(p)=\frac{1}{\pi L} S(\eta), \quad \eta=\left(\frac{L p}{2 \pi}\right)^{2} \quad, \quad p=p(E(L))
$$

Lüscher, Nucl. Phys. B 354531 (1991);
resonance contribution \rightsquigarrow avoided level crossing
Wiese, Nucl. Phys. B (Proc. Suppl.) 9, 609 (1989);

Finite-volume resonance signatures

Lüscher formalism: phase shift \leftrightarrow box energy levels

$$
p \cot \delta_{0}(p)=\frac{1}{\pi L} S(\eta), \quad \eta=\left(\frac{L p}{2 \pi}\right)^{2} \quad, \quad p=p(E(L))
$$

Lüscher, Nucl. Phys. B 354531 (1991);
resonance contribution \rightsquigarrow avoided level crossing
Wiese, Nucl. Phys. B (Proc. Suppl.) 9, 609 (1989);

Finite-volume resonance signatures

Lüscher formalism: phase shift \leftrightarrow box energy levels

$$
p \cot \delta_{0}(p)=\frac{1}{\pi L} S(\eta), \quad \eta=\left(\frac{L p}{2 \pi}\right)^{2} \quad, \quad p=p(E(L))
$$

Lüscher, Nucl. Phys. B 354531 (1991);
resonance contribution \rightsquigarrow avoided level crossing
Wiese, Nucl. Phys. B (Proc. Suppl.) 9, 609 (1989);

Effect can be very subtle in practice...
Bernard et al., JHEP 0808024 (2008); Döring et al., EPJA 47139 (2011);

Discrete variable representation

Needed: calculation of several few-body energy levels

- difficult to achieve with QMC methods
- direct discretization possible, but not very efficient
\hookrightarrow use a Discrete Variable Representation (DVR)
well established in quantum chemistry, suggested for nuclear physics by Bulgac+Forbes, PRC 87 87, 051301 (2013)

Main features

- basis functions localized at grid points
- potential energy matrix diagonal
- kinetic energy matrix sparse (in $d>1$)...
- ... or implemented via Fast Fourier Transform
periodic boundary condistions
\leftrightarrow plane waves as starting point

DVR construction

- start with some initial basis; here: $\phi_{i}(x)=\frac{1}{\sqrt{L}} \exp \left(\mathrm{i} \frac{2 \pi i}{L} x\right)$
- consider $\left(x_{k}, w_{k}\right)$ such that $\sum_{k=-N / 2}^{N / 2-1} w_{k} \phi_{i}^{*}\left(x_{k}\right) \phi_{j}\left(x_{k}\right)=\delta_{i j}$

unitary trans.

DVR states

- $\psi_{k}(x)$ localized at $x_{k}, \psi_{k}\left(x_{j}\right)=\delta_{k j} / \sqrt{w_{k}}$
- note: momentum mode $\phi_{i} \leftrightarrow$ spatial mode ψ_{k}

DVR features

(1) potential energy is diagonal!

$$
\begin{aligned}
& \left\langle\psi_{k}\right| V\left|\psi_{l}\right\rangle=\int \mathrm{d} x \psi_{k}(x) V(x) \psi_{l}(x) \\
& \quad \approx \sum_{n=-N / 2}^{N / 2-1} w_{n} \psi_{k}\left(x_{n}\right) V\left(x_{n}\right) \psi_{l}\left(x_{n}\right)=V\left(x_{k}\right) \delta_{k l}
\end{aligned}
$$

- no need to evaluate integrals
- number N of DVR states controls quadrature approximation

DVR features

(1) potential energy is diagonal!

$$
\begin{aligned}
& \left\langle\psi_{k}\right| V\left|\psi_{l}\right\rangle=\int \mathrm{d} x \psi_{k}(x) V(x) \psi_{l}(x) \\
& \quad \approx \sum_{n=-N / 2}^{N / 2-1} w_{n} \psi_{k}\left(x_{n}\right) V\left(x_{n}\right) \psi_{l}\left(x_{n}\right)=V\left(x_{k}\right) \delta_{k l}
\end{aligned}
$$

