QUANTUM
 THE ANOMALY STRIKEr BACK!

 WIRRSJoaquín E. Drut
University of North Carolina at Chapel Hill

Hirschegg, January 2018

Ultracold atoms

Bose-Einstein condensates (1995)

Fermionic condensates (2004)

Ultracold atoms

Astonishing degree of control...

- Temperature (Superfluid transitions)
- Polarization (LOFF-type phases, polarons)
- Coupling (BEC-BCS crossover)
- Shape of external trapping potential
- Mass imbalance (different isotopes)
- Dimension (highly anisotropic traps \& lattices)
- Bosons, fermions, mixtures: Li, K, Sr, Yb, Dy, Er,...
... and astonishing degree of measurement/detection...
- Thermodynamics
- Phase transitions
- Collective modes
- Spin response
- Hydrodynamic response
- Entanglement
- Time-dependent dynamics

3D Fermions: Hamiltonian \& scales

Two species of fermions with a contact two-body force

$$
\hat{H}=\int d^{3} x\left[\sum_{s=\uparrow, \downarrow} \hat{\psi}_{s}^{\dagger}(\mathbf{x})\left(-\frac{\hbar^{2} \nabla^{2}}{2 m}\right) \hat{\psi}_{s}(\mathbf{x})-g \hat{n}_{\uparrow}(\mathbf{x}) \hat{n}_{\downarrow}(\mathbf{x})\right]
$$

Coupling is dimensionful

$$
[g]=L
$$

Renormalize by solving the two-body problem and relating bare coupling to scattering length

Two-body problem in 3D

Bound state appears at a critical attractive coupling

Scattering length and density determine the physical dimensionless coupling
$k_{F} \propto n^{1 / 3}$
a : scattering length

$$
1 /\left(k_{F} a\right)
$$

The 3D BCS-BEC crossover

BCS
Superfluid
Normal

T_{C}

BEC
Superfluid
$1 / k_{F} a$
$1 \ll k_{F}|a|$
Unitarity

Outline

- Introduction (ultracold atoms in 3D)
- Scale anomalies
- In nonrelativistic 2D fermions
- Selected results
- "A new hope" in 1D
- Exact mappings
- Thermodynamics
- Tan's contact
- Summary and Conclusions

Scale anomalies

Ultracold atoms in 2D

There is work by multiple experimental groups around the world

Heidelberg (Jochim), Hamburg (Moritz), Bonn (Köhl),
Moscow (Turlapov)
Melbourne (Vale)
Toronto (Thywissen)
Cambridge (Zwierlein)

2D Fermions: Hamiltonian \& scales

Two species of fermions with a contact two-body force

$$
\hat{H}=\int d^{2} x\left[\sum_{s=\uparrow, \downarrow} \hat{\psi}_{s}^{\dagger}(\mathbf{x})\left(-\frac{\hbar^{2} \nabla^{2}}{2 m}\right) \hat{\psi}_{s}(\mathbf{x})-g \hat{n}_{\uparrow}(\mathbf{x}) \hat{n}_{\downarrow}(\mathbf{x})\right]
$$

Coupling is dimensionless Classically scale invariant!

$$
[g]=1
$$

Factor out center-of-mass motion and solve "relative" problem:

$$
\left[\frac{-\nabla^{2}}{2 \bar{m}}-g \delta(\mathbf{x})\right] \phi(\mathbf{x})=E_{r} \phi(\mathbf{x})
$$

Find bound-state!

$$
\epsilon_{B}=\Lambda e^{-4 \pi /|g|}
$$

Two-body problem \& anomaly

Cutoff required, bound state exists for all attractive couplings

The binding energy represents a scale anomaly.
Binding energy and density determine the dimensionless physical coupling

$$
\epsilon_{F} \propto n
$$

$$
\eta=\frac{1}{2} \ln \left(2 \epsilon_{F} / \epsilon_{B}\right)
$$

The 2D BCS-BEC crossover

Selected results in 2D

Ground state, thermodynamics, contact
G. Bertaina and S. Giorgini,

Phys. Rev. Lett. 106, 110403 (2011).
H. Shi, S. Chiesa, and S. Zhang,

Phys. Rev. A 92, 033603 (2015).
A. Galea, H. Dawkins, S. Gandolfi, A. Gezerlis, Phys. Rev. A 93, 023602 (2016).
E. R. Anderson, J. E. Drut

Phys. Rev. Lett. 115, 115301 (2015).
L. Rammelmüller, W. J. Porter, J. E. Drut Phys. Rev. A 93, 033639 (2016).
Z.-H. Luo, C. E. Berger, J. E. Drut Phys. Rev. A 93, 033604 (2016).
M. Bauer, M. M. Parish, and T. Enss, Phys. Rev. Lett. 112, 375135302 (2014).
J. Hofmann,

Phys. Rev. Lett. 108, 185303 (2012).

