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A Vanilla Neutron Star 
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The nucleon degree of freedom may be  frozen 
everywhere in a cold neutron star !
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Attractive interactions destabilize the Fermi surface: 

Cooper pairs leads to 
superfluidity   

Ω(Δ)

Δ

Energy gap for fermions:

New collective mode:
Superfluid Phonon 



Transport properties dominated by  

• Outer crust: Electrons and lattice phonons. 

• Inner crust: Electrons, lattice phonons and 
superfluid phonons. 

• Core: Electrons, superfluid phonons, and 
angulons (Goldstone bosons associated with 
breaking rotational  symmetry).     

This is good news. Describing low energy properties of 
dense Fermi liquids is hard ! Low energy theory of 
phonons easier. 



New Phenomena in Neutron Stars

• Crustal heating and subsequent thermal 
relaxation in accreting neutron stars and 
magnetars.

• Surface temperature anisotropy in magnetars. 

• Possible excitation of shear modes in the 
solid crusts of magnetars during giant flares.    

- a window into the thermal and mechanical properties 
of the crust. 



Transiently Accreting NSs
SXRTs:  High accretion followed by periods of quiescence

Image credit: NASA/CXC/Wijnands et al.

Crust

Envelope

Deep crustal heating. 
Brown, Bildsten Rutledge (1998)

 Sato (1974), Haensel & Zdunik (1990)

KS 1731-260: High 
accretion 1988-2000

Nuclear reactions 
release: ~
1.5 MeV / nucleon

Warms up old neutron stars
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Crust Cooling 
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Watching NSs immediately after accretion ceases !

Crust Relaxation: 
1.Initial 
temperature 
profile.
2.Thermal 
conductivity.
3.Heat capacity.

Cackett, et al. (2006)

Shternin & Yakovlev (2007)
Cumming & Brown (2009)
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Watching NSs immediately after accretion ceases !

Crust Relaxation: 
1.Initial 
temperature 
profile.
2.Thermal 
conductivity.
3.Heat capacity.

Cackett, et al. (2006)

During quiescence we see 
the “Core Temperature”

Shternin & Yakovlev (2007)
Cumming & Brown (2009)



Thermal Relaxation
• Crust relaxes during quiescence.  
Shternin & Yakovlev (2007), Brown & Cumming (2009) 
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More than one source !
Cackett et al. 2006 Cackett et al. 2008

4.4 yr6.6 yr
MXB 1659-29 KS 1731-260

τCool = 305± 50 daysτCool = 465± 25 days



Connecting to Crust Microphysics
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Explosions on Magnetars: Giant Flares 

SGRs exhibit powerful outburst ~ 1046 ergs/s

http://www.physics.mcgill.ca/~pulsar/magnetar/main.html

Anomalous X-Ray Pulsars (10)
Soft Gamma Repeaters (8)

Inferred to have surface fields 
of the order of 1015 Gauss. 

SGR 0525-66 : (1979)
SGR 1806-20   (1979/1986/2004)* 
SGR 1900+14 (1979/1986/1998)
SGR 1627-41  (1998)

SGR 1806-20: 2004 Flare

Hurley et al. (2005)

http://www.physics.mcgill.ca/~pulsar/magnetar/main.html
http://www.physics.mcgill.ca/~pulsar/magnetar/main.html


QPOs are likely to be shear modes in the solid crust
Duncan (1998), Strohmayer, Watts (2006)
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Neutron Stars: 



Microscopic Structure of the Crust

Negele & Vautherin (1973)
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Electrons are (nearly) free

•Band gaps are small and restricted to small patches in 
the Fermi surface. 

Ve−i

EFe
� αem Z2/3 � 1

δe
EFe

� 4αem

3π
≈ 10−3

Tc � ωion
p exp

�
− vFe

αem

�
≈ 0

•Pairing energy is negligible.  

• Electrons are dense,degenerate and relativistic.   
ne = Z nI kFe ≈ EFe � 25− 75 MeV � me
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Electron Band 
Structure 

Degenerate Free  
Electron Gas 

Tp = �ωp/kB

TD � 0.4 Tp

Electron Pairing 

Electrons

TFe = µe/kB

Tum � e2 νt TFe

T c
e � e−137Tp ≈ 0

T c
n � 0.6 ∆n/kB

TA ≈ 1 MeV/kB

Figure 3. The regimes where collective excitations dominate over single particle excitation

for ions and neutrons. Scales of relevance to electron dynamics are also shown.

§4., the gap affects the Umklapp process for T � Tum = vt δU where δU is the band gap

and vt is the velocity of transverse phonons [9]. For nearly free electrons δU =VkFe , where

VkFe � 4πZe2 nI/k2

Fe = (4e2/3π) kFe is the Fourier component of the lattice potential at scale

kFe .

Although electrons in the inner crust are as degenerate as terrestrial superconductors

with T/TF ≈ 10
−5 − 10

−4
, where TF = µe, the critical temperature is negligibly small be-

cause here electrons are relativistic. They move too quickly to adequately experience the

attraction due to retardation effects in the electron-phonon potential, and consequently the

critical temperature T c
e � ωp exp(−vF/e2)� ωp is negligibly small [10]. Thus, the degen-

erate Fermi gas model provides an excellent description of electronic properties for T ≤ TF .

In this regime, the density of states Ne(0) = µ2

e/π2
is large and this greatly enhances their

contribution to thermal and transport properties at low temperature.

3.3. Neutrons

Due to strong attractive interactions, neutrons in the inner crust form Cooper pairs and be-

come superfluid. The gap in the single particle spectrum is denoted by ∆n increases from

zero at neutron drip to a maximum value ≈ 1 MeV at a density ρ � 10
13

g/cm
3

and de-

creases therafter. The number of thermally excited neutron quasi-particles is exponentially

suppressed when T � ∆n and their contribution to thermal and transport properties is typ-

ically negligible. However, depending on the variation of the gap with density, a sizable

fraction of the inner crust close to neutron drip and the vicinity of the crust-core interface

can be normal in accreting neutron stars.

Separation of Scales



Low Energy Theory of Phonons 

Neutron superfluid: Goldstone excitation is the phase 
of the condensate. 

Proton (clusters) move collectively on lattice sites. 
Displacement is a good coordinate. 

neutrons

protons
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Low Energy Theory of Phonons 

ξi(x, y, z)

Neutron superfluid: Goldstone excitation is the phase 
of the condensate. 

Proton (clusters) move collectively on lattice sites. 
Displacement is a good coordinate. 

neutrons

protons

neutrons

protons

“coarse-grain”

Collective 
coordinates: 

Vector Field: 
Scalar Field:

ξi(r, t)
φ(r, t)

�ψ↑(r)ψ↓(r)� = |∆| exp (−2i θ)



Low Energy Effective Theory

kinetic terms coupling to 
Fermions 

self-coupling 

lPh-sPh mixing

LsPh−lPh = g ∂0φ ∂iξ
i + γ ∂iφ ∂0ξ

i +
1

Λ2
∂0φ ∂iξ

i∂iξ
i + · · ·
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density of 
entrained
neutrons

density of 
conduction 
neutrons

Low energy constants related to 
ground state thermodynamics

Pethick, Chamel, Reddy (2010), Cirigliano, Reddy & Sharma (2011) first introduced in Ref. [12]. The velocity of the BA mode is

vφ =

√

nc
n

m

∂µn

∂nn
, (21)

whereas the velocity of the longitudinal mode of the lattice is

v" =

√

K̃ + 4S/3

ρI
. (22)

In the neutron-star crust, the electron contribution to the bulk modulus dominates, and

the ion contribution can be safely neglected (see e.g. Section 7.1 of [1]). As a result, v" is

approximately given by [19]
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Solving Eq. (14) we find that the eigenmode velocities are given by
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where

V =
√

v2" + v2φ + g2mix . (25)

The speed of the transverse lattice phonon in Eq. (18) is unaffected by mixing and is

approximately given by [20]

vt ≈ 0.4
ωp

qD
≈ 0.12

(

Z

50

)1/3

v" . (26)

Note that due to entrainment effects, the expressions (21), (23) and (26) for the veloc-

ities of the BA bosons and lattice phonons differ from those obtained considering either a

neutron superfluid alone or a pure solid crust, respectively. The self-consistent inclusion of

entrainment is an important new element of this study.

