

Studying strongly correlated few-fermion systems with ultracold atoms

Andrea Bergschneider Group of Selim Jochim Physikalisches Institut Universität Heidelberg

Strongly correlated systems

Taken from: www.phys.org/news/2012-08-border-primordial-plasma-ordinary

Taken from: http://www.chemistryexplained.com

Strong interaction + quantum nature!

- \rightarrow Challenging to solve
- \rightarrow Use quantum simulator

Ultracold gases

Quantum statistics is inherent

Controlled initialization of Hamiltonian:

- Tunable interaction strength
- Confinement with laser beams

Scales are convenient

- System size ~10-100μm
- Time scales ~µs

Measuring the state:

- Density distribution
- Single-atom sensitivity to detect correlations

Perfect quantum simulators

Ultracold gases

Hydrodynamic expansion

O'Hara et al., Science **298** (2002) 2179

A cold-atom Fermi-Hubbard antiferromagnet

Mazurenko et al., Nature 545 (2017)

Our approach

Assemble a many-body quantum state from the bottom up

I A few-fermion quantum simulator

Fully deterministic preparation of fermions in a double-well potential

II Direct observation of two-particle correlations Emergence of correlations between interacting atoms

III Characterization of the entanglement

Density matrix reconstruction and entanglement witness

Our playground

1.5 meter

Our playground

Our playground

Universität Heidelberg

Two atoms in a double well

Hubbard model:

- Only hopping between adjacent sites
- Only on-site interactions

\rightarrow "Simplest model"

Galanakis et al., Galanakis, D., et al., Philos. Trans. Royal Soc. A, 369.1941 (2011): 1670-1686

Two atoms in a double well

Experimental control of:

- Distance
- Tilt
- Tunnel coupling
- Interaction

Preparation of the ground state

S. Murmann, A. Bergschneider et al., PRL 114, 080402 (2015)

Preparation of the ground state

 \rightarrow Adiabatic ramp to ground state with interaction

Hubbard dimer

Free-space single-atom imaging

High-resolution objective

Free-space fluorescence imaging

- Extremely simple
- No trapping potential, no special cooling scheme
- Resolve hyperfine state

Fermi gas microscopy: Greiner, Bloch, Zwierlein, Kuhr, Thywissen, Bakr... Free-space imaging of Rb: Bücker *et al.*, NJP **11** 103039 (2009)

Single-atom imaging

Identification and position resolution:

97% detection fidelity

- Fluorescence imaging
- Collect ≈20 photons with the objective
- Single-photon sensitive camera
- Image processing

Hyperfine spin resolution:

Measuring occupation statistics

Pure or mixed state?

Pure state

$$|\psi\rangle = \frac{1}{\sqrt{2}} (|LR\rangle + |RL\rangle)$$

or

$$|\psi\rangle = \frac{1}{\sqrt{2}} (|LR\rangle - |RL\rangle)$$

or mixed state

 $\rho = 0.5 \; |LR\rangle \langle LR| + 0.5 |RL\rangle \langle RL|$

 \rightarrow Measure coherence!

Study coherence

Measuring coherence in optics:

Young's double slit with a single atom

$$\psi_+ = \frac{1}{\sqrt{2}} (|L\rangle + |R\rangle)$$

Two non-interacting particles

Universität

Heidelberg

Two-particle correlations

Antibunching in lattice: T. Rom *et al.,* Nature **444**, 733-736 (2006) Fermionic HBT (Helium): T. Jeltes *et al.,* Nature **445**, 402-405 (2007)

Two-particle correlations

➔ Fermionic antibunching

Antibunching in lattice: T. Rom *et al.,* Nature **444**, 733-736 (2006) Fermionic HBT (Helium): T. Jeltes *et al.,* Nature **445**, 402-405 (2007)

Correlations for interacting fermions UNIVERSITÄT HEIDELBERG

Two-particle correlations

What information can we extract?

- Pureness of state?
- Information on the density matrix?

In principle

measuring all correlation functions should fully characterize a system

We combine

- momentum correlation
- insitu correlations

Density matrix reconstruction

→ Study entanglement

similar: M. Bonneau et al., arXiv 1711.08977

Hubbard dimer

Can we observe entanglement?

Entanglement depends on **partitioning**!

Hubbard double well

"Is the left well entangled with the right well?"

"Are the two particles entangled?"

Entanglement witness

Universität Heidelberg

Entanglement witness

- Use fringe contrast C as a witness
- Assuming a separable state between the spins

$$\rho = \rho_{\uparrow} \otimes \rho_{\downarrow}$$

• Measured populations provide bound on C

4 *C* ≤ $\sqrt{P_{LL}P_{RR}}$ → separable 4 *C* ≥ $\sqrt{P_{LL}P_{RR}}$ → non-separable

Interacting state is non-separable!

Witness construction Kaufman et al., Nature 527, 208 (2015).

Entanglement witness

Entanglement between spins

Particles become entangled through interaction

Preparation of strongly interacting few-fermion systems

Single-atom imaging allows to access coherences/correlations

Reconstruct the density matrix and certify entanglement

"antiferromagnet"

Outlook

Universität Heidelberg

Create larger systems

Imaging of more than two particles:

→ Beyond two-particle correlations $\langle n(\mathbf{k}_1)n(\mathbf{k}_2)n(\mathbf{k}_3)... \rangle$

Imaging three different hyperfine states: state 1 → SU(3) systems state 2 State 3 state 3

Thank you for your attention!

Selim Jochim Philipp Preiss Gerhard Zürn

Few-fermion team Andrea Bergschneider Vincent Klinkhamer Jan Hendrik Becher Ralf Klemt Lukas Palm

2D-Fermi team Puneet Murthy Luca Bayha Marvin Holten