- no need to evaluate integrals
- number N of DVR states controls quadrature approximation
(2) kinetic energy is simple (via FFT) or sparse (in $d>1$)!
- plane waves ϕ_{i} are momentum eigenstates $\rightsquigarrow \hat{T}\left|\psi_{k}\right\rangle \sim \mathcal{F}^{-1} \otimes \hat{p}^{2} \otimes \mathcal{F}\left|\psi_{k}\right\rangle$
- $\left\langle\psi_{k}\right| \hat{T}\left|\psi_{l}\right\rangle=$ known in closed form
\hookrightarrow replicated for each coordinate, with Kronecker deltas for the rest

General DVR basis states

- construct DVR basis in simple relative coordinates...
- ...because Jacobi coord. would complicate the boundary conditions
- separate center-of-mass energy (choose $\mathbf{P}=\mathbf{0}$)
- mixed derivatives in kinetic energy operator

$$
\begin{gathered}
\mathbf{x}_{i}=\sum_{i=1}^{n} U_{i j} \mathbf{r}_{i} \\
U_{i j}=\left\{\begin{array}{lll}
\delta_{i j} & \text { for } \quad i, j<n \\
-1 & \text { for } & i<n, j=n \\
1 / n & \text { for } & i=n
\end{array}\right.
\end{gathered}
$$

General DVR state

$$
\left.|s\rangle=\mid\left(k_{1,1}, \cdots, k_{1, d}\right), \cdots,\left(k_{n-1,1}, \cdots\right) ; \text { spins }\right\rangle \in B
$$

General DVR basis states

- construct DVR basis in simple relative coordinates...
- ...because Jacobi coord. would complicate the boundary conditions
- separate center-of-mass energy (choose $\mathbf{P}=\mathbf{0}$)
- mixed derivatives in kinetic energy operator

$$
\begin{gathered}
\mathbf{x}_{i}=\sum_{i=1}^{n} U_{i j} \mathbf{r}_{i} \\
U_{i j}=\left\{\begin{array}{lll}
\delta_{i j} & \text { for } \quad i, j<n \\
-1 & \text { for } & i<n, j=n \\
1 / n & \text { for } & i=n
\end{array}\right.
\end{gathered}
$$

General DVR state

$$
\left.|s\rangle=\mid\left(k_{1,1}, \cdots, k_{1, d}\right), \cdots,\left(k_{n-1,1}, \cdots\right) ; \text { spins }\right\rangle \in B
$$

basis size: $\operatorname{dim} B=(2 S+1)^{n} \times N^{d \times(n-1)}$

(Anti-)symmetrization and parity

Permutation symmetry

- for each $|s\rangle \in B$, construct $|s\rangle_{\mathcal{A}}=\mathcal{N} \sum_{p \in S_{n}} \operatorname{sgn}(p) D_{n}(p)|s\rangle$
- then $|s\rangle_{\mathcal{A}}$ is antisymmetric: $\mathcal{A}|s\rangle_{\mathcal{A}}=|s\rangle_{\mathcal{A}}$
- for bosons, leave out $\operatorname{sgn}(p) \rightsquigarrow$ symmetric state
- $D_{n}(p)|s\rangle=$ some other $\left|s^{\prime}\right\rangle \in B$ - modulo PBC
(Anti-)symmetrization and parity

Permutation symmetry

- for each $|s\rangle \in B$, construct $|s\rangle_{\mathcal{A}}=\mathcal{N} \sum_{p \in S_{n}} \operatorname{sgn}(p) D_{n}(p)|s\rangle$
- then $|s\rangle_{\mathcal{A}}$ is antisymmetric: $\mathcal{A}|s\rangle_{\mathcal{A}}=|s\rangle_{\mathcal{A}}$
- for bosons, leave out $\operatorname{sgn}(p) \rightsquigarrow$ symmetric state
- $D_{n}(p)|s\rangle=$ some other $\left|s^{\prime}\right\rangle \in B$ - modulo PBC

This operation partitions the orginal basis, i.e., each state appears in at most one (anti-)symmetric combination.