In the normal phase, any relative motion between the neutron liquid and the crust will

be damped by collisions so that in the hydrodynamic regime ions, electrons and neutrons

will be essentially co-moving. In this case, the Josephson’s equation have to be replaced by

the condition δvnvnvn = δvpvpvp. As a result, only one longitudinal mode corresponding to ordinary

hydrodynamic sound persists and its velocity is given by

cs =

√

K + 4S/3

ρ
, (27)
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Phonon mixing and drag

LsPh−lPh = g ∂0φ ∂iξi + γ ∂iφ ∂0ξi

density-density interaction: velocity-velocity interaction:

g = − np vφ�
nc
n(np + nb

n)

∂nn

∂np
γ =

nb
n vφ�

nc
n(np + nb

n)



Entrainment 

n (fm−3) ρ (g cm−3) Z Acell A Ab

0.0003 4.98 × 1011 50 200 170 175

0.001 1.66 × 1012 50 460 179 383

0.005 8.33 × 1012 50 1140 198 975

0.01 1.66 × 1013 40 1215 170 1053

0.02 3.32 × 1013 40 1485 180 1389

0.03 4.98 × 1013 40 1590 173 1486

0.04 6.66 × 1013 40 1610 216 1462

0.05 8.33 × 1013 20 800 87 586

0.06 1.00 × 1014 20 780 85 461

0.07 1.17 × 1014 20 714 76 302

0.08 1.33 × 1014 20 665 65 247

TABLE I: Ground-state composition of the inner crust of a neutron star (Z,Acell, A as defined in

Section II), as obtained in Ref. [3], for various baryon densities n/mass densities ρ. The effective

number of bound nucleons Ab was calculated including band structure effects in Ref. [9].

calculated by Friedman and Pandharipande [26] using realistic two- and three-body forces.

This equation of state is in good agreement with more recent ab intio calculations [27–29]

at densities relevant to the neutron-star crusts.

As discussed in detail in an accompanying paper [9], neutron band-structure calculations

are needed to determine nc
n. Here, we note that the key ingredient is the single-particle (s.p.)

dispersion relation εαkkk (α being the band index and kkk the Bloch wave vector) given by the

solution of the Schrödinger equation with the periodic mean-field obtained self-consistently

from the ETFSI method. The superfluid density was then found from the equation

nc
n =

m

24π3h̄2

∑

α

∫

F

|∇∇∇kkkεαkkk|dS(α) , (32)

where dS(α) is an infinitesimal area element of the piecewise Fermi surface associated with

the α band. As described in Ref. [9], in most regions of the inner crust only a small fraction

of dripped neutrons contributes to the superfluid density due to Bragg scattering so that

nc
n # nf

n or equivalently Ab ≈ Acell. Note that unbound (bound) neutrons with density nf
n

(respectively nn−nf
n) are characterized by s.p. energies εαkkk lying above (respectively below)

9

Chamel (2005)
Carter, Chamel & Haensel (2006) 

Bragg scattering off the lattice is important.   
A

Acell

A=N+Z

number of “bound” neutrons.  nb
n �=

nb
n = nn − nc

n
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9

Chamel (2005)
Carter, Chamel & Haensel (2006) 

Bragg scattering off the lattice is important.   
A

Acell

A=N+Z

number of “bound” neutrons.  nb
n �=

nb
n = nn − nc

n

Complex interplay of nuclear and band structure effects. 
The nuclear surface and disorder are likely to play a role.    
Longitudinal lattice phonons and superfluid phonons are strongly 
coupled by entrainment. 

neutron single-particle energy
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Figure 6. Velocities of phonons in the inner crust for two chemical compositions from Fig
2 and three values of the nuclei effective mass A∗.

Mixing implies that the longitudinal eigenmodes are superpositions of the longitudinal lat-
tice and superfluid phonons. The velocity of these eigenmodes is given by

v1,2 =

�����X
2



1±

�

1−
4v2

l v2
φ

X2



 (19)

where X = g2
mix+v2

l +v2
φ and vl and vφ are defined in Eq. 14. The velocity of the eigenmodes

for the crustal compositions of catalyzed and accreted matter shown in panels (A) and (B) of
Fig. 2 are plotted in Fig. 6. The dashed curves show results for vl and vφ without mixing and
they cross at ρ � 1013 g/cm3. In this resonance region mixing is large and level repulsion
can be significant. Away from resonance, the eigenmodes contain only small admixtures:
below ρ � 1013 g/cm3 the mode labelled v2 is predominantly the superfluid mode and above
it is predominantly the lattice mode. In these calculations we have neglected the second
contribution in Eq. 17 to gmix and the value of nb was chosen somewhat arbitrarily to reflect
the range of m∗ predicted in [24]. The panels show results for three values of gmix chosen to
reflect different fractions a = 0, 30% and 60% of unbound neutrons in the cell entrained by
each nucleus. Transverse modes are unaffected by mixing at leading order but are affected
by entrainment. Its variation in the crust for different values of a is also shown in Fig. 6.
Despite strong mixing vt � v1 or v2, and transverse modes will continue to be dominate the
specific heat.
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Figure 6. Velocities of phonons in the inner crust for two chemical compositions from Fig
2 and three values of the nuclei effective mass A∗.

Mixing implies that the longitudinal eigenmodes are superpositions of the longitudinal lat-
tice and superfluid phonons. The velocity of these eigenmodes is given by

v1,2 =

�����X
2
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 (19)

where X = g2
mix+v2

l +v2
φ and vl and vφ are defined in Eq. 14. The velocity of the eigenmodes

for the crustal compositions of catalyzed and accreted matter shown in panels (A) and (B) of
Fig. 2 are plotted in Fig. 6. The dashed curves show results for vl and vφ without mixing and
they cross at ρ � 1013 g/cm3. In this resonance region mixing is large and level repulsion
can be significant. Away from resonance, the eigenmodes contain only small admixtures:
below ρ � 1013 g/cm3 the mode labelled v2 is predominantly the superfluid mode and above
it is predominantly the lattice mode. In these calculations we have neglected the second
contribution in Eq. 17 to gmix and the value of nb was chosen somewhat arbitrarily to reflect
the range of m∗ predicted in [24]. The panels show results for three values of gmix chosen to
reflect different fractions a = 0, 30% and 60% of unbound neutrons in the cell entrained by
each nucleus. Transverse modes are unaffected by mixing at leading order but are affected
by entrainment. Its variation in the crust for different values of a is also shown in Fig. 6.
Despite strong mixing vt � v1 or v2, and transverse modes will continue to be dominate the
specific heat.

60% Entrained



✐
✐

“PageReddy” — 2012/1/26 — 10:24 — page 9 — #9 ✐
✐

✐
✐

✐
✐

9

of normal neutrons above the drip point, while models A1 and B1 predict a thick layer of
normal neutrons at the highest densities. Modifications to this simple picture of pairing in
uniform neutron matter due to the presence of the nuclei are discussed in this book in the
chapter by N. Sandulescu & J. Margueron [19]. Further, we briefly note that like in the
case of electrons, coherent Bragg scattering of neutrons by the lattice lead to band structure
effects that modify the shape of the Fermi surface, still Eq. 9 is an excellent approximation
to Cv in normal phase for reasons described in [20].

Elsewhere in the crust where T � Tc the relevant neutron contribution is from superfluid
phonons, i.e., collective instead of single particle excitations, and is given by

Csph
v =

2π2

15
T 3

v3
φ

(11)

where

vφ =

�
n f

mn f 2
φ

�
with f 2

φ =
∂n f

∂µn
, see §3.5.

�
(12)

is the superfluid phonon velocity, n f , µn and mn are the number density, chemical potential
and mass of the free neutrons, respectively. For weakly coupled systems vφ = vF/

√
3 where

vF is the Fermi velocity. In most of the inner crust vφ � vt (see Fig. 6) and hence their
contribution to the heat capacity is negligible except perhaps in a sliver where vφ � vt and
T ≤ Tc.
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Figure 5. Specific heat of ions, electrons, and for neutrons with (labelled nSF) and without
the effects of the superfluid gap (labelled nN) are shown for four representative tempera-
tures.

