Few-body resonances from finite-volume calculations

Sebastian König

in collaboration with P. Klos, J. Lynn, H.-W. Hammer, and A. Schwenk

International Workshop XLVI on Gross Properties of Nuclei and Nuclear Excitations: Multiparticle resonances in hadrons, nuclei, and ultracold gases

Hirschegg, Austria

January 18, 2018

work in progress

Few-neutron systems

terra incognita at the doorstep...

bound dineutron state not excluded by pionless EFT

Hammer + SK, PLB 736 208 (2014)

recent indications for a three-neutron resonance state.

Gandolfi et al., PRL 118 232501 (2017)

...although excluded by previous theoretical work

Offermann + Glöckle, NPA 318, 138 (1979); Lazauskas + Carbonell, PRC 71 044004 (2005)

possible evidence for tetraneutron resonance

Kisamori et al., PRL 116 052501 (2016)

Tetraneutron evidence

Kisamori et al., PRL 116 052501 (2016)

Short (recent) history of tetraneutron states

2002: experimental claim of bound tetraneutron Marques et al., PRC 65 044006

2003: several studies indicate unbound four-neutron system

Bertulani et al.. JPG 29 2431; Timofeyuk, JPG 29 L9; Pieper, PRL 90 252501

2005: observable tetraneutron resonance excluded Lazauskas PRC 72 034003

Short (recent) history of tetraneutron states

- **2002:** experimental claim of bound tetraneutron Margues et al., PRC 65 044006
- 2003: several studies indicate unbound four-neutron system

Bertulani et al., JPG 29 2431; Timofevuk, JPG 29 L9; Pieper, PRL 90 252501

2005: observable tetraneutron resonance excluded

Lazauskas PRC 72 034003

2016: RIKEN experiment: possible tetraneutron resonance $E_R = (0.83 \pm 0.65_{
m stat.} \pm 1.25_{
m syst.})~{
m MeV}$, $\Gamma \lesssim 2.6~{
m MeV}~{
m Kisamori~\it et~al.}$, PRL 116 052501

- following this: several new theoretical investigations
- complex scaling \rightarrow need unphys. T=3/2 3N force Hiyama et al., PRC 93 044004 (2016)
 - incompatible predictions:

Short (recent) history of tetraneutron states

10 2002: experimental claim of bound tetraneutron

Marques et al., PRC 65 044006

2003: several studies indicate unbound four-neutron system

Bertulani et al.. JPG 29 2431; Timofeyuk, JPG 29 L9; Pieper, PRL 90 252501

3 2005: observable tetraneutron resonance excluded

Lazauskas PRC **72** 034003

Q016: RIKEN experiment: possible tetraneutron resonance

 $E_R=(0.83\pm0.65_{
m stat.}\pm1.25_{
m syst.})~{
m MeV}$, $\Gamma\lesssim2.6~{
m MeV}$ Kisamori *et al.*, PRL 116 052501

- 6 following this: several new theoretical investigations
 - ullet complex scaling o need unphys. T=3/2 3N force Hiyama et al., PRC 93 044004 (2016)
 - incompatible predictions:

- indications for three-neutron resonance...
- ...lower in energy than tetraneutron state

Gandolfi et al., PRL 118 232501 (2017)

How to tackle resonances?

Resonances

- metastable states
- decay width ↔ lifetime

- **1** Look for jump by π in scattering phase shift:
 - ✓ simple ✗ possibly ambiguous (background), need 2-cluster system

How to tackle resonances?

Resonances

- metastable states
- decay width ↔ lifetime

1 Look for jump by π in scattering phase shift:

✓ simple ✗ possibly ambiguous (background), need 2-cluster system

Find complex poles in S-matrix:

e.g., Glöckle, PRC 18 564 (1978); Borasoy et al., PRC 74 055201 (2006); ...

✓ direct, clear signature ✗ technically challenging, needs analytic pot.

How to tackle resonances?

Resonances

- metastable states
- decay width ↔ lifetime

1 Look for jump by π in scattering phase shift:

✓ simple ✗ possibly ambiguous (background), need 2-cluster system

Find complex poles in S-matrix:

e.g., Glöckle, PRC 18 564 (1978); Borasoy et al., PRC 74 055201 (2006); ...

