Finite Volume Spectrum of the 3-body System

M. Döring ${ }^{1}$, H.-W. Hammer ${ }^{2}$, M. Mai ${ }^{1}$, JinYi Pang ${ }^{3}$, A. Rusetsky ${ }^{3}$ and J. Wu ${ }^{3}$

${ }^{1}$ The George Washington University
${ }^{2}$ Institut für Kernphysik, Technische Universität Darmstadt

${ }^{3}$ Helmholtz-Institut für Strahlen- und Kernphysik, Universtät Bonn

Hirschegg 2018,
Multiparticle resonances in hadrons, nuclei, and ultracold gases

Outline

(1) Formalism

- Quantization condition
- Projection onto the irreps of the octahedral group
(2) 3-body Spectrum in a Finite Volume
- Solution of quantization condition
- Identification of the spectrum in a finite volume
(3) Conclusions

Quantization Condition

Particle-dimer formalism

(H.-W. Hammer, J.-Y. Pang and A. Rusetsky, arXiv: 1706.07700, arXiv: 1707.02176)

- A dimer:

$$
\tau_{L}^{-1}(\mathbf{q} ; E)=-a^{-1}-\frac{4 \pi}{L^{3}} \sum_{\mathbf{l}} \frac{1}{\mathbf{q}^{2}+\mathbf{l}^{2}+\mathbf{q} \mathbf{l}-m E}
$$

- Particle-dimer scattering:

$$
\mathscr{M}_{L}(\mathbf{p}, \mathbf{k} ; E)=Z(\mathbf{p}, \mathbf{k} ; E)+\frac{8 \pi}{L^{3}} \sum_{\mathbf{q}}^{\wedge} Z(\mathbf{p}, \mathbf{q} ; E) \tau_{L}(\mathbf{q} ; E) \mathscr{M}_{L}(\mathbf{q}, \mathbf{k} ; E)
$$

$$
Z(\mathbf{p}, \mathbf{q} ; E)=\frac{1}{\mathbf{p}^{2}+\mathbf{q}^{2}+\mathbf{p q}-m E}+\frac{H_{0}(\Lambda)}{\Lambda^{2}}
$$

- See more in Akaki Rusetsky's and Michael Döring's talk

Quantization Condition

Quantization Condition

Poles in the 3-particle amplitude \rightarrow energy spectrum

$$
\operatorname{det}\left(\tau_{L}^{-1}(\mathbf{q} ; E) \delta_{\mathbf{p q}}-\frac{8 \pi}{L^{3}} Z(\mathbf{p}, \mathbf{q} ; E)\right)=0
$$

Assumptions:

- Kinematics

3 identical scalar particles \& Non-relativistic kinematics.
Non-identical particles, relativistic kinematics will be included later.

- Dynamics
S-wave 2-body interaction \& Non-derivative 3-body interaction. Higher partial waves, derivative couplings will be included later.

Projection onto Irreps of the Octahedral Group

Breakdown of the Partial Wave Expansion (PWE)

- Breakdown of PWE in a finite volume

Rotational symmetry broken.
Expansion in the Legendre polynomials does not converge for singular potentials, e.g., $Z(\mathbf{p}, \mathbf{q} ; E)=\frac{1}{\mathbf{p}^{2}+\mathbf{q}^{2}+\mathbf{p q}-m E}+\frac{H_{0}(\Lambda)}{\Lambda^{2}}$ is singular above the break-up threshold.
(M. Döring and M. Mai, arXiv:1709.08222)

- Octahedral group O_{h} on the lattice

24 rotations $R_{a},(a=1, \cdots, 24)$.
Inversion of all 3 axis, I.
48 elements, $R_{a}, R_{a} I$ in the group O_{h}.