The specific heat due to these components is shown in Fig. 5. The ion contribution for
T � 0.1Tp varies as T 3 and is to very good approximation given by Clph

V , while electron
contribution is linear in T and dominates at low temperature. As mentioned earlier, the
neutron contribution is sensitive to the variation of the 1S0 gap. To illustrate this we show
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we discuss below the phonon contribution can become important in accreting neutron stars
where T � 108 −109 K. For T � TD the contribution from lattice phonons (lph) is given by

Clph
v =

2π2

15

�
T 3

v3
l
+

2 T 3

v3
t

�
, (4)

and vl and vt are velocities of the longitudinal, and transverse lattice phonons, respectively.
In a model where the strong interaction between the neutron superfluid and the ion lattice is
ignored it is simple to calculate these velocities. The speed of longitudinal lattice vibrations
is approximated as vl =

�
Kion−e/ρ where Kion−e = ρ(∂(Pion+Pe)/∂ρ) is the bulk-modulus

of the electron-ion system and the ion mass density ρ = Amn nI where A is the number of
bound nucleons in the ion. Since Pe � Pion, we can write

vl =

�
∂Pe

∂ρ
=

ωp

kTFe
, (5)

which is usually referred to as the Bohm-Staver sound speed. The velocity of the transverse
lattice mode is related to µ, the shear modulus of the lattice, and is given by

vt =

�
µ
ρ
= α

ωp

qD
, (6)

where qD = (6π2nI)1/3 is the ion Debye momentum, and the constant α � 0.4 is obtained
by numerical calculations of Coulomb crystals [17]. Further, since

qD

kTFe
=

�
π

4e2

�
2
Z

�1/3

� 1 (7)

we have vl � vt and the contribution from longitudinal modes to Cv in Eq. 4 in negligible.
Thus the lattice contribution can be written in the familiar form

Clph
v = ni

12π4

5

�
T
TD

�3

, (8)

where TD = (3/2)1/3vt qD � 0.45Tp is the Debye temperature of the ion lattice. This low
temperature form of the specific heat provides an excellent approximation in Coulomb
solids up to T ≤ Tp/50 but fails when T ≥ Tp/10 [18].

To calculate the neutron contribution to Cv we first note that there are two distinct
regimes. In the normal phase when T ≥ Tc the neutron contribution is large and is given by

Cneutron
v =

1
3

mn kFn T (T > Tc) (9)

This normal contribution can become important in the vicinity of neutron drip where T > Tc,
and at the crust-core boundary. In the superfluid phase when T � Tc the neutron single
particle excitations are strongly suppressed and

Cneutron
v ≈ 1

3
mn kFn T exp

�
−∆n

T

�
(T � Tc) . (10)

which is usually negligible. The four models for the gap in Fig. 4 allow us to explore the
effect of pairing on the neutron specific heat. In models A1 and A2 we have a thick shell
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Figure 4. A sample of theoretical prediction for the neutron
1
S0 superfluidity critical tem-

perature Tc.

In Fig. 4 model predictions for the critical temperature Tc = ∆n/1.76 are shown where

curves labelled "BCS" and "GMB" show the analytical results in the weak coupling valid

in the limit |akF |� 1. In the Bardeen Cooper and Schrieffer (BCS) approximation ∆BCS =
(8/e2)exp(π/2a kF)EF , with a scattering length a=−18.5, fm. Corrections due to medium

polarization which appear at the same order reduce the gap to ∆GMB = 1/(4e)1/3∆BCS from

[11]. Curves labelled "A1" and "A2" are examples of slowly growing Tc at low kF , from [12]

and [13], respectively. Curves "B1" and "B2" mimic behavior predicted by strong coupling

QMC calculations from [14] and [15] where the gap increases rapidly with density. In

models labelled "A1" and "B1" where gaps vanish at ρ � 10
14

g/cm
3
. For more details on

the density and model dependence of the gap we refer the reader to the chapter by Gezerlis

and Carlson[16] in this book.

In the region where T < Tc collective excitations of the neutron fluid called superfluid

phonons, with a dispersion relation ω = vφ q, are the relevant low energy degrees of free-

dom. This mode corresponds to fluctuations of the phase of the superfluid condensate (and

can be related to density fluctuations) and is the Goldstone mode associated with the spon-

taneous breaking of the global U(1) symmetry in superfluid ground state (the Hamiltonian

is invariant under arbitrary phase rotations of the fermion fields, but in the superfluid ground

state is preserved only by discrete rotations of π/2).

3.4. Specific heat

The electron contribution the specific heat (hereafter Cv will represent the specific heat per

unit volume) is given by

Ce
v =

1

3
µ2

e T , (3)

at low temperature. Band structure affects only negligible as only small regions of the

Fermi surface are affected. At low-temperature when T � Tp electrons dominate, but as
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of normal neutrons above the drip point, while models A1 and B1 predict a thick layer of
normal neutrons at the highest densities. Modifications to this simple picture of pairing in
uniform neutron matter due to the presence of the nuclei are discussed in this book in the
chapter by N. Sandulescu & J. Margueron [19]. Further, we briefly note that like in the
case of electrons, coherent Bragg scattering of neutrons by the lattice lead to band structure
effects that modify the shape of the Fermi surface, still Eq. 9 is an excellent approximation
to Cv in normal phase for reasons described in [20].

Elsewhere in the crust where T � Tc the relevant neutron contribution is from superfluid
phonons, i.e., collective instead of single particle excitations, and is given by

Csph
v =

2π2

15
T 3

v3
φ

(11)

where

vφ =

�
n f

mn f 2
φ

�
with f 2

φ =
∂n f

∂µn
, see §3.5.

�
(12)

is the superfluid phonon velocity, n f , µn and mn are the number density, chemical potential
and mass of the free neutrons, respectively. For weakly coupled systems vφ = vF/

√
3 where

vF is the Fermi velocity. In most of the inner crust vφ � vt (see Fig. 6) and hence their
contribution to the heat capacity is negligible except perhaps in a sliver where vφ � vt and
T ≤ Tc.
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Figure 5. Specific heat of ions, electrons, and for neutrons with (labelled nSF) and without
the effects of the superfluid gap (labelled nN) are shown for four representative tempera-
tures.

The specific heat due to these components is shown in Fig. 5. The ion contribution for
T � 0.1Tp varies as T 3 and is to very good approximation given by Clph

V , while electron
contribution is linear in T and dominates at low temperature. As mentioned earlier, the
neutron contribution is sensitive to the variation of the 1S0 gap. To illustrate this we show
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we discuss below the phonon contribution can become important in accreting neutron stars
where T � 108 −109 K. For T � TD the contribution from lattice phonons (lph) is given by

Clph
v =

2π2

15

�
T 3

v3
l
+

2 T 3

v3
t

�
, (4)

and vl and vt are velocities of the longitudinal, and transverse lattice phonons, respectively.
In a model where the strong interaction between the neutron superfluid and the ion lattice is
ignored it is simple to calculate these velocities. The speed of longitudinal lattice vibrations
is approximated as vl =

�
Kion−e/ρ where Kion−e = ρ(∂(Pion+Pe)/∂ρ) is the bulk-modulus

of the electron-ion system and the ion mass density ρ = Amn nI where A is the number of
bound nucleons in the ion. Since Pe � Pion, we can write

vl =

�
∂Pe

∂ρ
=

ωp

kTFe
, (5)

which is usually referred to as the Bohm-Staver sound speed. The velocity of the transverse
lattice mode is related to µ, the shear modulus of the lattice, and is given by

vt =

�
µ
ρ
= α

ωp

qD
, (6)

where qD = (6π2nI)1/3 is the ion Debye momentum, and the constant α � 0.4 is obtained
by numerical calculations of Coulomb crystals [17]. Further, since

qD

kTFe
=

�
π

4e2

�
2
Z

�1/3

� 1 (7)

we have vl � vt and the contribution from longitudinal modes to Cv in Eq. 4 in negligible.
Thus the lattice contribution can be written in the familiar form

Clph
v = ni

12π4

5

�
T
TD

�3

, (8)

where TD = (3/2)1/3vt qD � 0.45Tp is the Debye temperature of the ion lattice. This low
temperature form of the specific heat provides an excellent approximation in Coulomb
solids up to T ≤ Tp/50 but fails when T ≥ Tp/10 [18].