E. Taylor and M. Randeria,

Phys. Rev. Lett. 109, 135301 (2012).

Technical aspects: Iattice MC

 Scales \& continuum limit$$
1=\ell \ll \lambda_{F}, \lambda_{T} \ll L=N_{x}
$$

$$
\lambda_{T}=\sqrt{2 \pi \beta}
$$

$$
\lambda_{F}=n^{-1 / 2}
$$

Parameters

$$
\begin{array}{ll}
\beta \mu & \beta \varepsilon_{F} \\
g & \beta \varepsilon_{B} \\
& \varepsilon_{F}=\frac{k_{F}^{2}}{2} \\
& k_{F}=\sqrt{2 \pi n}
\end{array}
$$

Results: Density EoS

E. R. Anderson, J. E. Drut Phys. Rev. Lett. 115, 115301 (2015).

Results: Density EoS

Aside: virial expansion in 2D
Virial expansion (relative to noninteracting case)

$$
-\beta \Delta \Omega=\ln \left(\mathcal{Z} / \mathcal{Z}_{0}\right)=Q_{1} \sum_{n=2}^{\infty} \Delta b_{n} z^{n}
$$

Determines the thermodynamics at low fugacity $z=e^{\beta \mu}$
$\Delta b_{n}=b_{n}-b_{n}^{(0)}$ are typically computed by solving the n -body problem
change due to interactions

Results: Density EoS

Aside: virial expansion in 2D
Virial expansion (relative to noninteracting case)

$$
-\beta \Delta \Omega=\ln \left(\mathcal{Z} / \mathcal{Z}_{0}\right)=Q_{1} \sum_{n=2}^{\infty} \Delta b_{n} z^{n}
$$

Determines the thermodynamics at low fugacity $z=e^{\beta \mu}$
$\Delta b_{n}=b_{n}-b_{n}^{(0)}$ are typically computed by solving the n -body problem
Δb_{2} : Known from Beth-Uhlenbeck formula (also derivable using the anomaly; see Ordóñez et al.)
Δb_{3} : Determined numerically with exact methods
V. Ngampruetikorn, J. Levinsen, and M. M. Parish, Phys. Rev. Lett. 111, 265301 (2013).

Results: Density EoS

Aside: Experimental results

Phys. Rev. Lett. 116, 045303 (2016) Jochim's group

Vale's group

Results: Pressure EoS

E. R. Anderson, J. E. Drut Phys. Rev. Lett. 115, 115301 (2015).

Results: Compressibility

$\kappa=\left.\frac{\beta}{n^{2}} \frac{\partial n}{\partial(\beta \mu)}\right|_{\beta}$
E. R. Anderson, J. E. Drut Phys. Rev. Lett. 115, 115301 (2015).

Results: Tan's contact

$$
\left.C \equiv \frac{2 \pi}{\beta} \frac{\partial(\beta \Omega)}{\partial \ln \left(a_{2 \mathrm{D}} / \lambda_{T}\right)}\right|_{T, \mu}
$$

E. R. Anderson, J. E. Drut Phys. Rev. Lett. 115, 115301 (2015).

Results: GS Energetics

L. Rammelmüller, W. J. Porter, J. E. Drut

Phys. Rev. A 93, 033639 (2016)

Results: GS Energetics

L. Rammelmüller, W. J. Porter, J. E. Drut

Phys. Rev. A 93, 033639 (2016)

A new anomalous system in 1D

Work in collaboration with

Josh McKenney

```
THE UNIVERSITY
of NORTH CAROLINA
at CHAPEL HILL
```

W. Daza
C. Lin
C. Ordóñez

UNIVERS I TY of HOUSTON

A new anomalous system in 1D

Three species of fermions with a contact three-body force

$$
\hat{H}=\int d x\left[\sum_{s=1,2,3} \hat{\psi}_{s}^{\dagger}(x)\left(-\frac{\hbar^{2} \nabla^{2}}{2 m}\right) \hat{\psi}_{s}(x)-g \hat{n}_{1}(x) \hat{n}_{2}(x) \hat{n}_{3}(x)\right]
$$

Three species: 1, 2, 3
Only a contact three-body force (nothing else!)
Coupling is dimensionless!

$$
[g]=1
$$

Does a 3-body bound state form? Is there an anomaly?