"Discrete" Partial Wave Expansion

Discrete Momenta

- Discrete momenta $\mathbf{p}=2 \pi \mathbf{n} / L, \quad\left(\mathbf{n} \in \mathbb{Z}^{3}\right)$. Further, we measure momenta in unit $\frac{2 \pi}{L}$.
- Integral over continuous momenta vs. Sum over discrete momenta

Infinite volume, $\int d^{3} p f(\mathbf{p})=\underbrace{\int p^{2} d p}$
different surfaces

Finite volume: $\sum_{\mathbf{p}} f(\mathbf{p})=$

different shells

$$
\sum_{\hat{p}} \quad f(s, \hat{p}) .
$$

Shells

Shell is a set of momenta with the same $|\mathbf{p}|$, which can be obtained from reference momentum $\mathbf{p}_{0}, \mathbf{p}=g \mathbf{p}_{0}, \quad g \in O_{h}$.

- Shell $0(0,0,0)$

1 orientation. $\mathbf{p}_{0}(0)=(0,0,0)$. 48 Symmetry trans. on $\mathbf{p}_{0}: g \mathbf{p}_{0}=\mathbf{p}_{0}$.

- Shell 1
$(1,0,0),(0,1,0),(0,0,1),(-1,0,0), \cdots$
6 orientations.
Reference momentum $\mathbf{p}_{0}(1)=(1,0,0)$.
$g \mathbf{p}_{0}(1)$ generates shell 1.

Each momentum produced $48 / 6=8$ times.

"Discrete" Partial Wave Expansion

- Shell 2
$(1,1,0),(1,0,1),(0,1,1),(1,-1,0), \cdots$
12 orientations.
Reference momentum $\mathbf{p}_{0}(2)=(1,1,0)$.
$g \mathbf{p}_{0}(2)$ generates shell 2.
Each momentum produced 48/12 = 4 times.

- Shell s

Continue increasing the length of momentum.
ϑ_{s} orientations, $g p_{0}(s)$ generates shell s. Each momentum produced G / ϑ_{s} times.

Reference momentum $\mathbf{p}_{0}(s)$ is chosen arbitrarily. Nothing depends on this choice.

- Degenerate shells, e.g., shell 8 and 9
$(3,0,0),(0,3,0),(0,0,3), \cdots$.
Reference momentum $\mathbf{p}_{0}(8)=(3,0,0)$.
$(2,2,1),(2,1,2),(1,2,2), \cdots$.
Reference momentum $\mathbf{p}_{0}(9)=(2,2,1)$.
Radius of the shells 8 and 9 are both 3 .

They are different shells.
$g \mathbf{p}_{0}(8)$ and $g \mathbf{p}_{0}(9)$ generate shells 8 and 9 separately.

- Sum over shells All momenta in a given shell are produced from reference momentum.

$$
\sum_{\mathbf{p}} f(\mathbf{p})=\underbrace{\sum_{s}}_{\text {different shells }} \underbrace{\frac{\vartheta_{s}}{G} \sum_{g}}_{\text {orientations inside shell } s} f\left(g \mathbf{p}_{0}(s)\right)
$$

Expansion by Matrices of Irreps.

- Analogous to PWE
$f(\mathbf{p})=f\left(p, \Omega_{p}\right)=\sqrt{4 \pi} \sum_{\ell m} f_{\ell m}(p) Y_{\ell m}\left(\Omega_{p}\right)$. Spherical harmonics.
$f(\mathbf{p})=f\left(g \mathbf{p}_{0}(s)\right)=\sum_{\Gamma, i j} f_{i j}^{(\Gamma)}(s) T_{i j}^{(\Gamma)}(g)$. Matrices of irreps
- Matrices of irreps (V. Bernard,et.al., arXiv:0806.4495)

48 group elements, g represented in 10 irreps. $\Gamma=A_{1}^{ \pm}, A_{2}^{ \pm}, E^{ \pm}, T_{1}^{ \pm}, T_{2}^{ \pm}, T^{(\Gamma)}(g)$.

1. 1 dimensional $A_{1}, A_{2}: T^{\left(A_{1}^{ \pm}, A_{2}^{ \pm}\right)}(g)= \pm 1$;
2. 2 dimensional $E: T^{\left(E^{ \pm}\right)}(g)$ are 2×2;
3. 3 dimensional $T_{1}, T_{2}: T^{\left(T_{1}^{ \pm}, T_{2}^{ \pm}\right)}(g)$ are 3×3.