To calculate the neutron contribution to Cv we first note that there are two distinct
regimes. In the normal phase when T ≥ Tc the neutron contribution is large and is given by

Cneutron
v =

1
3

mn kFn T (T > Tc) (9)

This normal contribution can become important in the vicinity of neutron drip where T > Tc,
and at the crust-core boundary. In the superfluid phase when T � Tc the neutron single
particle excitations are strongly suppressed and

Cneutron
v ≈ 1

3
mn kFn T exp

�
−∆n

T

�
(T � Tc) . (10)

which is usually negligible. The four models for the gap in Fig. 4 allow us to explore the
effect of pairing on the neutron specific heat. In models A1 and A2 we have a thick shell
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we discuss below the phonon contribution can become important in accreting neutron stars
where T � 108 −109 K. For T � TD the contribution from lattice phonons (lph) is given by

Clph
v =

2π2

15

�
T 3

v3
l
+

2 T 3

v3
t

�
, (4)

and vl and vt are velocities of the longitudinal, and transverse lattice phonons, respectively.
In a model where the strong interaction between the neutron superfluid and the ion lattice is
ignored it is simple to calculate these velocities. The speed of longitudinal lattice vibrations
is approximated as vl =

�
Kion−e/ρ where Kion−e = ρ(∂(Pion+Pe)/∂ρ) is the bulk-modulus

of the electron-ion system and the ion mass density ρ = Amn nI where A is the number of
bound nucleons in the ion. Since Pe � Pion, we can write

vl =

�
∂Pe

∂ρ
=

ωp

kTFe
, (5)

which is usually referred to as the Bohm-Staver sound speed. The velocity of the transverse
lattice mode is related to µ, the shear modulus of the lattice, and is given by

vt =

�
µ
ρ
= α

ωp

qD
, (6)

where qD = (6π2nI)1/3 is the ion Debye momentum, and the constant α � 0.4 is obtained
by numerical calculations of Coulomb crystals [17]. Further, since

qD

kTFe
=

�
π

4e2

�
2
Z

�1/3

� 1 (7)

we have vl � vt and the contribution from longitudinal modes to Cv in Eq. 4 in negligible.
Thus the lattice contribution can be written in the familiar form

Clph
v = ni

12π4

5

�
T
TD

�3

, (8)

where TD = (3/2)1/3vt qD � 0.45Tp is the Debye temperature of the ion lattice. This low
temperature form of the specific heat provides an excellent approximation in Coulomb
solids up to T ≤ Tp/50 but fails when T ≥ Tp/10 [18].

To calculate the neutron contribution to Cv we first note that there are two distinct
regimes. In the normal phase when T ≥ Tc the neutron contribution is large and is given by

Cneutron
v =

1
3

mn kFn T (T > Tc) (9)

This normal contribution can become important in the vicinity of neutron drip where T > Tc,
and at the crust-core boundary. In the superfluid phase when T � Tc the neutron single
particle excitations are strongly suppressed and

Cneutron
v ≈ 1

3
mn kFn T exp

�
−∆n

T

�
(T � Tc) . (10)

which is usually negligible. The four models for the gap in Fig. 4 allow us to explore the
effect of pairing on the neutron specific heat. In models A1 and A2 we have a thick shell
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we discuss below the phonon contribution can become important in accreting neutron stars
where T � 108 −109 K. For T � TD the contribution from lattice phonons (lph) is given by

Clph
v =

2π2

15

�
T 3

v3
l
+

2 T 3

v3
t

�
, (4)

and vl and vt are velocities of the longitudinal, and transverse lattice phonons, respectively.
In a model where the strong interaction between the neutron superfluid and the ion lattice is
ignored it is simple to calculate these velocities. The speed of longitudinal lattice vibrations
is approximated as vl =

�
Kion−e/ρ where Kion−e = ρ(∂(Pion+Pe)/∂ρ) is the bulk-modulus

of the electron-ion system and the ion mass density ρ = Amn nI where A is the number of
bound nucleons in the ion. Since Pe � Pion, we can write

vl =

�
∂Pe

∂ρ
=

ωp

kTFe
, (5)

which is usually referred to as the Bohm-Staver sound speed. The velocity of the transverse
lattice mode is related to µ, the shear modulus of the lattice, and is given by

vt =

�
µ
ρ
= α

ωp

qD
, (6)

where qD = (6π2nI)1/3 is the ion Debye momentum, and the constant α � 0.4 is obtained
by numerical calculations of Coulomb crystals [17]. Further, since

qD

kTFe
=

�
π

4e2

�
2
Z

�1/3

� 1 (7)

we have vl � vt and the contribution from longitudinal modes to Cv in Eq. 4 in negligible.
Thus the lattice contribution can be written in the familiar form

Clph
v = ni

12π4

5

�
T
TD

�3

, (8)

where TD = (3/2)1/3vt qD � 0.45Tp is the Debye temperature of the ion lattice. This low
temperature form of the specific heat provides an excellent approximation in Coulomb
solids up to T ≤ Tp/50 but fails when T ≥ Tp/10 [18].

To calculate the neutron contribution to Cv we first note that there are two distinct
regimes. In the normal phase when T ≥ Tc the neutron contribution is large and is given by

Cneutron
v =

1
3

mn kFn T (T > Tc) (9)

This normal contribution can become important in the vicinity of neutron drip where T > Tc,
and at the crust-core boundary. In the superfluid phase when T � Tc the neutron single
particle excitations are strongly suppressed and

Cneutron
v ≈ 1

3
mn kFn T exp

�
−∆n

T

�
(T � Tc) . (10)

which is usually negligible. The four models for the gap in Fig. 4 allow us to explore the
effect of pairing on the neutron specific heat. In models A1 and A2 we have a thick shell
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of normal neutrons above the drip point, while models A1 and B1 predict a thick layer of
normal neutrons at the highest densities. Modifications to this simple picture of pairing in
uniform neutron matter due to the presence of the nuclei are discussed in this book in the
chapter by N. Sandulescu & J. Margueron [19]. Further, we briefly note that like in the
case of electrons, coherent Bragg scattering of neutrons by the lattice lead to band structure
effects that modify the shape of the Fermi surface, still Eq. 9 is an excellent approximation
to Cv in normal phase for reasons described in [20].

Elsewhere in the crust where T � Tc the relevant neutron contribution is from superfluid
phonons, i.e., collective instead of single particle excitations, and is given by

Csph
v =

2π2

15
T 3

v3
φ

(11)

where

vφ =

�
n f

mn f 2
φ

�
with f 2

φ =
∂n f

∂µn
, see §3.5.

�
(12)

is the superfluid phonon velocity, n f , µn and mn are the number density, chemical potential
and mass of the free neutrons, respectively. For weakly coupled systems vφ = vF/

√
3 where

vF is the Fermi velocity. In most of the inner crust vφ � vt (see Fig. 6) and hence their
contribution to the heat capacity is negligible except perhaps in a sliver where vφ � vt and
T ≤ Tc.
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Figure 5. Specific heat of ions, electrons, and for neutrons with (labelled nSF) and without
the effects of the superfluid gap (labelled nN) are shown for four representative tempera-
tures.

The specific heat due to these components is shown in Fig. 5. The ion contribution for
T � 0.1Tp varies as T 3 and is to very good approximation given by Clph

V , while electron
contribution is linear in T and dominates at low temperature. As mentioned earlier, the
neutron contribution is sensitive to the variation of the 1S0 gap. To illustrate this we show
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�Q

�q

�p

�p + �k

Figure 8. Feynman diagram for the Umklapp process. The double dashed line represents

recoil-free momentum transfer �Q=�k−�q to the lattice, and |�q|< qD lies in the first Brillouin

zone.

Ṽ (k) = FZ(k)/(k2 +k2

TFe
) characterizes the screened electron-ion interaction in momentum

space where k2

TFe
= 4e2k2

Fe/π and FZ(k) is the charge form factor of the nucleus.

Pauli blocking restricts ω � T � µe, and when S(ω,k) contains most of its strength in

the region ω � 3T the conductivity can be expressed in terms of the static structure function

S(k) =
�

dω S(k,ω). However, S(ω,k) has strength at ω�ωp and λe cannot be calculated in

terms of S(k) when T < Tp. Here, the frequency dependence of the dynamic structure factor

is needed but this is generally difficult to calculate in strongly coupled quantum systems.

Fortunately, when T < TD phonons are the only relevant degrees of freedom and electron

scattering is dominated by the emission or absorption of phonons [29]. In this case, S(ω,k)
is simpler and is characterized by discrete peaks at ω = vk associated with the excitation of

phonons with velocity v.