✓ direct, clear signature ✗ technically challenging, needs analytic pot.

Put system into periodic box!

Finite periodic boxes

- physical system enclosed in finite volume (box)
- typically used: periodic boundary conditions
- → volume-dependent energies

Finite periodic boxes

- physical system enclosed in finite volume (box)
- typically used: periodic boundary conditions
- → volume-dependent energies

Lüscher formalism

Physical properties encoded in the *L*-dependent energy levels!

- infinite-volume S-matrix governs discrete finite-volume spectrum
- PBC natural for lattice calculations...
- ... but can also be implemented with other methods

Bound states

$$\hat{H} |\psi_B\rangle = -\frac{\kappa^2}{2\mu} |\psi_B\rangle$$

binding momentum κ

 \leftrightarrow intrinsic length scale

Asymptotic wavefunction overlap

$$\Delta B(L) = \sum_{|\mathbf{n}|=1} \int \mathrm{d}^3 r \, \psi_B^*(\mathbf{r}) \, V(\mathbf{r}) \, \psi_B(\mathbf{r} + \mathbf{n}L) + \mathcal{O}(\mathrm{e}^{-\sqrt{2}\kappa L})$$
 M. Lüscher, Commun. Math. Phys. 104 177 (1986)

- for S-wave states, one finds $\Delta B(L)=-3\pi|\gamma|^2\frac{{\rm e}^{-\kappa L}}{\mu L}+\mathcal{O}\big({\rm e}^{-\sqrt{2}\kappa L}\big)$
- ullet in general, the prefactor is a polynomial in $1/\kappa L$

SK, Lee, Hammer, PRL 107 112001 (2011); Annals Phys. 327, 1450 (2012)

General bound-state volume dependence

volume dependence \leftrightarrow overlap of asymptotic wave functions

$$\kappa_{A|N-A} = \sqrt{2\mu_{A|N-A}(B_N - B_A - B_{N-A})}$$

Volume dependence of N-body bound state

$$\Delta B_N(L) \propto (\kappa_{A|N-A}L)^{1-d/2} \; K_{d/2-1}(\kappa_{A|N-A}L)$$

$$\sim \exp\left(-\kappa_{A|N-A}L\right)/L^{(d-1)/2} \; \text{ as } \; L \to \infty$$

$$(L = \text{box size, } d \text{ no. of spatial dimensions, } K_n = \text{Bessel function})$$
 SK and D. Lee, arXiv:1701.00279 [hep-lat]

ullet channel with smallest $\kappa_{A|N-A}$ determines asymptotic behavior

General bound-state volume dependence

volume dependence \leftrightarrow overlap of asymptotic wave functions

$$\kappa_{A|N-A} = \sqrt{2\mu_{A|N-A}(B_N - B_A - B_{N-A})}$$

Volume dependence of N-body bound state

$$\Delta B_N(L) \propto (\kappa_{A|N-A}L)^{1-d/2} \; K_{d/2-1}(\kappa_{A|N-A}L)$$

$$\sim \exp\left(-\kappa_{A|N-A}L\right)/L^{(d-1)/2} \; \; \text{as} \; \; L \to \infty$$

$$(L = \text{box size, } d \text{ no. of spatial dimensions, } K_n = \text{Bessel function})$$
 SK and D. Lee, arXiv:1701.00279 [hep-lat]

- ullet channel with smallest $\kappa_{A|N-A}$ determines asymptotic behavior
- $\Delta B_N(L)$ prop. to ANC of A|N-A system \leadsto extract from L-dep.!