- efficient reduction to (anti-)symmetrized orthonormal basis
\hookrightarrow no need for numerically expensive diagonalization!
- $B \rightarrow B_{\text {reduced }}$, significantly smaller: $N \rightarrow N_{\text {reduced }} \approx N / n$!

Note: parity (with projector $\mathcal{P}_{ \pm}=1 \pm \mathcal{P}$) can be handled analogously.

DVR computational aspects

$$
\text { DVR basis size } N=N_{\text {spin }}\left(\times N_{\text {isospin }}\right) \times N_{\text {DVR }}^{n_{\text {dim }} \times\left(n_{\text {body }}-1\right)}
$$

- $N_{\text {spin }}=(2 S+1)^{n_{\text {body }}}, N_{\text {isospin }}=1$ for neutrons only
- $3 n: 8 \times N_{\mathrm{DVR}}^{6}, 4 n: 16 \times N_{\mathrm{DVR}}^{9} \rightsquigarrow$ large-scale calculation

DVR computational aspects

$$
\text { DVR basis size } N=N_{\text {spin }}\left(\times N_{\text {isospin }}\right) \times N_{\mathrm{DVR}}^{n_{\text {dim }} \times\left(n_{\text {body }}-1\right)}
$$

- $N_{\text {spin }}=(2 S+1)^{n_{\text {body }}}, N_{\text {isospin }}=1$ for neutrons only
- $3 n: 8 \times N_{\mathrm{DVR}}^{6}, 4 n: 16 \times N_{\mathrm{DVR}}^{9} \rightsquigarrow$ large-scale calculation

Forschungszentrum Jülich

hhlr.tu-darmstadt.de

Distributed implementation

- written from scratch in C++ (and Haskell), together with P. Klos
- can handle arbitrary $n_{\text {dim }}, n_{\text {body }}$, and spin
- hybrid parallelism: TBB + MPI, multithreaded libraries (FFTW, librsb)

DVR computational aspects

$$
\text { DVR basis size } N=N_{\text {spin }}\left(\times N_{\text {isospin }}\right) \times N_{\mathrm{DVR}}^{n_{\text {dim }} \times\left(n_{\text {body }}-1\right)}
$$

- $N_{\text {spin }}=(2 S+1)^{n_{\text {body }}}, N_{\text {isospin }}=1$ for neutrons only
- $3 n: 8 \times N_{\mathrm{DVR}}^{6}, 4 n: 16 \times N_{\mathrm{DVR}}^{9} \rightsquigarrow$ large-scale calculation
- diagonalization via distributed Lanczos algorithm (PARPACK)
\rightsquigarrow large matrix-vector products
- kinetic part (via FFT) in original basis (before reduction)
\hookrightarrow expansion/reduction via sparse matrices

(note: kinetic matrix diagonal in spin-configurations space)

DVR computational aspects

$$
\text { DVR basis size } N=N_{\text {spin }}\left(\times N_{\text {isospin }}\right) \times N_{\text {DVR }}^{n_{\text {dim }} \times\left(n_{\text {body }}-1\right)}
$$

- $N_{\text {spin }}=(2 S+1)^{n_{\text {body }}}, N_{\text {isospin }}=1$ for neutrons only
- $3 n: 8 \times N_{\mathrm{DVR}}^{6}, 4 n: 16 \times N_{\mathrm{DVR}}^{9} \rightsquigarrow$ large-scale calculation
- diagonalization via distributed Lanczos algorithm (PARPACK)
\rightsquigarrow large matrix-vector products
- kinetic part (via FFT) in original basis (before reduction)
\hookrightarrow expansion/reduction via sparse matrices

(note: kinetic matrix diagonal in spin-configurations space)

DVR computational aspects

$$
\text { DVR basis size } N=N_{\text {spin }}\left(\times N_{\text {isospin }}\right) \times N_{\text {DVR }}^{n_{\text {dim }} \times\left(n_{\text {body }}-1\right)}
$$

