Nucleosynthesis in core-collapse supernovae and neutron star mergers

Almudena Arcones

Solar system abundances

Solar photosphere and meteorites: chemical signature of gas cloud where the Sun formed

Contribution of all nucleosynthesis processes

s-process:
slow neutron capture
r-process:
rapid neutron capture

abundance = mass fraction / mass number

Solar system abundance

solar r-process = total - s-process - p-process = residual abundances

Oldest observed stars

The very metal-deficient star HE 0107-5240

Elemental abundances in:

- ultra metal-poor stars and

- solar system

Robust r-process for 56<Z<83
Scatter for lighter heavy elements, Z~40

How many "r-processes" contribute to solar system and UMP stars abundances?

CS 22892-052: Sneden et al. (2003)

- HD 115444: Westin et al. (2000)
- BD+17°324817: Cowan et al. (2002)
- * CS 31082-001: Hill et al. (2002)
- HD 221170: Ivans et al. (2006)
- HE 1523-0901: Frebel et al. (2007)

Sneden, Cowan, Gallino 2008

Elemental abundances in ultra metal-poor stars

Following Qian & Wasserburg 2007 three groups:

- Fe-like elements (A ~ 23 to 70): Na, Mg, Al, Si, ..., Fe, ..., Zn
- Sr-like elements (A ~ 88 to 110): Sr, Y, Zr, ..., Ag
- Eu-like elements (A > 130): Ba, ..., Eu, ..., Au, ..., Th, ..., U

r-processes

Lighter heavy elements (Sr to Ag) in neutrino-driven winds

Neutrino-driven winds

neutrons and protons form α -particles α -particles recombine into seed nuclei

NSE \rightarrow charged particle reactions / α -process \rightarrow r-process T = 10 - 8 GK 8 - 2 GK weak r-process vp-process

T < 3 GK

Neutrino-driven wind parameters

r-process \Rightarrow high neutron-to-seed ratio (Y_n/Y_{seed}~100)

- Short expansion time scale: inhibit α -process and formation of seed nuclei
- High entropy: photons dissociate seed nuclei into nucleons

Neutrino-driven wind parameters

r-process \Rightarrow high neutron-to-seed ratio (Y_n/Y_{seed}~100)

- Short expansion time scale: inhibit α -process and formation of seed nuclei
- High entropy: photons dissociate seed nuclei into nucleons

nditions are not realized in ent simulations

ones et al. 2007, Fischer et al. 2010, epohl et al. 2010, Roberts et al. 2010, ones & Janka 2011)

$$\begin{split} S_{wind} &= 50 - 120 \ k_B/nuc \\ \tau &= few \ ms \\ Y_e &\approx 0.4 - 0.6? \end{split}$$

ditional ingredients: Id termination, extra energy Irce, rotation and magnetic fields, Itrino oscillations

Core-collapse supernova simulations

Long-time hydrodynamical simulations:

- ejecta evolution from ~5ms after bounce to ~3s in 2D (Arcones & Janka 2011) and ~10s in 1D (Arcones et al. 2007)
- explosion triggered by neutrinos
- detailed study of nucleosynthesis-relevant conditions

Core-collapse supernova simulations

Long-time hydrodynamical simulations:

- ejecta evolution from ~5ms after bounce to ~3s in 2D (Arcones & Janka 2011) and ~10s in 1D (Arcones et al. 2007)
- explosion triggered by neutrinos
- detailed study of nucleosynthesis-relevant conditions

1D simulations for nucleosynthesis studies

Arcones et al 2007

1D simulations for nucleosynthesis studies

Arcones et al 2007

Lighter Element Primary Process (Travaglio et al. 2004, Montes et al. 2007)

Charged-particle reactions (Qian & Wasserburg 2001) + ...