- Orthogonality and closure relation Expansion is complete.
$\sum_{g} T_{i j}^{(\Gamma) *}(g) T_{i^{\prime} j^{\prime}}^{\left(\Gamma^{\prime}\right)}(g)=\delta_{\Gamma \Gamma^{\prime}} \delta_{i i^{\prime}} \delta_{j j^{\prime}} \frac{G}{\varsigma_{\Gamma}} \quad$ and $\quad \sum_{\Gamma, i j} \frac{s_{\Gamma}}{G} T_{i j}^{(\Gamma)}(g) T_{i j}^{(\Gamma) *}\left(g^{\prime}\right)=\delta_{g g^{\prime}}$.

"Discrete" Partial Wave Expansion

Reduction of the Quantization Condition

Homogeneous STM equation in a finite volume, $\mathscr{F}(\mathbf{p})=\frac{8 \pi}{L^{3}} \sum_{\mathbf{q}}^{\wedge} Z(\mathbf{p}, \mathbf{q} ; E) \tau_{L}(\mathbf{q} ; E) \mathscr{F}(\mathbf{q})$.

- Expansion of $\mathscr{F}(\mathbf{p})$

$$
\mathscr{F}(\mathbf{p})=\mathscr{F}\left(g \mathbf{p}_{0}(s)\right)=\sum_{\Gamma, i j} \mathscr{F}_{i j}^{(\Gamma)}(s) T_{i j}^{(\Gamma)}(g) \quad \& \quad \mathscr{F}_{i j}^{(\Gamma)}(s)=\frac{s_{\Gamma}}{G} \sum_{g} T_{i j}^{(\Gamma) *}(g) \mathscr{F}\left(g \mathbf{p}_{0}(s)\right) .
$$

- Propagator $\tau_{L} \tau_{L}(\mathbf{q} ; E)=\tau(g \mathbf{q} ; E)$.

$$
\tau_{L}(\mathbf{q} ; E)=\tau_{L}\left(g \mathbf{q}_{0}(r) ; E\right)=\tau_{L}(r ; E) .
$$

- Expansion of $Z Z(\mathbf{p}, \mathbf{q} ; E)=Z(g \mathbf{p}, g \mathbf{q} ; E)$.

$$
\begin{aligned}
& Z(\mathbf{p}, \mathbf{q} ; E)=Z\left(g \mathbf{p}_{0}(s), g^{\prime} \mathbf{q}_{0}(r) ; E\right)=\sum_{\Gamma, i j, n} \frac{s_{\Gamma}}{G} T_{i j}^{(\Gamma)}(g) Z_{j n}^{(\Gamma)}(s, r ; E) T_{i n}^{(\Gamma) *}\left(g^{\prime}\right) . \\
& Z_{j n}^{(\Gamma)}(s, r ; E)=\sum_{g} Z\left(\mathbf{p}_{0}(s), g \mathbf{q}_{0}(r) ; E\right) T_{j n}^{(\Gamma)}(g) .
\end{aligned}
$$

$\mathscr{F}_{i j}^{(\Gamma)}(s)=\frac{8 \pi}{L^{3}} \sum_{r} \frac{\vartheta_{r}}{G} \sum_{n} Z_{j n}^{(\Gamma)}(s, r ; E) \tau_{L}(r ; E) \mathscr{F}_{i n}^{(\Gamma)}(r) \rightarrow$

$$
\operatorname{det}\left(\tau^{-1}(r ; E) \frac{G}{\vartheta_{r}} \delta_{s r} \delta_{j n}-\frac{8 \pi}{L^{3}} Z_{j n}^{(\Gamma)}(s, r ; E)\right)=0
$$

Solution of the Quantization Condition

Solution in the Infinite Volume

- Fragmentation threshold

Particle-dimer threshold $m E_{\text {Frag }}=-1 \mathrm{MeV}^{2}$.
Ground state of a particle and a dimer.