Numerical results

N	B_N	$L_{min} \dots L_{max}$	κ_{fit}	$\kappa_{1 N-1}$					
$d = 1, V_0 = -1.0, R = 1.0$									
2	0.356	2048	0.59536(3)	0.59625					
3	1.275	$15 \dots 32$	1.1062(14)	1.1070					
4	2.859	$12 \dots 24$	1.539(3)	1.541					
5	5.163	1220	1.916(21)	1.920					
$d = 3, V_0 = -5.0, R = 1.0$									
2	0.449	1524	0.6694(2)	0.6700					
3	2.916	$4 \dots 14$	1.798(3)	1.814					

Bound-state summary

- leading volume dependence known for arbitrary bound states
- reproduces known results, checked numerically
- calculate ANCs, single-volume extrapolations possible!
- applications to lattice QCD, EFT, cold-atomic systems

Bound-state summary

- leading volume dependence known for arbitrary bound states
- reproduces known results, checked numerically
- calculate ANCs, single-volume extrapolations possible!
- applications to lattice QCD, EFT, cold-atomic systems
- typically, one exponential dominates, but not necessarily:

- three-body system unbound
- asymptotic slope from 2|2 separation

Lüscher formalism: phase shift ↔ box energy levels

$$p\cot\delta_0(p)=rac{1}{\pi L}S(\eta)$$
 , $\eta=\left(rac{Lp}{2\pi}
ight)^2$, $p=p(E(L))$

resonance contribution \rightsquigarrow avoided level crossing

Wiese, Nucl. Phys. B (Proc. Suppl.) 9, 609 (1989); ...

Lüscher formalism: phase shift \leftrightarrow box energy levels

$$p\cot\delta_0(p)=rac{1}{\pi L}S(\eta)$$
 , $\eta=\left(rac{Lp}{2\pi}
ight)^2$, $p=p(E(L))$

resonance contribution \rightsquigarrow avoided level crossing

Wiese, Nucl. Phys. B (Proc. Suppl.) 9, 609 (1989); .

Lüscher formalism: phase shift \leftrightarrow box energy levels

$$p\cot\delta_0(p)=rac{1}{\pi L}S(\eta)$$
 , $\eta=\left(rac{Lp}{2\pi}
ight)^2$, $p=p(E(L))$

resonance contribution \rightsquigarrow avoided level crossing

Wiese, Nucl. Phys. B (Proc. Suppl.) 9, 609 (1989); .

Lüscher formalism: phase shift \leftrightarrow box energy levels

$$p\cot\delta_0(p)=rac{1}{\pi L}S(\eta)$$
 , $\eta=\left(rac{Lp}{2\pi}
ight)^2$, $p=p(E(L))$

resonance contribution \rightsquigarrow avoided level crossing

Wiese, Nucl. Phys. B (Proc. Suppl.) 9, 609 (1989); .

Lüscher formalism: phase shift \leftrightarrow box energy levels

$$p\cot\delta_0(p)=rac{1}{\pi L}S(\eta)$$
 , $\eta=\left(rac{Lp}{2\pi}
ight)^2$, $p=p(E(L))$

resonance contribution \leadsto avoided level crossing

Wiese, Nucl. Phys. B (Proc. Suppl.) 9, 609 (1989); .

Effect can be very subtle in practice...

Bernard et al., JHEP 0808 024 (2008); Döring et al., EPJA 47 139 (2011); ...

Discrete variable representation

Needed: calculation of <u>several</u> few-body energy levels

difficult to achieve with QMC methods

- Klos et al., PRC 94 054005 (2016)
- direct discretization possible, but not very efficient

well established in quantum chemistry, suggested for nuclear physics by Bulgac+Forbes, PRC 87 87, 051301 (2013)

Main features

- basis functions localized at grid points
- potential energy matrix diagonal
- kinetic energy matrix sparse (in d > 1)...
- ... or implemented via Fast Fourier Transform

 $\begin{array}{l} \textbf{periodic boundary condistions} \\ \leftrightarrow \textbf{plane waves as starting point} \end{array}$

DVR construction

- start with some initial basis; here: $\phi_i(x) = \frac{1}{\sqrt{L}} \exp\left(\mathrm{i} \frac{2\pi i}{L} x\right)$
- \bullet consider (x_k,w_k) such that $\sum\limits_{k=-N/2}^{N/2-1}w_k\,\phi_i^*(x_k)\phi_j(x_k)=\delta_{ij}$

unitary trans.