- $N_{\text {spin }}=(2 S+1)^{n_{\text {body }}}, N_{\text {isospin }}=1$ for neutrons only
- $3 n: 8 \times N_{\mathrm{DVR}}^{6}, 4 n: 16 \times N_{\mathrm{DVR}}^{9} \rightsquigarrow$ large-scale calculation
- diagonalization via distributed Lanczos algorithm (PARPACK)
\rightsquigarrow large matrix-vector products
- kinetic part (via FFT) in original basis (before reduction)

(note: kinetic matrix diagonal in spin-configurations space)
- potential part still diagonal in symmetry-reduced basis

Broken symmetry

The finite volume breaks the symmetry of the system:

rotation group $S O(3)$

cubic group O

Irreducible representations of $S O(3)$ are reducible with respect to O !

- finite subgroup of $S O(3)$
- number of elements $=24$
- five irreducible representations

Γ	A_{1}	A_{2}	E	T_{1}	T_{2}
$\operatorname{dim} \Gamma$	1	1	2	3	3

Cubic projection

$$
\begin{aligned}
& \text { Cubic projector } \\
& \mathcal{P}_{\Gamma}=\frac{\operatorname{dim} \Gamma}{24} \sum_{R \in \mathcal{O}} \chi_{\Gamma}(R) D_{n}(R), \chi_{\Gamma}(R)=\text { character }
\end{aligned}
$$

- $D_{n}(R)$ realizes a cubic rotation R on the n-body DVR basis
- \rightsquigarrow permutation/inversion of relative coordinate components
- indices are wrappen back into range $-N / 2, \ldots, N / 2-1$

Cubic projection

$$
\begin{aligned}
& \text { Cubic projector } \\
& \mathcal{P}_{\Gamma}=\frac{\operatorname{dim} \Gamma}{24} \sum_{R \in \mathcal{O}} \chi_{\Gamma}(R) D_{n}(R), \chi_{\Gamma}(R)=\text { character }
\end{aligned}
$$

- $D_{n}(R)$ realizes a cubic rotation R on the n-body DVR basis
- \rightsquigarrow permutation/inversion of relative coordinate components
- indices are wrappen back into range $-N / 2, \ldots, N / 2-1$

numerical implementation: $\hat{H} \rightarrow \hat{H}+\lambda\left(\mathbf{1}-\mathcal{P}_{\Gamma}\right), \quad \lambda \gg E$

Three-body resonance example

three-boson system

- shifted Gaussian 2-body potential

Three-body resonance example

three-boson system

- shifted Gaussian 2-body potential
- plus short-range 3-body force

Three-body resonance example

three-boson system

- shifted Gaussian 2-body potential
- plus short-range 3-body force

Three-body resonance example

three-boson system

- shifted Gaussian 2-body potential
- plus short-range 3-body force

Three-body resonance example

three-boson system

- shifted Gaussian 2-body potential
- plus short-range 3-body force

Three-body resonance example

three-boson system

- shifted Gaussian 2-body potential
- plus short-range 3-body force

\hookrightarrow possible to move three-body resonance

Four-body spectra (very preliminary)

four bosons

crossings need not be avoided!

Current status

handle large $N_{\text {DVR }}$ for three-body systems (current record: 28) chiral interactions (non-diagonal due to spin dependence!) projection onto cubic irreps. $\left(H \rightarrow H+\lambda\left(1-P_{\Gamma}\right), \lambda\right.$ large $)$

Current status

handle large $N_{\text {DVR }}$ for three-body systems (current record: 28) chiral interactions (non-diagonal due to spin dependence!) projection onto cubic irreps. ($H \rightarrow H+\lambda\left(1-P_{\Gamma}\right), \lambda$ large)

Work in progress

- further optimization (sparse-matrix kin. energy instead of FFT)
\hookrightarrow need to reach decent $N_{\text {DVR }}$ for four-neutron calculation!
- isospin degrees of freedom \rightsquigarrow treat general nuclear systems
- different boundary conditions (e.g., antiperiodic)

Thank you!

... and thanks to my collaborators:

- Philipp Klos, Joel Lynn
- Hans-Werner Hammer, Achim Schwenk
- Dean Lee

TECHNISCHE
UNIVERSITATT
DARMSTADT