- Break-up threshold

3-body threshold $m E_{\text {Break }}=0 \mathrm{MeV}^{2}$.
Ground state of 3 particles.

- Bound States

$$
\begin{aligned}
& m E_{1}=-10 \mathrm{MeV}^{2} \\
& m E_{0}=-1.016 \mathrm{MeV}^{2} .
\end{aligned}
$$

Solution of the Quantization Condition

Solution of the Quantization Condition in A_{1}^{+}-Irrep

- Determinant in A_{1}^{+}-Irrep
$\operatorname{det}\left(\tau(r)^{-1} \frac{G}{\vartheta_{r}} \delta_{s r}-\frac{8 \pi}{L^{3}} Z\left(A_{1}^{+}\right)(s, r)\right)=0$

1. Projection
2. Determinant and zero points

- Spectra in a box

5 energy levels near th. in a box.

2 bound states and 3 scattering states.

Spectrum in a Finite Volume

Bound States in a Box

- Infinite volume limit $m E_{1}(L) \rightarrow-10$ \& $m E_{0}(L) \rightarrow-1.016$.
- Exponentially suppressed correction.

3-body bound state a $\rightarrow \infty, \Delta E_{1} \propto \frac{1}{L^{3 / 2}} \exp \left(-\frac{2}{\sqrt{3}} \kappa L\right)$.
(U. Meißner, G. Rios and A. Rusetsky, PRL 114(9) (2015), 091602)

Particle-dimer bound state $\kappa^{2}-a^{-2} \ll \kappa^{2}, \Delta E_{0} \propto \frac{1}{L} \exp \left(-\frac{2}{\sqrt{3}} \sqrt{\kappa^{2}-a^{-2}} L\right)$. (M. Lüscher, NPB 354 (1991) 531)

Spectrum in a Finite Volume

- Theoretical Calculation

$$
\begin{aligned}
& \mathscr{M}_{L}(\mathbf{p}, \mathbf{k} ; E)=\mathscr{M}(\mathbf{p}, \mathbf{k} ; E)+8 \pi \int^{\wedge} \frac{d^{3} q}{(2 \pi)^{3}} \mathscr{M}(\mathbf{p}, \mathbf{q} ; E) \delta \tau_{L}(\mathbf{q} ; E) \mathscr{M}_{L}(\mathbf{q}, \mathbf{k} ; E), \\
& \text { where } \delta \tau_{L}=\sum_{\mathbf{n} \neq 0} e^{i \mathbf{n q} L} \tau(\mathbf{q} ; E)+O\left(\frac{1}{L}\right) . \\
& \Delta E=8 \pi \int \frac{d^{3} q}{(2 \pi)^{3}} \phi^{\dagger}(\mathbf{q}) \sum_{\mathbf{n} \neq 0} e^{i \mathbf{n q} L} \tau(\mathbf{q}) \phi(\mathbf{q})+\cdots .
\end{aligned}
$$

Contour integral on the complex plane.

1. Regular w.f. $\phi(\mathbf{q}) \sim$ const.
2. Cut and pole of $\tau(\mathbf{q} ; E)=\frac{1}{-a^{-1}+\sqrt{\frac{3}{4} \mathbf{q}^{2}-m E-i \varepsilon}}$

$$
\Delta E=\frac{\kappa^{2}}{m}\left[\frac{1}{(\kappa L)^{3 / 2}} C \exp \left(-\frac{2}{\sqrt{3}} \kappa L\right)+\frac{1}{\sqrt{(\kappa a)^{2}-1}} \frac{1}{(\kappa L)} C^{\prime} \exp \left(-\frac{2}{\sqrt{3}} \sqrt{\kappa^{2}-a^{-2}} L\right)\right]
$$