DVR states

- $\psi_k(x)$ localized at x_k , $\psi_k(x_i) = \delta_{ki}/\sqrt{w_k}$
- **note:** momentum mode $\phi_i \leftrightarrow$ spatial mode ψ_k

DVR features

potential energy is diagonal!

$$\langle \psi_k | V | \psi_l \rangle = \int dx \, \psi_k(x) \, V(x) \, \psi_l(x)$$

$$\approx \sum_{n=-N/2}^{N/2-1} w_n \, \psi_k(x_n) \, V(x_n) \, \psi_l(x_n) = V(x_k) \delta_{kl}$$

- no need to evaluate integrals
- \bullet number N of DVR states controls quadrature approximation

DVR features

potential energy is diagonal!

$$\langle \psi_k | V | \psi_l \rangle = \int dx \, \psi_k(x) \, V(x) \, \psi_l(x)$$

$$\approx \sum_{n=-N/2}^{N/2-1} w_n \, \psi_k(x_n) \, V(x_n) \, \psi_l(x_n) = V(x_k) \delta_{kl}$$

- no need to evaluate integrals
- ullet number N of DVR states controls quadrature approximation
- 2 kinetic energy is simple (via FFT) or sparse (in d > 1)!
 - plane waves ϕ_i are momentum eigenstates $\leadsto \hat{T} \ket{\psi_k} \sim \mathcal{F}^{-1} \otimes \hat{p}^2 \otimes \mathcal{F} \ket{\psi_k}$
 - $\langle \psi_k | \hat{T} | \psi_l \rangle$ = known in closed form \hookrightarrow replicated for each coordinate, with Kronecker deltas for the rest

General DVR basis states

- construct DVR basis in simple relative coordinates. . .
- ... because Jacobi coord. would complicate the boundary conditions
- ullet separate center-of-mass energy (choose ${f P}={f 0})$
- mixed derivatives in kinetic energy operator

$$\mathbf{x}_i = \sum_{i=1}^n U_{ij} \mathbf{r}_i$$

$$U_{ij} = \begin{cases} \delta_{ij} & \text{for } i, j < n \\ -1 & \text{for } i < n, j = n \\ 1/n & \text{for } i = n \end{cases}$$

General DVR state

$$|s\rangle = |(k_{1,1}, \cdots, k_{1,d}), \cdots, (k_{n-1,1}, \cdots); \mathsf{spins}\rangle \in B$$

General DVR basis states

- construct DVR basis in simple relative coordinates. . .
- ... because Jacobi coord. would complicate the boundary conditions
- ullet separate center-of-mass energy (choose ${f P}={f 0})$
- mixed derivatives in kinetic energy operator

$$\mathbf{x}_i = \sum_{i=1}^n U_{ij} \mathbf{r}_i$$

$$U_{ij} = \begin{cases} \delta_{ij} & \text{for } i, j < n \\ -1 & \text{for } i < n, j = n \\ 1/n & \text{for } i = n \end{cases}$$

General DVR state

$$|s\rangle=|(k_{1,1},\cdots,k_{1,d}),\cdots,(k_{n-1,1},\cdots);\mathsf{spins}\rangle\in B$$

basis size: dim
$$B = (2S+1)^n \times N^{d \times (n-1)}$$

(Anti-)symmetrization and parity

Permutation symmetry

- for each $|s\rangle \in B$, construct $|s\rangle_{\mathcal{A}} = \mathcal{N} \sum_{p \in S_n} \operatorname{sgn}(p) \, D_n(p) \, |s\rangle$
- \bullet then $|s\rangle_{\mathcal{A}}$ is antisymmetric: $\mathcal{A}\,|s\rangle_{\!\mathcal{A}}=|s\rangle_{\!\mathcal{A}}$
- for bosons, leave out $sgn(p) \leadsto symmetric state$
- $D_n(p)|s\rangle = \text{ some other } |s'\rangle \in B \text{modulo PBC}$

(Anti-)symmetrization and parity

Permutation symmetry

- for each $|s\rangle \in B$, construct $|s\rangle_{\mathcal{A}} = \mathcal{N} \sum_{p \in S_n} \operatorname{sgn}(p) \, D_n(p) \, |s\rangle$
- \bullet then $|s\rangle_{\mathcal{A}}$ is antisymmetric: $\mathcal{A}\,|s\rangle_{\!\mathcal{A}}=|s\rangle_{\!\mathcal{A}}$
- ullet for bosons, leave out $\mathrm{sgn}(p) \leadsto \mathsf{symmetric}$ state
- $D_n(p)|s\rangle = \text{ some other } |s'\rangle \in B \text{modulo PBC}$

This operation partitions the original basis, *i.e.*, each state appears in at most one (anti-)symmetric combination.