In the low-energy theory, the interaction between electron and phonons is described by

the Lagrangian density

Le−ph =
1

feph

ψ†

eψe∂iξi where feph =

√ρ k2

D

4πZe2 nI
(23)

is related to electron-phonon coupling constant [30], ψe is the electron field and ξi is the

ion displacement (phonon) field discussed in §3.. This form of the interaction applies to

normal processes, where the momentum transfer k < qD and displacements correspond to

excitation of longitudinal phonons. However, since kFe/qD = (Z/2)1/3 > 1 large angle

electron scattering with k > qD is possible. This Umklapp process is depicted in Fig. 8

where the electron simultaneously Bragg scatter off the lattice and excite a phonon. Elastic

Bragg scattering (without phonon emission) however does not contrbute because electrons

are eigenstates of the lattice potential. Further, unlike normal processes where only longi-

tudinal modes are involved, Umklapp scattering is dominated by the emission or absorption

of transverse phonons [28, 31].

The dynamic structure factor for single-phonon emission and absorption including

Umklapp shown in Fig. 8 is given by

S(ω,k) = nI

MI
∑

i
∑
Q

(�k.ε̂i)2

2 ω

�
δ(ω− vi q)

1− exp(−βω)
+

δ(ω+ vi q)
exp(−βω)−1

�
δ3(�k− �Q−�q) , (24)

where the first and second terms in parenthesis represent phonon emission and absorption,

respectively [28] . The phonon momentum is restricted to the first Brillouin zone q < qD,

kFe
qD

=

�
Z

2

�1/3

> 1

Flowers & Itoh (1976)

Cirigliano, Reddy & Sharma (2011) 

Electron Bragg scatters and emits a transverse phonon.  

κ =
1

3
Cv × v × λ
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Figure 9. Electron thermal conductivity κe vs density at four different temperatures. Scat-
tering processes e-ion, e-e, and e-imp with 6 values of Qimp = 0, 1, 2, 3, 4, and 5 (as
indicated in the left panel) are included.

of impurity scattering in the inner crust for T < 108 K and for Qimp � 1. Both of these trends
are easily understood in terms of the preceding discussion of various scattering mechanisms
and their temperature dependencies. As we discuss in §5., Qimp will play an important role
in interpreting observations in accreting neutron stars when the inner crust is cold with
T < Tum.

4.5. Phonon conduction

Phonon heat conduction can become relevant when T >∼ 108 K when the phonon heat capac-
ity becomes comparable to that of electrons, or when the electron contribution is suppressed
either due to large Qimp or magnetic fields. Its importnace depends on the phonon mean free
path being large enough to compensate for their smaller velocity. Phonon scattering pro-
cesses have been discussed in Refs. [26, 27] and we will briefly review them here. As in
terrestrial metals [29], electrons in the inner crust are efficient at damping lattice phonons.
The phonon-electron process is shown in Fig 7 (2a) which depicts a phonon decay produc-
ing an electron-hole excitation. This, Landau damping, dominates over phonon-impurity
and phonon-phonon processes for the temperature realized in the crust [26].

The electron-phonon process discussed in §4.1. and the phonon-electron process we
discuss here are essentially similar. Only here it acts to bring into equilibrium the phonon
distribution function that carries the net thermal current relative to the electron gas. Since
transverse modes dominate the heat capacity their contribution to thermal conduction is rel-
evant and longitudinal modes can be neglected. For T ≥ Tum, Umklapp processes dominate
and transverse phonons are absorbed and emitted by large angle electron scattering on the
Fermi surface. The mean free path for these processes was estimated by Chugunov and
Haensel in [26]. For simplicity, neglecting corrections due to the Debye-Waller factor, we

Electron Conduction

Impurity scattering is important at low temperature. 
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Figure 7. Feynman diagrams indicating the various scattering and dissipative processes

involving electrons, lattice phonons and superfluid phonons.

4. Transport Properties

The electron and phonon thermal conductivity can be written as κ = Cv v λ/3 where Cv is

their specific heat, v is their velocity, and λ is the transport mean free path. Using Eqs. 3 &

4 the electron and phonon conductivities are

κe =
1

9
µ2

e T λe , κphi
=

2π2

45 v2

i
T 3 λphi

(20)

where electrons are relativistic (v = 1) with mean-free path λe, and the phonon contribution

is for each phonon type with velocity vi and mean free path λphi
. Since µe � T , electrons

dominate at low temperature but phonon contributions can become relevant at high tem-

perature when λphi
� (µe/T )2 v2

i λe or when the magnetic field is large enough to restrict

electron motion [26, 27]. Phonon velocity was discussed in §3., we now turn to discuss

scattering and absorption processes that determine their mean free path. Feynman diagrams

for relevant interactions are illustrated in Fig. 7 and in the following we briefly discuss the

most important of these processes in the inner crust.

4.1. Electron-phonon processes

In its general form, the electron mean free path relevant for the thermal conductivity due to

electron-ion scattering is given by

λ−1

e =
Z2e4

4πµ2
e

�
2kFe

0

dk k3 |Ṽ (k)|2
� ∞

−∞
dω F (βω)S(ω,k) gκ(k,βω) (21)

where

gκ(βω,k) = 1+

�
βω
π

�
2
�

3
k2

Fe
k2

− 1

2

�
, F (βω) = βω

exp(βω)−1
(22)

and the dynamical structure factor S(ω,k) embodies all relevant dynamics of the strongly

coupled system of ions [28]. Here, ω,k are the energy and momentum transfer. The function

Electron-phonon:
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and sums are over all reciprocal lattice vectors or lattice momenta �Q, and the longitudinal

and transverse phonon states with polarization vector ε̂i and velocity vi. Using Eq. 24 and

the delta functions to perform the integration over k and ω, the electron mean free paths in

Eq. 21 can be written as

1

λph

e
=

2π2e2 ω2

p

µe T ∑
i

K (i)(T,vi) , where , (25)

K (i)(T,vi) =
P<2kFe

∑
Q

� qD

0

d3q
(2π)3

Ṽ (P )
P (�P .ε̂i)2(1−P 2/4k2

Fe) gκ(βviq,P )

(exp(βviq)−1)(1− exp−(βviq))
, (26)

and �P =�q+ �Q. To unravel the dependence on the temperature and the phonon velocity we

examine two limitings forms of the function K (i)(T,vi). First, when 2kFe � qD, the domi-

nant contribution comes from the Umklapp and we can set �P = �Q in evaluating K (i)(T,vi).
In this case, from the RHS of Eq. 26 it is easy to deduce that

lim
Q�q

K (i)(T,vi) ∝ T 3

v3

i
. (27)

In the opposite limit, when only the normal process involving longitudinal lattice modes

contribute we can set �Q = 0 in the RHS of Eq. 26 to find that

lim
Q=0

K (i)(T,vl) ∝ T 4

v4

l
. (28)

At very low temperature, the band gap in the electron spectrum suppress Umklapp

processes. As mentioned in §3., coherent Bragg scattering by the lattice will distort the

electron Fermi surface for momenta that can coincide with the reciprocal lattice vectors

Q. Here, the spectrum will differ due to a band gap δU � (4e3/3π) kFe. Although distorted

patches on the Fermi surface occupy only a small fraction of the total area, these regions are

important for Umklapp transitions. To understand this suppression consider the case when

the phonon momentum q ≈ 0. In this limit, large angle electron Umklapp scattering with

�k � �Q can only involve electrons on these patches. However, at low temperature the gap

will suppress such transitions unless the phonon momentum q ≥ δk where δk � δU/vFe can

"steer" electrons away from these patches. For transverse thermal phonons q � 3T/vt and

the condition on the phonon momentum implies that Umklapp occurs for T ≥ Tum where

Tum = (4e3/9π) vt kFe.

From the preceding discussions we can conclude that for T > Tum the mean free path

λph

e ∝ v3

t /T 2
since vt � vl . For T � Tum where only normal processes involving longitudinal

phonons are allowed we expect λph

e ∝ v4

l /T 3
. However, the normal electron-phonon process

is too weak to compete with two other sources of electron scattering that we now discuss.