Three-body problem \& anomaly

Factoring motion. Think of this as a 3D problem.

$$
\left[-\frac{\nabla_{X}^{2}}{2 m}+g \delta\left(x_{2}-x_{1}\right) \delta\left(x_{3}-x_{2}\right)\right] \psi(X)=E \psi(X)
$$

$$
X=\left(x_{1}, x_{2}, x_{3}\right)
$$

Three-body problem \& anomaly

Mapping to two-dimensional one-body problem

$$
\left[-\frac{\nabla_{X}^{2}}{2 m}+g \delta\left(x_{2}-x_{1}\right) \delta\left(x_{3}-x_{2}\right)\right] \psi(X)=E \psi(X)
$$

$$
X=\left(x_{1}, x_{2}, x_{3}\right)
$$

Three-body problem \& anomaly

Mapping to two-dimensional one-body problem

$$
\begin{array}{r}
{\left[-\frac{\nabla_{X}^{2}}{2 m}+g \delta\left(x_{2}-x_{1}\right) \delta\left(x_{3}-x_{2}\right)\right] \psi(X)=E \psi(X)} \\
X=\left(x_{1}, x_{2}, x_{3}\right)
\end{array}
$$

Separating center-of-mass and relative motion...

$$
\left[\frac{-\nabla_{q}^{2}}{2 \bar{m}}+\tilde{g} \delta\left(q_{1}\right) \delta\left(q_{2}\right)\right] \phi\left(q_{1}, q_{2}\right)=E_{r} \phi\left(q_{1}, q_{2}\right) \quad \tilde{g}=(2 / \sqrt{3}) g
$$

Scale-anomalous 2D problem!

$$
\begin{array}{r}
Q=\frac{1}{3}\left(x_{1}+x_{2}+x_{3}\right) \\
q_{1}=x_{2}-x_{1}
\end{array}
$$

It is 1D, but not amenable to Bethe Ansatz.

$$
q_{2}=\frac{1}{\sqrt{3}}\left(x_{1}+x_{2}-2 x_{3}\right)
$$

Three-body problem \& anomaly Other cases?

Coupling units (contact n-body, d-dimensions)

$$
[g]=L^{(2-d(n-1))}
$$

When is it dimensionless?

$$
\frac{\partial g}{\partial \ln \left(\beta \epsilon_{B}\right)} \propto g^{2}
$$

Only two cases!

$$
\begin{aligned}
& d(n-1)=2 \\
& \longrightarrow \quad d=1 \quad \& \quad n=3 \\
& d=2 \quad \& \quad n=2
\end{aligned}
$$

Thermodynamics and contact

Exact properties

Virial coefficients

No interaction unless 3 or more particles present...

$$
\rightarrow \quad \Delta b_{2}=0
$$

Equivalence of the 1D 3-body and 2D 2-body problems... (in relative coordinates)
$\rightarrow \Delta \Delta b_{3}=\frac{1}{\sqrt{3}} \Delta b_{2}^{(2 D)}$

Thermodynamics and contact

Exact properties

Truly scale invariant

$$
\begin{aligned}
P & =\beta^{\alpha} f(\beta \mu) \\
\alpha & =-d / 2-1 \\
P & =\frac{2}{d} \frac{E}{V}
\end{aligned}
$$

Anomalous

$$
P=\beta^{\alpha} f\left(\beta \mu, \beta \epsilon_{B}\right)
$$

$$
P-\frac{2}{d} \frac{E}{V}=\frac{2}{d} \beta^{\alpha} \frac{\partial f}{\partial \ln \left(\beta \epsilon_{B}\right)}
$$

$$
\mathcal{C}_{3}=-\frac{\partial g}{\partial \ln \left(\beta \epsilon_{B}\right)}\left\langle\hat{n}_{1} \hat{n}_{2} \hat{n}_{3}\right\rangle
$$