- $B \to B_{\text{reduced}}$, significantly smaller: $N \to N_{\text{reduced}} \approx N/n!$

Note: parity (with projector $\mathcal{P}_{\pm}=1\pm\mathcal{P}$) can be handled analogously.

DVR basis size
$$N = N_{\rm spin} \, (\, imes \, N_{\rm isospin}) \, imes \, N_{\rm DVR}^{n_{\rm dim} \times (n_{\rm body} - 1)}$$

- $N_{\text{spin}} = (2S+1)^{n_{\text{body}}}$, $N_{\text{isospin}} = 1$ for neutrons only
- $3n: 8 \times N_{\rm DVR}^6$, $4n: 16 \times N_{\rm DVR}^9 \rightsquigarrow$ large-scale calculation

$$\text{DVR basis size} \, N = N_{\text{spin}} \, (\, \times \, N_{\text{isospin}}) \times N_{\text{DVR}}^{n_{\text{dim}} \times (n_{\text{body}} - 1)}$$

- ullet $N_{
 m spin}=(2S+1)^{n_{
 m body}}$, $N_{
 m isospin}=1$ for neutrons only
- $3n: 8 \times N_{\text{DVR}}^6$, $4n: 16 \times N_{\text{DVR}}^9 \rightsquigarrow \text{large-scale calculation}$

hhir.tu-darmstadt.de

Distributed implementation

- written from scratch in C++ (and Haskell), together with P. Klos
- ullet can handle arbitrary n_{dim} , n_{body} , and spin
- hybrid parallelism: TBB + MPI, multithreaded libraries (FFTW, librsb)

DVR basis size
$$N = N_{\rm spin} \, (\, imes N_{\rm isospin}) \times N_{\rm DVR}^{n_{\rm dim} \times (n_{\rm body} - 1)}$$

- $N_{\text{spin}} = (2S+1)^{n_{\text{body}}}$, $N_{\text{isospin}} = 1$ for neutrons only
- $3n: 8 \times N_{\rm DVR}^6$, $4n: 16 \times N_{\rm DVR}^9 \rightsquigarrow$ large-scale calculation
- diagonalization via distributed Lanczos algorithm (PARPACK) → large matrix-vector products
- kinetic part (via FFT) in original basis (before reduction)

expand reduce $\begin{pmatrix} \bullet \\ \bullet \\ \bullet \end{pmatrix} = \begin{pmatrix} \bullet \\ \bullet \\ \bullet \end{pmatrix} \times \begin{pmatrix} \mathcal{F}^{-1} \otimes \hat{p}^2 \otimes \mathcal{F} \end{pmatrix} \times \begin{pmatrix} \bullet \\ \bullet \\ \bullet \end{pmatrix}$

(note: kinetic matrix diagonal in spin-configurations space)

DVR basis size
$$N = N_{\rm spin} \, (\, imes N_{\rm isospin}) \times N_{\rm DVR}^{n_{\rm dim} \times (n_{\rm body} - 1)}$$

- $N_{\rm spin}=(2S+1)^{n_{\rm body}}$, $N_{\rm isospin}=1$ for neutrons only
- 3n: $8 \times N_{\rm DVR}^6$, 4n: $16 \times N_{\rm DVR}^9 \leadsto$ large-scale calculation
- diagonalization via distributed Lanczos algorithm (PARPACK)
 → large matrix-vector products
- kinetic part (via FFT) in original basis (before reduction)

 $\overset{\hookrightarrow}{(\bigcirc)} = \overset{\text{expansion/reduction via sparse matrices}}{(\bigcirc)} \times \left(\mathcal{F}^{-1} \otimes \hat{p}^2 \otimes \mathcal{F}\right) \times \overset{\text{expand}}{(\bigcirc)}$