Lighter heavy elements from different sites

New observations and chemical evolution models

Different astrophysical scenarios:

neutrino-driven wind, fast rotating stars (Frischknecht et al., talk of G. Cescutti)

Nuclear reactions not very far from stability: identify key reactions

Hansen et al. 2013, arXiv:1212:4147

Key reactions

Key reactions

t : 3.818e-03 s / T₉ : 4.584e+00 / ρ_b : 3.318e+05 g/cm³

t : 3.818e-03 s / T₉ : 4.584e+00 / ρ_b : 3.318e+05 g/cm³

Key reactions: (α,n)

Montes, Arcones, Pereira (in prep.)

Heavy r-process (Z≥50) where?

Where does the r-process occur?

Core-collapse supernovae

Neutron star mergers

- •neutrino-driven winds (Woosley et al. 1994,...)
- •shocked surface layers (Ning, Qian, Meyer 2007, Eichler, Arcones, Thielemann (in prep.))
- •jets (Winteler et al. 2012)
- •neutrino-induced in He shell (Banerjee, Haxton, Qian 2011)

spiral armsneutrino-driven wind

(Lattimer & Schramm 1974, Freiburghaus et al. 1999,, Goriely et al. 2011)

Trends with metallicity

Fe and Mg produced in same site: core-collapse supernovae

Significant scatter at low metallicities

r-process production rare in the early Galaxy

Mg and Fe production is not coupled to r-process production

Supernova-jet-like explosion

3D magneto-hydrodynamical simulations: rapid rotation and strong magnetic fields

matter collimates: neutron-rich jets

right r-process conditions

z [km]

Neutron star mergers

Right conditions for a successful r-process (Lattimer & Schramm 1974, Freiburghaus et al. 1999,, Goriely et al. 2011)

Do they occur early enough to explain UMP star abundances (Argast et al. 2004)?

r-process heating affects merger dynamics: late X-ray emission in short GRBs (Metzger, Arcones, Quataert, Martinez-Pinedo 2010)

Transient with kilo-nova luminosity (Metzger et al. 2010, Roberts et al. 2011, Goriely et al. 2011): direct observation of r-process, EM counter part to WG

Neutron star mergers

simulations: 21 mergers of 2 neutron stars 2 of neutron star black hole

nucleosynthesis of ejecta robust r-process:

- extreme neutron-rich conditions ($Y_e = 0.04$)
- several fission cycles

Korobkin, Rosswog, Arcones, Winteler (2012)

T (GK)

ρ (g cm⁻³)

Korobkin et al. 2012

Fission: barriers and yield distributions

Neutron star mergers: r-process with two simple fission descriptions

2nd peak (A~130): fission yield distribution 3rd peak (A~195): mass model, neutron captures

Fission: barriers and yield distributions

Neutron star mergers: r-process with two simple fission descriptions

2nd peak (A~130): fission yield distribution 3rd peak (A~195): mass model, neutron captures

r-process and extreme neutron-rich nuclei

Nuclear masses

Given astrophysical conditions, comparison of abundances based different mass models

FRDM (Möller et al. 1995)
ETFSI-Q (Pearson et al. 1996)
HFB-17 (Goriely et al. 2009)
Duflo&Zuker

Can we link masses (neutron separation energies) to the final r-process abundances?

Two neutron separation energy

Two neutron separation energy

Two neutron separation energy

Aspects of different mass models

Nuclear correlations and r-process

Delaroche et al. 2010: microscopic nuclear mass calculations including quadrupole correlations

Nuclear correlations: strong impact on trough before third peak

with correlations

Arcones & Bertsch (2012)

Neutron captures

-NON-SMOKER (Rauscher & Thielemann, 2000) -Approximation (Woosley, Fowler et al. 1975)

Neutron capture probability:

Decay to stability

We compare final abundances with and without beta-delayed neutron emission and with and without neutron captures after freeze-out.

Arcones & Martinez-Pinedo, 2011

Conclusions

Lighter heavy elements (Sr, Y, Zr) produced in neutrino-driven winds key reactions: (α, n)

Heavy r-process elements astrophysical site? sn, merger, $\dots \rightarrow$ GCE uncertainties on nuclear physics input