4.2. Electron-impurity scattering

As we noted in §2., in accreting neutron stars nuclear reactions that process accreted mate-

rial can produce a mix of metastable nuclei. The evolution of nuclei in the outer crust has

been studied in [5] where it was found that electron capture induced neutron emission reac-

tions populate a very diverse mix of nuclei with a large dispersion in Z and A. Although it

{
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and sums are over all reciprocal lattice vectors or lattice momenta �Q, and the longitudinal

and transverse phonon states with polarization vector ε̂i and velocity vi. Using Eq. 24 and

the delta functions to perform the integration over k and ω, the electron mean free paths in

Eq. 21 can be written as
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µe T ∑
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K (i)(T,vi) , where , (25)
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, (26)

and �P =�q+ �Q. To unravel the dependence on the temperature and the phonon velocity we

examine two limitings forms of the function K (i)(T,vi). First, when 2kFe � qD, the domi-

nant contribution comes from the Umklapp and we can set �P = �Q in evaluating K (i)(T,vi).
In this case, from the RHS of Eq. 26 it is easy to deduce that

lim
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K (i)(T,vi) ∝ T 3
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i
. (27)

In the opposite limit, when only the normal process involving longitudinal lattice modes

contribute we can set �Q = 0 in the RHS of Eq. 26 to find that

lim
Q=0

K (i)(T,vl) ∝ T 4

v4

l
. (28)

At very low temperature, the band gap in the electron spectrum suppress Umklapp

processes. As mentioned in §3., coherent Bragg scattering by the lattice will distort the

electron Fermi surface for momenta that can coincide with the reciprocal lattice vectors

Q. Here, the spectrum will differ due to a band gap δU � (4e3/3π) kFe. Although distorted

patches on the Fermi surface occupy only a small fraction of the total area, these regions are

important for Umklapp transitions. To understand this suppression consider the case when

the phonon momentum q ≈ 0. In this limit, large angle electron Umklapp scattering with

�k � �Q can only involve electrons on these patches. However, at low temperature the gap

will suppress such transitions unless the phonon momentum q ≥ δk where δk � δU/vFe can

"steer" electrons away from these patches. For transverse thermal phonons q � 3T/vt and

the condition on the phonon momentum implies that Umklapp occurs for T ≥ Tum where

Tum = (4e3/9π) vt kFe.

From the preceding discussions we can conclude that for T > Tum the mean free path

λph

e ∝ v3

t /T 2
since vt � vl . For T � Tum where only normal processes involving longitudinal

phonons are allowed we expect λph

e ∝ v4

l /T 3
. However, the normal electron-phonon process

is too weak to compete with two other sources of electron scattering that we now discuss.

4.2. Electron-impurity scattering

As we noted in §2., in accreting neutron stars nuclear reactions that process accreted mate-

rial can produce a mix of metastable nuclei. The evolution of nuclei in the outer crust has

been studied in [5] where it was found that electron capture induced neutron emission reac-

tions populate a very diverse mix of nuclei with a large dispersion in Z and A. Although it

✐
✐

“PageReddy” — 2012/1/26 — 10:24 — page 15 — #15 ✐
✐

✐
✐

✐
✐

15

and sums are over all reciprocal lattice vectors or lattice momenta �Q, and the longitudinal

and transverse phonon states with polarization vector ε̂i and velocity vi. Using Eq. 24 and

the delta functions to perform the integration over k and ω, the electron mean free paths in

Eq. 21 can be written as
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K (i)(T,vi) , where , (25)

K (i)(T,vi) =
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Fe) gκ(βviq,P )

(exp(βviq)−1)(1− exp−(βviq))
, (26)

and �P =�q+ �Q. To unravel the dependence on the temperature and the phonon velocity we

examine two limitings forms of the function K (i)(T,vi). First, when 2kFe � qD, the domi-

nant contribution comes from the Umklapp and we can set �P = �Q in evaluating K (i)(T,vi).
In this case, from the RHS of Eq. 26 it is easy to deduce that

lim
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K (i)(T,vi) ∝ T 3

v3
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. (27)

In the opposite limit, when only the normal process involving longitudinal lattice modes

contribute we can set �Q = 0 in the RHS of Eq. 26 to find that

lim
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K (i)(T,vl) ∝ T 4
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. (28)

At very low temperature, the band gap in the electron spectrum suppress Umklapp

processes. As mentioned in §3., coherent Bragg scattering by the lattice will distort the

electron Fermi surface for momenta that can coincide with the reciprocal lattice vectors

Q. Here, the spectrum will differ due to a band gap δU � (4e3/3π) kFe. Although distorted

patches on the Fermi surface occupy only a small fraction of the total area, these regions are

important for Umklapp transitions. To understand this suppression consider the case when

the phonon momentum q ≈ 0. In this limit, large angle electron Umklapp scattering with

�k � �Q can only involve electrons on these patches. However, at low temperature the gap

will suppress such transitions unless the phonon momentum q ≥ δk where δk � δU/vFe can

"steer" electrons away from these patches. For transverse thermal phonons q � 3T/vt and

the condition on the phonon momentum implies that Umklapp occurs for T ≥ Tum where

Tum = (4e3/9π) vt kFe.

From the preceding discussions we can conclude that for T > Tum the mean free path
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t /T 2
since vt � vl . For T � Tum where only normal processes involving longitudinal

phonons are allowed we expect λph
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. However, the normal electron-phonon process

is too weak to compete with two other sources of electron scattering that we now discuss.
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and sums are over all reciprocal lattice vectors or lattice momenta �Q, and the longitudinal

and transverse phonon states with polarization vector ε̂i and velocity vi. Using Eq. 24 and

the delta functions to perform the integration over k and ω, the electron mean free paths in

Eq. 21 can be written as

1

λph

e
=

2π2e2 ω2

p

µe T ∑
i

K (i)(T,vi) , where , (25)
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and �P =�q+ �Q. To unravel the dependence on the temperature and the phonon velocity we

examine two limitings forms of the function K (i)(T,vi). First, when 2kFe � qD, the domi-

nant contribution comes from the Umklapp and we can set �P = �Q in evaluating K (i)(T,vi).
In this case, from the RHS of Eq. 26 it is easy to deduce that

lim
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In the opposite limit, when only the normal process involving longitudinal lattice modes

contribute we can set �Q = 0 in the RHS of Eq. 26 to find that

lim
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l
. (28)

At very low temperature, the band gap in the electron spectrum suppress Umklapp

processes. As mentioned in §3., coherent Bragg scattering by the lattice will distort the

electron Fermi surface for momenta that can coincide with the reciprocal lattice vectors

Q. Here, the spectrum will differ due to a band gap δU � (4e3/3π) kFe. Although distorted

patches on the Fermi surface occupy only a small fraction of the total area, these regions are

important for Umklapp transitions. To understand this suppression consider the case when

the phonon momentum q ≈ 0. In this limit, large angle electron Umklapp scattering with

�k � �Q can only involve electrons on these patches. However, at low temperature the gap

will suppress such transitions unless the phonon momentum q ≥ δk where δk � δU/vFe can

"steer" electrons away from these patches. For transverse thermal phonons q � 3T/vt and

the condition on the phonon momentum implies that Umklapp occurs for T ≥ Tum where

Tum = (4e3/9π) vt kFe.

From the preceding discussions we can conclude that for T > Tum the mean free path
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and sums are over all reciprocal lattice vectors or lattice momenta �Q, and the longitudinal

and transverse phonon states with polarization vector ε̂i and velocity vi. Using Eq. 24 and

the delta functions to perform the integration over k and ω, the electron mean free paths in

Eq. 21 can be written as
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, (26)

and �P =�q+ �Q. To unravel the dependence on the temperature and the phonon velocity we

examine two limitings forms of the function K (i)(T,vi). First, when 2kFe � qD, the domi-

nant contribution comes from the Umklapp and we can set �P = �Q in evaluating K (i)(T,vi).
In this case, from the RHS of Eq. 26 it is easy to deduce that

lim
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i
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In the opposite limit, when only the normal process involving longitudinal lattice modes

contribute we can set �Q = 0 in the RHS of Eq. 26 to find that

lim
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l
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At very low temperature, the band gap in the electron spectrum suppress Umklapp

processes. As mentioned in §3., coherent Bragg scattering by the lattice will distort the

electron Fermi surface for momenta that can coincide with the reciprocal lattice vectors

Q. Here, the spectrum will differ due to a band gap δU � (4e3/3π) kFe. Although distorted

patches on the Fermi surface occupy only a small fraction of the total area, these regions are

important for Umklapp transitions. To understand this suppression consider the case when

the phonon momentum q ≈ 0. In this limit, large angle electron Umklapp scattering with

�k � �Q can only involve electrons on these patches. However, at low temperature the gap

will suppress such transitions unless the phonon momentum q ≥ δk where δk � δU/vFe can

"steer" electrons away from these patches. For transverse thermal phonons q � 3T/vt and

the condition on the phonon momentum implies that Umklapp occurs for T ≥ Tum where

Tum = (4e3/9π) vt kFe.