Spectrum in a finite volume

$$
\Delta E=\frac{\kappa^{2}}{m}\left[\frac{1}{(\kappa L)^{3 / 2}} C \exp \left(-\frac{2}{\sqrt{3}} \kappa L\right)+\frac{1}{\sqrt{(\kappa a)^{2}-1}} \frac{1}{(\kappa L)} C^{\prime} \exp \left(-\frac{2}{\sqrt{3}} \sqrt{\kappa^{2}-a^{-2}} L\right)\right]
$$

- 2 types of contributions

3-body contribution: $\frac{1}{(\kappa L)^{3 / 2}} \exp \left(-\frac{2}{\sqrt{3}} K L\right)$
Particle-dimer contribution: $\frac{1}{\sqrt{(\kappa a)^{2}-1}} \frac{1}{(\kappa L)} \exp \left(-\frac{2}{\sqrt{3}} \sqrt{\kappa^{2}-a^{-2}} L\right)$

1. Suppressed as $\kappa^{2} \gg a^{-2}$
2. Dominating as $\kappa^{2}-a^{-2} \ll \kappa^{2}$

- Cand C^{\prime} The two coefficients are related to infinite volume wave function $\phi(\mathbf{q})$.

Spectrum in a finite volume

- Identification

Energy shift of bound state $m E_{0}=-1.016$ is dominated by particle-dimer contribution. In case of $m E_{1}=-10$, both contributions are comparable in magnitude.

Spectrum in a finite volume

- Identification

1. We identify the state with $m E_{0}=-1.016$ as predominately particle-dimer state.
2. A state with $m E_{1}=-10$ is mixture.

Spectrum in a finite volume

Scattering States above threshold

- Free 3-body state \& Free particle-dimer state

Free 3-body state: $m E=\frac{\mathbf{p}^{2}}{2}+\frac{\mathbf{q}^{2}}{2}+\frac{(-\mathbf{p}-\mathbf{q})^{2}}{2}$
Grd. st. $\mathbf{p}=\mathbf{q}=\frac{2 \pi}{L}(0,0,0) \rightarrow m E=0$

Free particle-dimer state: $m E=\left(\frac{\mathbf{p}^{2}}{4}-\frac{1}{a^{2}}\right)+\frac{(-\mathbf{p})^{2}}{2}$
Grd. st. $\mathbf{p}=\frac{2 \pi}{L}(0,0,0) \rightarrow m E=-1$
1 st excited st. $\mathbf{p}=\frac{2 \pi}{L}(0,0,1)$ or $(0,1,0) \cdots \rightarrow m E=\frac{3 \pi^{2}}{L^{2}}-1$

Spectrum in a finite volume

- Identify particle-dimer ground state
The lowest-lying energy level above threshold tends to particle-dimer threshold individually.
- Avoided

The second and third energy levels exhibit avoided level crossing.

How to identify them?

Spectrum in a finite volume

- Shift of 3-body ground state Theoretical calculations:

$$
m E(L)=\frac{12 \pi a}{L^{3}}-\frac{12 a^{2}}{L^{4}} \mathscr{I}+\frac{12 a^{3}}{\pi L^{5}}\left(\mathscr{I}^{2}+\mathscr{J}\right)+o\left(\frac{1}{L^{5}}\right) .
$$

(S. Beane et.al., arXiv:0707.1670, S. Sharpe, arXiv:1707.04279)

- Identification of 3-body Ground State and Particle-dimer 1st Excited State Before avoided level crossing, the 2 nd level is a 3-body state and the 3rd level is a particle-dimer state
After avoided level crossing, they exchange their roles.

Finally, the 3-body state tends to the 3-body threshold $m E=0$ and particle-dimer state to the particle-dimer threshold $m E=-1$.

Conclusions

- In a finite volume, the quantization condition is projected onto the different irreps of the octahedral group.
- The spectra of A_{1}^{+}-irrep are calculated. The individual energy levels are identified in terms of bound states, as well as particle-dimer and 3 -particle scattering states.
- Outlook
- Derive the perturbative shift for the particle-dimer states. Use this result for the identification of the corresponding energy levels.
- Use the method to predict the outcome of lattice simulation in the realistic systems.

Thank you for your attention!