"Contact density" of our 1D problem

Thermodynamics and contact

Exact properties in a harmonic trap

Truly scale invariant

Anomalous

$$
\begin{array}{r}
\Omega=\omega f(\beta \mu, \beta \omega) \\
E=2 V_{\mathrm{ext}} \\
E-2 V_{\mathrm{ext}}=\omega \frac{\partial f\left(\beta \mu, \beta \omega, \beta \epsilon_{B}\right)}{\partial \ln \left(\beta \epsilon_{B}\right)} \\
C_{3}=\frac{\partial g}{\partial \ln \left(\beta \epsilon_{B}\right)} \int d x\left\langle\hat{n}_{1} \hat{n}_{2} \hat{n}_{3}\right\rangle
\end{array}
$$

"Contact" of our 1D problem

Thermodynamics and contact

Toward the many-body problem

The path-integral representation of the partition function requires a Hubbard-Stratonovich transformation

For the usual two-body force case:

$$
e^{\tau g_{2} \hat{n}_{1}(\mathbf{x}) \hat{n}_{2}(\mathbf{x})}=\frac{1}{2 \pi} \int_{-\pi}^{\pi} d \sigma\left(1+A \hat{n}_{1}(\mathbf{x}) \sin \sigma\right)\left(1+A \hat{n}_{2}(\mathbf{x}) \sin \sigma\right),
$$

interaction auxiliary field

$$
A=\sqrt{2\left(e^{\tau g_{2}}-1\right)}
$$

$$
\mathcal{Z}=\operatorname{Tr} e^{-\beta(\hat{H}-\mu \hat{N})}=\int \mathcal{D} \sigma \operatorname{det}^{2} M[\sigma]
$$

Thermodynamics and contact

Toward the many-body problem

The path-integral representation of the partition function requires a Hubbard-Stratonovich transformation

For the three-body force case:
$e^{\tau g_{3} \hat{n}_{1}(\mathbf{x}) \hat{n}_{2}(\mathbf{x}) \hat{n}_{3}(\mathbf{x})}=\frac{1}{3 \pi} \int d \sigma\left(1+B \hat{n}_{1}(\mathbf{x}) F(\sigma)\right)\left(1+B \hat{n}_{2}(\mathbf{x}) F(\sigma)\right)\left(1+B \hat{n}_{3}(\mathbf{x}) F(\sigma)\right)$
interaction
auxiliary field

$$
\begin{gathered}
F(\sigma)=e^{i 2 \sigma / 3} \cos ^{2} \sigma \\
B=1.63 \ldots\left(e^{\tau g_{3}}-1\right)^{1 / 3}
\end{gathered}
$$

$$
\mathcal{Z}=\operatorname{Tr} e^{-\beta(\hat{H}-\mu \hat{N})}=\int \mathcal{D} \sigma \operatorname{det}^{3} M[\sigma]
$$

Straightforwardly generalized to n-body forces. But: sign problem.

Thermodynamics and contact

Toward the many-body problem: pressure EoS

The 1D trimer crossover

Fermions

Thermodynamics and contact Open questions

How can we realize this system experimentally?
What is the effect of asymmetries?
Can we induce superfluid correlations?
How to deal with sign problem?
Can we use diagrammatic self-consistent methods (Luttinger-Ward)?
What are the transport properties?

Summary \& Conclusions

- There are two possible scale-anomalous non-relativistic systems with contact interactions: 2D with 2-body forces

1D with 3-body forces

- We have the beginnings of a characterization of the thermodynamics and contact of these systems, both in the ground state and at finite temperature, complementing other approaches and comparing with experiments.
- There is room for improvement in the 2D case at finite temperature.
- Treating the 1D case with 3-body forces in a non-perturbative way presents a sign problem that remains open.
- However, we have derived universal relations and virial theorems involving the 3-body contact, and determined b3.

Computational

Quantum Matter Group at UNC

THE UNIVERSITY
of NORTH CAROLINA

at CHAPEL HILL
A. C. Loheac
C. R. Shill
C. E. Berger
J. R. McKenney
Y. Hou

Thank you!