From the preceding discussions we can conclude that for T > Tum the mean free path

λph

e ∝ v3

t /T 2
since vt � vl . For T � Tum where only normal processes involving longitudinal

phonons are allowed we expect λph

e ∝ v4

l /T 3
. However, the normal electron-phonon process

is too weak to compete with two other sources of electron scattering that we now discuss.

4.2. Electron-impurity scattering

As we noted in §2., in accreting neutron stars nuclear reactions that process accreted mate-

rial can produce a mix of metastable nuclei. The evolution of nuclei in the outer crust has

been studied in [5] where it was found that electron capture induced neutron emission reac-

tions populate a very diverse mix of nuclei with a large dispersion in Z and A. Although it
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is reasonable to expect that this dispersion will significantly decrease in the inner crust due

to pycno-nuclear reactions and the abundant supply of neutrons, reaction pathways in the

inner crust remain poorly understood. It is generally assumed that at each depth a specific

nucleus with large Z and the highest abundance will crystallize and the remaining mix of

nuclei can be treated as impurities in the solid. The impurity parameter

Qimp =
1

nion

∑
i

ni (Zi −�Z�)2 , (29)

is a good measure of the dispersion in the nuclear charge. For moderate Qimp ≈ 1 an ordered

lattice is likely with scattered impurities. If the impurities cannot diffuse easily their spatial

distribution will be uncorrelated, and electron scattering off them can become significant.

The scattering mean free path in this case is given by

λimp

e =
k2

Fe

4πe4 ∑i ni (Zi −�Z̄�)2
Λ−1 =

3π�Z�
4e4Qimp kFe

Λ−1 , (30)

where Λ � 1/2 (ln(π/e2)−2) is the Coulomb logarithm, and we have used charge neutral-

ity which requires �Z� nion = ne = k3

Fe
/3π2

in arriving at the second equality.

4.3. Electron-electron scattering

Typically electron-electron scattering is weak but it can become important when electron-

ion scattering is suppressed at T < Tum. Scattering between relativistic electrons is dom-

inated by the current-current interaction which unlike the Coulomb interaction between

charges, this interaction is unscreened in the static limit. The corresponding mean free path

was calculated including the effects of dynamical screening (or Landau damping) in [32].

For the case of relativistic and degenerate electrons

λe−e =
π2

6ζ[3] e2 T
≈ 188

T
, (31)

and it is remarkable that it is independent of density. The corresponding conductivity κe−e �
21 µ2

e is also interesting as it is independent of temperature. Consequently, electron-electron

process can become important at T < Tum when electron-phonon Umklapp scattering is

suppressed. However, in practice for T ≥ 10
7

K they are only relevant in a small region

close to the crust-core boundary if Qimp � 1.

4.4. Electron conduction

Numerical calculations of the electron conductivity with several refinements that include

the role of multi-phonon excitations, Debye-Waller corrections and the nuclear form fac-

tors have been calculated and tabulated by the neutron star research group at the Ioffe in-

stitute in St. Petersburg (http://www.ioffe.rssi.ru/astro/conduct/). Since our focus here is

to emphasize the qualitative aspects at low temperature we do not review these important

refinements. The results obtained (using the fits to the tabulated results) are shown in Fig. 9

and qualitative features can be generally understood in terms of our preceding discussion.

Four panels with increasing T in Fig.9 clearly demonstrates: (i) the rapid decrease in ther-

mal conductivity for the case Qimp = 0 as T becomes larger than Tum and (ii) the importance
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Figure 9. Electron thermal conductivity κe vs density at four different temperatures. Scat-
tering processes e-ion, e-e, and e-imp with 6 values of Qimp = 0, 1, 2, 3, 4, and 5 (as
indicated in the left panel) are included.

of impurity scattering in the inner crust for T < 108 K and for Qimp � 1. Both of these trends
are easily understood in terms of the preceding discussion of various scattering mechanisms
and their temperature dependencies. As we discuss in §5., Qimp will play an important role
in interpreting observations in accreting neutron stars when the inner crust is cold with
T < Tum.

4.5. Phonon conduction

Phonon heat conduction can become relevant when T >∼ 108 K when the phonon heat capac-
ity becomes comparable to that of electrons, or when the electron contribution is suppressed
either due to large Qimp or magnetic fields. Its importnace depends on the phonon mean free
path being large enough to compensate for their smaller velocity. Phonon scattering pro-
cesses have been discussed in Refs. [26, 27] and we will briefly review them here. As in
terrestrial metals [29], electrons in the inner crust are efficient at damping lattice phonons.
The phonon-electron process is shown in Fig 7 (2a) which depicts a phonon decay produc-
ing an electron-hole excitation. This, Landau damping, dominates over phonon-impurity
and phonon-phonon processes for the temperature realized in the crust [26].

The electron-phonon process discussed in §4.1. and the phonon-electron process we
discuss here are essentially similar. Only here it acts to bring into equilibrium the phonon
distribution function that carries the net thermal current relative to the electron gas. Since
transverse modes dominate the heat capacity their contribution to thermal conduction is rel-
evant and longitudinal modes can be neglected. For T ≥ Tum, Umklapp processes dominate
and transverse phonons are absorbed and emitted by large angle electron scattering on the
Fermi surface. The mean free path for these processes was estimated by Chugunov and
Haensel in [26]. For simplicity, neglecting corrections due to the Debye-Waller factor, we

Electron Conduction

Impurity scattering is important at low temperature. 
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Figure 7. Feynman diagrams indicating the various scattering and dissipative processes

involving electrons, lattice phonons and superfluid phonons.

4. Transport Properties

The electron and phonon thermal conductivity can be written as κ = Cv v λ/3 where Cv is

their specific heat, v is their velocity, and λ is the transport mean free path. Using Eqs. 3 &

4 the electron and phonon conductivities are

κe =
1

9
µ2

e T λe , κphi
=

2π2

45 v2

i
T 3 λphi

(20)

where electrons are relativistic (v = 1) with mean-free path λe, and the phonon contribution

is for each phonon type with velocity vi and mean free path λphi
. Since µe � T , electrons

dominate at low temperature but phonon contributions can become relevant at high tem-

perature when λphi
� (µe/T )2 v2

i λe or when the magnetic field is large enough to restrict

electron motion [26, 27]. Phonon velocity was discussed in §3., we now turn to discuss

scattering and absorption processes that determine their mean free path. Feynman diagrams

for relevant interactions are illustrated in Fig. 7 and in the following we briefly discuss the

most important of these processes in the inner crust.

4.1. Electron-phonon processes

In its general form, the electron mean free path relevant for the thermal conductivity due to

electron-ion scattering is given by

λ−1

e =
Z2e4

4πµ2
e

�
2kFe

0

dk k3 |Ṽ (k)|2
� ∞

−∞
dω F (βω)S(ω,k) gκ(k,βω) (21)

where

gκ(βω,k) = 1+

�
βω
π

�
2
�

3
k2

Fe
k2

− 1

2

�
, F (βω) = βω

exp(βω)−1
(22)

and the dynamical structure factor S(ω,k) embodies all relevant dynamics of the strongly

coupled system of ions [28]. Here, ω,k are the energy and momentum transfer. The function

Flowers & Itoh (1976)



Superfluid Conduction
Its impossible to sustain a 
temperature gradient in 
bulk superfluid helium ! 

Superfluid heat flow in the crust

Sanjay Reddy

December 23, 2011

1 Counter Flow

In ordinary superfluids such as helium II it is well know that a temperature gradient drives
rapid and ordered flow [1]. In the two-fluid model this is interpreted as the counterflow of
normal and superfluid components to ensure a net energy flow without associated mass flow
[2]. When a temperature gradient is imposed on a superfluid, initially superfluid flows to
the high temperature region in response to the chemical potential gradient and neutralizes
it on a short timescale that is associated with the superfluid flow critical velocity. The
subsequent steady state is one in which the temperature and pressure gradients are related
(to ensure that the chemical potential gradient is zero) and these gradients drive normal
fluid flow toward the low temperature region.