(note: kinetic matrix diagonal in spin-configurations space)

DVR basis size
$$N = N_{\rm spin} \, (\, imes N_{\rm isospin}) \times N_{\rm DVR}^{n_{\rm dim} \times (n_{\rm body} - 1)}$$

- $N_{\text{spin}} = (2S+1)^{n_{\text{body}}}$, $N_{\text{isospin}} = 1$ for neutrons only
- $3n: 8 \times N_{\rm DMR}^6$, $4n: 16 \times N_{\rm DMR}^9 \rightsquigarrow$ large-scale calculation
- diagonalization via distributed Lanczos algorithm (PARPACK) → large matrix-vector products
- kinetic part (via FFT) in original basis (before reduction)

(note: kinetic matrix diagonal in spin-configurations space)

potential part still diagonal in symmetry-reduced basis

Broken symmetry

The finite volume breaks the symmetry of the system:

Irreducible representations of SO(3) are reducible with respect to O!

- finite subgroup of SO(3)
- number of elements = 24
- five irreducible representations

Γ	A_1	A_2	E	T_1	T_2
$\dim \Gamma$	1	1	2	3	3

Cubic projection

Cubic projector

$$\mathcal{P}_{\Gamma} = \frac{\dim \Gamma}{24} \sum_{R \in \mathcal{O}} \chi_{\Gamma}(R) D_n(R) \quad \text{,} \quad \chi_{\Gamma}(R) = \text{character}$$
 Johnson, PLB 114 147 (1982)

- ullet $D_n(R)$ realizes a cubic rotation R on the n-body DVR basis
- \rightsquigarrow permutation/inversion of relative coordinate components
- indices are wrappen back into range $-N/2, \ldots, N/2-1$

Cubic projection

Cubic projector

$$\mathcal{P}_{\Gamma} = \frac{\dim \Gamma}{24} \sum_{R \in \mathcal{O}} \chi_{\Gamma}(R) D_n(R) \quad \text{,} \quad \chi_{\Gamma}(R) = \text{character}$$

- $D_n(R)$ realizes a cubic rotation R on the n-body DVR basis
- \rightsquigarrow permutation/inversion of relative coordinate components
- indices are wrappen back into range $-N/2, \ldots, N/2-1$

numerical implementation: $\hat{H} \to \hat{H} + \lambda (\mathbf{1} - \mathcal{P}_{\Gamma})$, $\lambda \gg E$

three-boson system

• shifted Gaussian 2-body potential

- shifted Gaussian 2-body potential
- plus short-range 3-body force

- shifted Gaussian 2-body potential
- plus short-range 3-body force

- shifted Gaussian 2-body potential
- plus short-range 3-body force

- shifted Gaussian 2-body potential
- plus short-range 3-body force

three-boson system

- shifted Gaussian 2-body potential
- plus short-range 3-body force

 \hookrightarrow possible to move three-body resonance

Four-body spectra (very preliminary)

four bosons

crossings need not be avoided!

Current status

- \checkmark handle large N_{DVR} for three-body systems (current record: 28)
- √ chiral interactions (non-diagonal due to spin dependence!)
- \checkmark projection onto cubic irreps. $(H \to H + \lambda(1 P_{\Gamma}), \lambda \text{ large})$

hhlr.tu-darmstadt.de

Current status

- handle large N_{DVR} for three-body systems (current record: 28)
- chiral interactions (non-diagonal due to spin dependence!)
- projection onto cubic irreps. $(H \to H + \lambda(1 P_{\Gamma}), \lambda \text{ large})$

hhlr.tu-darmstadt.de

Work in progress

- further optimization (sparse-matrix kin. energy instead of FFT)
 - \hookrightarrow need to reach decent $N_{\rm DVR}$ for four-neutron calculation!
- isospin degrees of freedom \rightsquigarrow treat general nuclear systems
- different boundary conditions (e.g., antiperiodic)

Thank you!

... and thanks to my collaborators:

- Philipp Klos, Joel Lynn
- Hans-Werner Hammer, Achim Schwenk
- Dean Lee