In what follows, we investigate the possibility of heat flow due to the ordered motion of
the normal component of the neutron superfluid across the neutron star inner crust due to
an imposed temperature gradient. Such gradients are likely to be realized in accreting and
magnetized neutron stars due to heat released from nuclear reactions and magnetic field
reconfiguration, respectively [3, 4]. In current models the diffusion of electrons is expected
to be the dominant contribution to the heat flux. In the presence of superfluid counterflow
an additional contribution to the energy flux arises due to uniform motion of the normal
component with velocity vn and the total heat flux is given by

�Q = S(sPh)T�vn − κ ∇T , (1)

where

S(sPh) =
1

3
C(sPh)
v =

2π2

15 c3s
T 3 (2)

is the entropy density of the superfluid (contained in the superfluid phonons (sPh) field),

cs � vF /
√
3 is the velocity of the superfluid phonon, and C(sPh)

v is the phonon specific
heat. κ is the total thermal conductivity, characterizing all particles that contribute to
the diffusive heat flux. We note that both terms contribute with the same sign and aid in
transporting energy along the same direction (�vn � − �∇T ).

1

T>Tc T<Tc

Photographs: JF Allen and JMG Armitage (St Andrews University 1982).
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In ordinary superfluids such as helium II it is well know that a temperature gradient drives
rapid and ordered flow [1]. In the two-fluid model this is interpreted as the counterflow of
normal and superfluid components to ensure a net energy flow without associated mass flow
[2]. When a temperature gradient is imposed on a superfluid, initially superfluid flows to
the high temperature region in response to the chemical potential gradient and neutralizes
it on a short timescale that is associated with the superfluid flow critical velocity. The
subsequent steady state is one in which the temperature and pressure gradients are related
(to ensure that the chemical potential gradient is zero) and these gradients drive normal
fluid flow toward the low temperature region.

In what follows, we investigate the possibility of heat flow due to the ordered motion of
the normal component of the neutron superfluid across the neutron star inner crust due to
an imposed temperature gradient. Such gradients are likely to be realized in accreting and
magnetized neutron stars due to heat released from nuclear reactions and magnetic field
reconfiguration, respectively [3, 4]. In current models the diffusion of electrons is expected
to be the dominant contribution to the heat flux. In the presence of superfluid counterflow
an additional contribution to the energy flux arises due to uniform motion of the normal
component with velocity vn and the total heat flux is given by
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heat. κ is the total thermal conductivity, characterizing all particles that contribute to
the diffusive heat flux. We note that both terms contribute with the same sign and aid in
transporting energy along the same direction (�vn � − �∇T ).

1
Why does this not occur in neutron stars ?
Answer:  Fluid motion is damped by electrons.  

Two fluid model: Counter-flow transports heat. 
(Its the superfluid phonon fluid)

The velocity is limited only by fluid dynamics: (i) boundary shear 
viscosity or (ii) superfluid turbulence. 

Aguilera, Cirigliano, Reddy & Sharma (2009)
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Figure 11. Models for the crust relaxation of MXB1659-29. See text for description. The
six data points in the left panel are from [40], assuming a source distance of 8.5 kpc.

5.2.1. Mapping the thermal conductivity: MXB1659-29.

The crust relaxation of MXB 1659-29 has been studied in detail by Brown & Cumming in
[43], and our results amply confirm their analysis. The accretion outburst was long enough
that the crust could reach a steady state: this is very important since it implies that the
initial T profile for the crust relaxation was independent of CV , providing some relief from
the CV/κ degeneracy in τth, Eq. 39.

As was shown in [43] there is a one-to-one mapping between the cooling curve, Te(t),
and the temperature profile of the crust, T (z) at the end of the outburst at time t0. At time
t − t0 after relaxation commences, the observed surface temperature Te is determined by the
temperature T (zt−t0) at a depth zt−t0 such that the thermal relaxation time from the surface
to this depth is τth ∼ t. (This is the "l2-effect" in Eq.39.) The schematic in the grey shaded
inset in the left panel of Fig. 11 shows: phase "1" when Te is determined by the outer crust
evolution; in "2" it is controlled by the evolution of matter at densities ρ ∼ 1011 − 1013 g
cm−3; in phase "3" the evolution is sensitive to the deep inner crust; and, finally, in phase
"4", the crust has relaxed with the core and Te reflects the core temperature. Approximating
CV and κ by power laws in T , the evolution is described by power laws, i.e., straight lines
in a Te-Log(t − t0) plot.

The thermal conductivity of a pure crystalline crust turns out to be much too high to
reproduce observed cooling, but good fits are obtained when κ is reduced due to additional
scattering by impurities. The cooling curves in the left panel of Fig. 11 illustrate three
cases with impurity parameters Qimp = 2.5, 5, and 7.5, as well as a pure crystalline crust,
Qimp = 0. A value of Qimp = 5 is favored in this set of results, but is dependent on the
assumed crust thickness and accretion rate (see [43] for a complete study). A finer study
[45] with a density dependent Qimp reveals that the cooling curves are mostly sensitive to
the value of Qimp at ρ > 1013 g cm−3, so that MXB 1659-29, and also KS 1731-260, are

•Late time signal is 
sensitive to inner crust 
thermal and transport  
properties.
•Impurity parameter 
can be fixed at earlier 
times. 
•Variations in the 
pairing gap (changes the 
fraction of normal 
neutrons) are 
discernible !  

Page & Reddy (2012)  

Shternin & Yakovlev (2007)
Brown & Cumming (2009)

Page & Reddy (2012)  



A: Low Tc - large normal fraction
B: High Tc- small normal fraction
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Figure 11. Models for the crust relaxation of MXB1659-29. See text for description. The
six data points in the left panel are from [40], assuming a source distance of 8.5 kpc.

5.2.1. Mapping the thermal conductivity: MXB1659-29.

The crust relaxation of MXB 1659-29 has been studied in detail by Brown & Cumming in
[43], and our results amply confirm their analysis. The accretion outburst was long enough
that the crust could reach a steady state: this is very important since it implies that the
initial T profile for the crust relaxation was independent of CV , providing some relief from
the CV/κ degeneracy in τth, Eq. 39.

As was shown in [43] there is a one-to-one mapping between the cooling curve, Te(t),
and the temperature profile of the crust, T (z) at the end of the outburst at time t0. At time
t − t0 after relaxation commences, the observed surface temperature Te is determined by the
temperature T (zt−t0) at a depth zt−t0 such that the thermal relaxation time from the surface
to this depth is τth ∼ t. (This is the "l2-effect" in Eq.39.) The schematic in the grey shaded
inset in the left panel of Fig. 11 shows: phase "1" when Te is determined by the outer crust
evolution; in "2" it is controlled by the evolution of matter at densities ρ ∼ 1011 − 1013 g
cm−3; in phase "3" the evolution is sensitive to the deep inner crust; and, finally, in phase
"4", the crust has relaxed with the core and Te reflects the core temperature. Approximating
CV and κ by power laws in T , the evolution is described by power laws, i.e., straight lines
in a Te-Log(t − t0) plot.

The thermal conductivity of a pure crystalline crust turns out to be much too high to
reproduce observed cooling, but good fits are obtained when κ is reduced due to additional
scattering by impurities. The cooling curves in the left panel of Fig. 11 illustrate three
cases with impurity parameters Qimp = 2.5, 5, and 7.5, as well as a pure crystalline crust,
Qimp = 0. A value of Qimp = 5 is favored in this set of results, but is dependent on the
assumed crust thickness and accretion rate (see [43] for a complete study). A finer study
[45] with a density dependent Qimp reveals that the cooling curves are mostly sensitive to
the value of Qimp at ρ > 1013 g cm−3, so that MXB 1659-29, and also KS 1731-260, are
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Summary
• Thermal relaxation in neutron stars is sensitive to 

the low temperature properties of the crust.   

• Thermal and transport properties of the inner 
crust (super - solid) can be calculated in terms of 
a few low-energy constants (LEC) of a   effective 
theory for phonons and electrons.

• To calculate the LECs we require a microscopic 
description of the ground state of exotic neutron 
rich phases at sub-nuclear density.     

• Potentially observable  and likely to have 
implications for both thermal evolution and 
seismology !


